
Introduction to Scientific Computing
Overview

Bojana Rosić, 10. Februar 2016

What we have learned?

Real worldReal world

Higher order Higher order ODEODE

d^n x/ dt^n =F(x,t)d^n x/ dt^n =F(x,t)

First orderFirst order ODE ODE

d x/ dt=f(x,t)

 Numerical scheme
(behind is numerical integration)

Σ a_i x_(n+i)=h Σ b_i f(x_(n+i),t_(n+i))

Difference equationDifference equation

Check stability
(linearise, eigenvalues)

Check zero and
absolute stability

Check condition
 number and solve
linear or nonlinear
system

Banach fixed
 point theorem

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 2

Real world⇒ ODEs

Felix’s free fall

m
d2y
dt2 =

1
2
ρCDA

(
dy
dt

)2

− mg

where m is mass, CD drag coeffi-
cient, ρ air density and g is gravi-
tational constant

Here, the maximal order of deriva-
tive is 2, so we say that the ODE
is of the second order.

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 3

Higher order ODE⇒ first order ODE
Higher order ODEs can be solved by using the method of transfor-
mation to the system of lower order ODEs.

m
d2y
dt2 =

1
2
ρCDA

(
dy
dt

)2

− mg

Take x1 := y, x2 = dy
dt as a new variable, then

dx1

dt
=

dy
dt

,
dx2

dt
=

d2y
dt2

which further leads to the system of first order ODEs:

ẋ =

(
dx1
dt

dx2
dt

)
=

(
x2

1
2mρCDA (x1)

2 − g

)
= f(x)

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 4

First order ODE⇒ stability

Equilibria points are obtained by solving

f(x∗) = 0

which possibly requires Newton method:

x(k+1)
∗ = x(k)

∗ − (f ′(x(k)))−1f(x(k))

Stability is determined by

ẋ = Df(x∗)x

where J := Df(x∗) is the Jacobi matrix.

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 5

ODE stability

J = QetΛQ−1

Thus,

if any Re (λj) > 0 then x →∞ when t →∞ (unstable)

if for almost all Re (λj) < 0 besides at least one Re (λj) = 0
then it is stable but not attractive in case of linear system,
otherwise it is difficult to say based only on the first order Taylor
expansion

if all Re (λj) < 0 then the state x∗ is stable and attractive

So find eigenvalues of J and check if you are on the left side of
complex plane!!

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 6

where we are

Real worldReal world

Higher order Higher order ODEODE

d^n x/ dt^n =F(x,t)d^n x/ dt^n =F(x,t)

First orderFirst order ODE ODE

d x/ dt=f(x,t)

 Numerical scheme
(behind is numerical integration)

Σ a_i x_(n+i)=h Σ b_i f(x_(n+i),t_(n+i))

Difference equationDifference equation

Check stability
(linearise, eigenvalues)

Check zero and
absolute stability

Check condition
 number and solve
linear or nonlinear
system

Banach fixed
 point theorem

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 7

First order ODE⇒ solving

Algebraic solving is possible for linear system of ODEs. Solution is
of the form

x = c1eλtv + c2(teλtv + eλtw)

in which v is eigenvector and w is the generalised eigenvector.
These are obtained by solving

(A − λI)v = 0, (A − λI)w = v.

However, the algebraic solution is not something that is used in prac-
tice.

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 8

First order ODE⇒ numerical integration

ẋ = f (t)⇒ x(tn) = x(tm) +
∫ tn

tm
f (t)dt

and thus includes the numerical integration∫ tn

tm
f (t)dt =

∫ tn

tm
Pn(t)dt =

N∑
i=1

wi f (ti)

in which Pn is n-th order interpolation polynomial satisfying interpo-
lation conditions

Pn(ti) = f (ti), i = 1, ...n + 1

The interpolation points ti are chosen to be equidistant or are assu-
med to be unknown (in this case they are computed from the error
estimates).

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 9

ODE⇒ integration⇒ difference equation

Solution

x(tn) = x(tm) +
∫ tn

tm
f (t)dt

is difference equation. If f (t) is approximated by constant, then one
may distinguish explicit from implicit Euler method:

x(tn+1) = x(tn) + hf (xn, tn) and x(tn+1) = x(tn) + hf (xn+1, tn+1)

These are one step methods described by interpolation points t = tn
or t = tn+1. Multistep methods use approximation of n-th order to
model the right hand side f ≈ Pn or the state itself x ≈ Pn,

dPn
dt =

f . Hence, they need several interpolation points and thus several
starting points.

