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What we have learned?

  

Real worldReal world

Higher order Higher order ODEODE

d^n x/ dt^n =F(x,t)d^n x/ dt^n =F(x,t)

First orderFirst order ODE ODE

d x/ dt=f(x,t)

         Numerical scheme 
(behind is numerical integration)

Σ a_i x_(n+i)=h Σ b_i f(x_(n+i),t_(n+i))

Difference equationDifference equation

Check stability 
(linearise, eigenvalues)

Check zero and 
absolute stability

Check condition
 number and solve 
linear or nonlinear 
system

Banach fixed
 point theorem
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CONDITION NUMBER

http://learnyousomeerlang.com/
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Condition number

This number predicts the relative error in output y if the relative error in input x
is known. Or better to say represents sensitivity of the output on perturbations of
input data.

k(x) :=
∂f

∂x
(x)

x

f (x)

εy =
∆y

y
= k(x)εx = k(x)

∆x

x

Example: substruction is ill-conditioned operation, e.g.

1

x1 − x2
, x1 ≈ x2
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DIFFERENCE AND DIFFERENTIAL EQUATIONS
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Difference vs. Differential equations

Discrete system Continuous system

Difference Differential

xn+1 − xn = 2h2n dx
dt = 2t

Discretise in time

xn+1 − xn = 2h2n

Differential equations become difference when we apply numerical integration
(time discretisation)!
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Homogeneous equations (zero rhs)

Difference Differential

xn+1 − xn = 0 dx
dt = 0

Solution form Solution form

xn = Cρn x(t) = Ceρt

Characteristic Characteristic

ρ− 1 = 0 ρ = 0

xn = C (1)n = C x = Ce0t = C
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Homogeneous solution wrt roots

Difference Differential

Single roots ρi Single roots ρi

xn =
∑

i Ciρ
n
i x(t) =

∑
i Cie

ρi t

Double roots ρ1 Double roots ρ1

xn = C1ρ
n
1 + nC2ρ

n
1 x(t) = C1eρ1t + tC2eρ1t

Roots and eigenvalues are equal!!
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Homogeneous solution wrt roots

Difference Differential

Complex ρ = α± βi Complex ρ = α± βi

µ :=
√
α2 + β2 e(α±βi)t = eαteβit

tan φ = β/α

xn = µn(Acos(nφ) + iBsin(nφ)) x = eαt(Acos(βt) + iBsin(βt))

Note that in one case is the modulus and in another real part of the root.
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Non-homogeneous- Particular solution

Difference Differential

xn = xnh + xnp x = xh + xp
xh = Cept ,

gn x
(p)
n

an d1an

nk d0 + d1n + · · ·+ dknk

nkan (d0 + d1n + · · ·+ dknk)an

variation of constant

xp = c(t)ept
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STABILITY
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Stability

Difference Differential

xn+1 = F (xn) dx
dt = f (x)

x∗ = F (x∗) f (x∗) = 0

roots of charact. equation or roots of charact. equation or

[λ, v ] = eig DF (x∗) [λ, v ] = eig Df (x∗)

(λ)n ⇒ abs (λ) ≤ 1 (real) eλt ⇒ (λ) ≤ 0 (real)

abs (µ) ≤ 1 (complex) (Re(λ)) ≤ 0 (complex)
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Stability

If there is just one root equal to 1 (i.e. 0) ⇒ stable but not asympt.

(1)n = 1, e0t = 1, n→∞ & t →∞

If there are more roots equal to 1( i.e. 0) ⇒ not stable

c1(1)n + c2n(1)n →∞, c1e0t + c2te0t →∞, n→∞ & t →∞
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Zero-stability

Stability with respect to the intial conditions. Apply numerical method to the ODE

ẋ = 0

such as for example Euler:
xn+1 − xn = 0

then test stability of this difference equation.

Zero stability is important due to the process of selecting initial conditions. They
are not always correct.
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COMPUTING THE ROOTS—SOLVING SYSTEMS OF EQUATIONS

F (X ) = 0
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Solving linear system of equations

System:
Ax = b

Gauss-Seidel method:
Lx(k+1) = b−Ux(k)

Jacobi method:
Dx(k+1) = b− Rx(k)

Successive over-relaxation (SOR) method:

x(k+1) = (D + ωL)−1
(
ωb− [ωU + (ω − 1)D]x(k)

)
.
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Fixed-point iterations

We want to solve
F(x) = x

such that

F has fixed point (solution)

the fixed point is unique

can be obtained by iterative process

F is also called mapping.
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Fixed-point iterations

Banach fixed point

Lipshitz continuity (for q ≥ 0):

‖F(x)− F(y)‖ ≤ q‖x− y‖

If this holds when 0 ≤ q < 1 then

F(x∗) = x∗ has unique solution

for any initial value sequence xn+1 = F(xn) converges to solution x∗ (this
means that iterative method is convergent and gives the solution)

speed of convergence are given by apriori and aposteriori estimates
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Error estimates

We have studied two error estimates

A posteriori error estimate:

‖x∗ − xn‖ ≤
q

1− q
‖xn − xn−1‖

A priori error estimate:

‖x∗ − xn‖ ≤
qn

1− q
‖x1 − x0‖.
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Newton method

F(x) = 0

F(x) = F(x0) + F′(x0)(x− x0) + h.o.t. = 0

Jacobian:
J(x) = F′(x)

with elements:

Jij =
∂fi
∂xj

Newton iteration:

xk = xk−1 −
F(xk−1)

J(xk−1)
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NUMERICAL INTEGRATION∫ b

a

f (t)dt = ...
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Picards iteration

To compute the solution of integral equation one may use the fixed point iteration
(also called Picard-Lindelöf iteration):

x (k+1)(t) = x0 +

∫ t

t0

f (x (k)(s), s)ds = F (x (k), s)

by starting from x (0) = x0.
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Newton-Cotes integration

Approximate function (rhs of ODE) by a polynomial∫ T

t0

f (t) dt ≈
∫ T

t0

P(t) dt =

∫ T

t0

n∑
j=0

aj t
j
i dt

Possible polynomial approximations (global or local):

piecewise constant interpolation (rectangle rule)

linear interpolation (trapezoidal rule)

quadtratic interpolation (Simpsons rule)
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Gauss integration

In Newton-Cotes formula one chooses the points ti in which the value of function
will be evaluated. This is not optimal as the result may lead to large errors. The
Gauss quadrature has for a goal to vary the placements ti such that the integration
is more accurate. In general Gauss formula approximates:∫ 1

−1

g(t)dt ≈
∫ 1

−1

Pn(t)dt =
n∑

i=0

g(ti )wi , wi =

∫ 1

−1

`i (t)dt

in the same way as Newton-Cotes. But, ti are unknown and have to be found.
Additionaly to them are also unknown the coefficients of a polynomial Pn(x).
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NUMERICAL SCHEMES TO SOLVE ODE

dx

dt
= f (x , t)⇒ x(tn+1) = ...
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Multistep methods

Numerical methods for solving ODE

ẋ = f (x , t)

can be classified as

one step methods : these methods use only information from one time
point to compute the next

xn+1 = xn + hf (tn, xn) requires knowledge on xn

multistep methods: these methods require knowledge on more than one
time point

xn+1 = xn + h

(
3

2
fn −

1

2
fn−1

)
requires knowledge on xn, xn−1
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Multistep method

Linear multistep methods of the form (only linear combination of x ’s and f ’s)

k∑
l=0

alxn+l = h
k∑

l=0

bl f (tn+l , xn+l)
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One step methods

Constraining ourselves to one step, one obtains

explicit Euler method xn+1 = xn + hf (tn, xn)

implicit Euler method xn+1 = xn + hf (tn+1, xn+1)

trapezoidal rule xn+1 = xn + h
2 (f (tn, xn) + f (tn+1, xn+1))

explicit midpoint rule xn+1 = xn + hf (tn + h
2 , x(tn) + h

2 f (tn, xn))

implicit midpoint rule xn+1 = xn + hf (tn + h
2 ,

1
2 (xn + xn+1))
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ACCURACY OF NUMERICAL SCHEMES
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Consistency of numerical methods for ODE

The method is said to be consistent if the local (truncation) error converges to zero when
the step–size becomes arbitrarily small, i.e.

lim
h→0

Th = lim
h→0

εloc
h

= 0

The scheme is consistent of order p if

max‖ εloc
h
‖ ≤ Chp

The local error εloc is the difference between the exact xa(tn+1) and numerical x(tn+1)
solutions at tn+1

εloc = xa(tn+1)− x(tn+1)

where x(tn+1) is computed by a numerical scheme starting from xa(tn).
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Convergence

Linear multistep method is said to be convergent if

max
tn∈T
‖εglob(tn, h)‖ → 0, h→ 0

and it has the order of convergence q if

max
tn∈T
‖εglob(tn, h)‖ ≤ Chq

where

the global error is
εglob = xa(t)− x(t)

xa(t) is the exact solution of the differential equation ẋ = f (t, x)

x(t) is the approximate solution

C is a constant independent of h
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Convergence

Convergence implies consistency. Consistency does not imply convergence.
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STABILITY OF NUMERICAL SCHEMES
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Global error

Global error is defined as:

εn+1
glob = xa(tn+1)− x(tn+1)

in which xa is analytical and x(t) full numerical solution. Having in mind that

x(tn+1) = x(tn) + hf (tn, xn) = x(tn) + hλxn, n = 0, 1, 2, ...

with λ being −1 or −100, one may write

εn+1
glob = xa(tn+1)− x(tn)− hλxn
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Absolute Stability

To judge if the numerical method produces desired numerical accuracy for given
h > 0, one introduces the notion of absolute stability. Absolute stability is defined
as a stability of numerical scheme applied on the Dahlquist problem:

ẋ = λx , x(0) = 1

whose exact solution is given by

x = exp(λt)

and depends on the value of λ

lim
t→∞

|x(t)| =

 0, if λ < 0⇒ stable ODE
1, if λ = 0⇒ not considered
∞, if λ > 0⇒ not considered
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Absolute Stability

The difference equation
∑k

j=0 ajxn+j = h
∑k

j=0 bj f (tn+j , xn+j) is stable if roots

ρ(ξ)− zσ(ξ) = 0

are smaller by amplitude than 1, or eventually only one of them is equal to 1. With
respect to this one defines

Definition

The region of absolute stability for the LMM is the set of points z = hλ in the
complex plane for which the polynomial ρ(ξ)− zσ(ξ) = 0 satisfies the root
condition.

Gs := {z ∈ C : |ξ(z)| ≤ 1}
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Thats all folks

“Any fool can know. The point is to understand.”
Albert Einstein
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