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 10

Numerical scheme⇒ convergence
Convergence implies consistency and zero stability. Consistency

does not imply convergence.

The method is said to be consistent if the local (truncation) error
converges to zero when the step–size becomes arbitrarily small, i.e.

lim
h→0

Th = lim
h→0

εloc

h
= 0

The scheme is consistent of order p if

max‖εloc

h
‖ 6 Chp

The local error εloc is the difference between the exact xa(tn+1) and
numerical x(tn+1) solutions at tn+1 where x(tn+1) is computed by a
numerical scheme starting from xa(tn).

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 11

Numerical scheme⇒ convergence

Linear multistep method is said to be convergent if

max
tn∈T
‖εglob(tn,h)‖ → 0, h→ 0

and it has the order of convergence q if

max
tn∈T
‖εglob(tn,h)‖ 6 Chq

where the global error is εglob = xa(t) − x(t) in which xa(t) is the
exact solution of the differential equation ẋ = f (t , x) and x(t) is the
approximate solution. C is a constant independent of h

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 12

Numerical scheme⇒ step size

The difference equation
∑k

j=0 ajxn+j = h
∑k

j=0 bj f (tn+j , xn+j) is sta-
ble if roots

ρ(ξ) − zσ(ξ) = 0

are smaller by amplitude than 1, or eventually only one of them is
equal to 1. With respect to this one defines

Definition
The region of absolute stability for the LMM is the set of points
z = hλ in the complex plane for which the polynomial
ρ(ξ) − zσ(ξ) = 0 satisfies the root condition.

Gs := {z ∈ C : |ξ(z)| 6 1}

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 13

where we are

Real worldReal world

Higher order Higher order ODEODE

d^n x/ dt^n =F(x,t)d^n x/ dt^n =F(x,t)

First orderFirst order ODE ODE

d x/ dt=f(x,t)

 Numerical scheme
(behind is numerical integration)

Σ a_i x_(n+i)=h Σ b_i f(x_(n+i),t_(n+i))

Difference equationDifference equation

Check stability
(linearise, eigenvalues)

Check zero and
absolute stability

Check condition
 number and solve
linear or nonlinear
system

Banach fixed
 point theorem

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 14

Numerical scheme⇒ solving system

Applying implicit numerical scheme onto ODE

k∑
j=0

ajxn+j = h
k∑

j=0

bj f (tn+j , xn+j)

such as for example implicit Euler method

xn+1 = xn + hf (xn+1, tn+1)

one ends up with the linear/nonlinear system of equations

g(xn+1) = xn + hf (xn+1, tn+1) − xn+1 = 0

in which xn+1 is unknown.

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 15

Solving system⇒ fixed point iteration
The solution of

g(z) = 0

is fixed point z∗ in interval [za, zb] which satisfies

z∗ = ϕ(z∗)

The solution is unique and exists if Banach fixed point theorem is
valid, i.e.

ϕ(z) : [za, zb]→ [za, zb]

the mapping ϕ(z) is Lipshitz continuous

‖ϕ(z) −ϕ(ẑ)‖ 6 q‖z − ẑ‖

the mapping is contractive q < 0

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 16

Solving system⇒ fixed point iteration

We have studied two error estimates

A posteriori error estimate:

‖z∗ − zk‖ 6
q

1 − q
‖zk − zk−1‖

A priori error estimate:

‖z∗ − zk‖ 6
qk

1 − q
‖z1 − z0‖.

Here, index k is not time step, but iteration number.

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 17

Solving system⇒ linear system
System:

Az = b

Gauss-Seidel method:

Lz(k+1) = b − Uz(k)

Jacobi method:
Dz(k+1) = b − Rz(k)

Successive over-relaxation (SOR) method:

z(k+1) = (D +ωL)−1(ωb − [ωU + (ω− 1)D]z(k)).
Conjugate gradients

z(k+1) = z(k) + α(k)d(k)

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 18

Solving system⇒ nonlinear system

F(z) = 0

F(z) = F(z0) + F ′(z0)(x − z0) + h.o.t . = 0

Jacobian:
J(z) = F ′(z)

with elements:

Jij =
∂fi
∂zj

Newton iteration:

zk = zk−1 −
F(zk−1)

J(zk−1)

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 19

Solving system⇒ nonlinear system

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 20

Solving system⇒ nonlinear system
Besides classical Newton algorithm one may also use:

simplified (stationary) Newton

zk = zk−1 −
F(zk−1)

J(z0)

modified Newton

zk = zk−1 − m
F(zk−1)

J(zk−1)

Newton method with restart

zk = zk−1 −
F(zk−1)

J(zm)

Broyden’s method (updating Jacobian)

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 21

Solving system⇒ condition number

Modelling, as well as numerical solving need to satisfy the property
of well-posedness:

solution exists

solution is unique

small perturbations in data cause small pertubrations in the
solution

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 22

Solving system⇒ condition number

Model
y = f (x)

has condition number

k(x) =

∣∣∣∣ ∂f
∂x

x
f (x)

∣∣∣∣
The system

Ax = b

has condition number

k(A) = ‖A‖‖A−1‖

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 23

where we are

Real worldReal world

Higher order Higher order ODEODE

d^n x/ dt^n =F(x,t)d^n x/ dt^n =F(x,t)

First orderFirst order ODE ODE

d x/ dt=f(x,t)

 Numerical scheme
(behind is numerical integration)

Σ a_i x_(n+i)=h Σ b_i f(x_(n+i),t_(n+i))

Difference equationDifference equation

Check stability
(linearise, eigenvalues)

Check zero and
absolute stability

Check condition
 number and solve
linear or nonlinear
system

Banach fixed
 point theorem

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 24

DIFFERENCE AND DIFFERENTIAL EQUATIONS

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 25

Difference vs. Differential equations

Discrete system Continuous system

Difference Differential

xn+1 − xn = 2h2n dx
dt = 2t

Discretise in time

xn+1 − xn = 2h2n

Differential equations become difference when we apply numerical
integration (time discretisation)!

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 26

Homogeneous equations (zero rhs)

Difference Differential

xn+1 − xn = 0 dx
dt = 0

Solution form Solution form

xn = Cρn x(t) = Ceρt

Characteristic Characteristic

ρ− 1 = 0 ρ = 0

xn = C(1)n = C x = Ce0t = C

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 27

Homogeneous solution wrt roots

Difference Differential

Single roots ρi Single roots ρi

xn =
∑

i Ciρ
n
i x(t) =

∑
i Cieρi t

Double roots ρ1 Double roots ρ1

xn = C1ρ
n
1 + nC2ρ

n
1 x(t) = C1eρ1t + tC2eρ1t

Roots and eigenvalues are equal!!

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 28

Homogeneous solution wrt roots

Difference Differential

Complex ρ = α± βi Complex ρ = α± βi

µ :=
√
α2 + β2 e(α±βi)t = eαteβit

tan φ = β/α

xn = µn(Acos(nφ) + iBsin(nφ)) x = eαt(Acos(βt) + iBsin(βt))

Note that in one case is the modulus and in another real part of the
root.

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 29

Non-homogeneous- Particular solution

Difference Differential

xn = xnh + xnp x = xh + xp

xh = Cept ,

gn x(p)
n

an d1an

nk d0 + d1n + · · ·+ dknk

nkan (d0 + d1n + · · ·+ dknk)an

variation of constant

xp = c(t)ept

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 30

STABILITY

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 31

Stability

Difference Differential

xn+1 = F(xn)
dx
dt = f (x)

x∗ = F(x∗) f (x∗) = 0

roots of charact. equation or roots of charact. equation or

[λ, v] = eig DF(x∗) [λ, v] = eig Df (x∗)

(λ)n ⇒ abs (λ) 6 1 (real) eλt ⇒ (λ) 6 0 (real)

abs (µ) 6 1 (complex) (Re(λ)) 6 0 (complex)

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 32

ODE 2 expectations

In this lecture we have only scratched the surface of the process
of solving ordinary differential equations and stability properties of
numerical schemes. Next semester will deal more seriously with the
process of time discretisation of ordinary differential equations and
time dependent partial differential equations. Special attention is put
on the so-called stiff-systems which are very often arising in practi-
cal applications, as well as differential algebraic equations (differen-
tial equations with algebraic conditions).

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 33

Studienarbeit vs. Masterarbeit

for those interested in applied mathematics there are possiblities of
offering student project (3months) or master (6 months) topics. The
focus are ODEs/PDEs which describe

plasticity, viscoplasticity, damage (description of cellulose,
concrete, metals etc.)

weather prediction models (different Lorenz models)

simple biological models (modelling insulin change in body, drug
transport through blood)

Topics are: uncertainty quantification, identification, control, adapti-
ve algorithms, etc.

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 34

Thats all folks

Hints can never hurt you, except on exams. Then, I can mess with
your mind.

10. Februar 2016 Bojana Rosić Introduction to Scientific Computing Seite 35

