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Solving ODE

In last lecture we have shown that the proces of solving

ẋ(t) = f (t, x(t)),

for t ∈ [t0,T ], x(t0) = x0, where f : R+ × Rn → Rn is a given function and x0 is
the given initial condition, is equivalent to the process of evaluating the solution of
the following integral equation

x(T ) = x0 +

∫ T

t0

f (t, x(t)) dt
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Problem

The main issue appearing in the previous equation is that the integral cannot be
always computed in an analytical way. In order to avoid this, we may perform
numerical integration

integral = area under curve

which further means that we need to compute the area under curve∫ T

t0

f (t, x(t)) dt

However, this is not an easy task since the term under integral f (t, x(t)) depends
on the unknown x .
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Numerical integration

In practice, there are many situations in which the previous integrand can be respe-
sented as a function of time only∫ T

t0

f (t, x(t)) dt =

∫ T

t0

g(t) dt

which further makes our problem easier to treat. As analytical solution of the
previous integral is not always possible, one may try to numerically compute the
value by approximating the function g by something simpler such as a polynomial
Pn(t) of order n—polynomial interpolation.
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Polynomial interpolation

The polynomial
Pn(t) = a0 + a1t + ...+ ant

n

can be integrated instead of g(t) in one of following ways

globally: compute the area under the curve directly∫ T

t0

g(t) dt ≈
∫ T

t0

Pn(t) dt

locally: compute the area under curve by cutting it into pieces (composite
rule) ∫ t+h

t

g(t) dt ≈
N−1∑
i=0

∫ ti+h

ti

P(t) dt
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Global integration
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Local integration
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How to choose polynomial?

Let us choose n pairwise distinct points ti in time interval I = [t0,T ], and let us
compute the value of function gi := g(ti ) in these points. Then the polynomial can
be found by global interpolation

g(ti ) = P(ti ) =
n∑

j=0

aj t
j
i

The last relation is equivalent to the process of solving

Qa = w

in which
Q = [t ji ], a = [aj ], w = [g(ti )]
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Polynomial interpolation

The matrix Q is of the form

Q =


1 t0 . . . tn0
1 t1 . . . tn1
...

...
...

1 tn . . . tnn


and hence is regular. This further means that one may compute the vector of
unknown coefficients a by solving

Qa = w

To solve the previous equation one may use one of the iterative methods introduced
to you before.
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Newton-Cotes integration

Once the coefficients aj are known the integration becomes simple∫ T

t0

g(t) dt ≈
∫ T

t0

P(t) dt =

∫ T

t0

n∑
j=0

aj t
j
i dt

Before we give general expression for the previous interval, let us first focus on
specific polynomiall approximations:

piecewise constant interpolation

linear interpolation

quadtratic interpolation
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Global piecewise constant interpolation

To compute the integral ∫ T

t0

g(t) dt

we approximate the function g by a zero order polynomial

P1(t) = a0

such that for given point (ti , gi := g(ti )) the following interpolation condition holds

P1(ti ) = g(ti )⇒ a0 = g(ti )
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Global piecewise constant interpolation

This then leads to∫ T

t0

g(t) dt =

∫ T

t0

P(t) dt =

∫ T

t0

a0dt = gi (T − t0)

Hence, ∫ T

t0

g(t)dt ≈ g(ti )(T − t0)

In other words, one computes the integral as area of rectangle.
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Global piecewise constant interpolation

Depending on the choice of g(ti ) one may distinguish

left sum: gi = g(t0)⇒
∫ T

t0
g(t)dt ≈ gi (T − t0)

right sum: gi = g(T )⇒
∫ T

t0
g(t)dt ≈ gi (T − t0)

lower sum: gi = min
t∈I

g(t)⇒
∫ T

t0
g(t)dt ≈ gi (T − t0)

upper sum: gi = max
t∈I

g(t)⇒
∫ T

t0
g(t)dt ≈ gi (T − t0)

mid-point rule:
∫ T

t0
g(t)dt ≈ 0.5(g(t0) + g(T ))(T − t0)

Pros:

easy to perfom numerical integration

Cons:

not very much accurate
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Left (also lower) integration rule
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Right (also upper) integration rule
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Mid-point integration rule
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Exercise: Global interpolation

Problem: Compute the integral of g(t) = 15t2 on interval
[1, 2].

Answer: having

g(t0) = 15, g(t1) = 15 · 22 = 60

the

approximation of integral by left (here also lower) rule becomes∫ T

t0

g(t)dt ≈ g(t0)(T − t0) = 15 · (2− 1) = 15

The correct value is ∫ 2

1

15t2dt = 15
t3

3
|21 =

15

3
(23 − 13) = 5 · 7 = 35
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Exercise: Global interpolation

Thus, global interpolation using this rule is not correct. The
right/upper rule gives∫ T

t0

g(t)dt ≈ g(T0)(T − t0) = 60 · (2− 1) = 60

and leads to overestimation. Finally, the mid-point rule

∫ T

t0

g(t)dt ≈ 0.5(g(t0) + g(T ))(T − t0) = 37.5 · (2− 1) = 37.5

is also not correct. However, it is the closest to the solution.
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Local piecewise constant interpolation

To increase accuracy one may apply the local piecewise interpolation. That is to
divide the interval [t0,T ] into N subintervals such that the integral reads∫ T

t0

g(t) dt ≈
N−1∑
i=0

∫ ti+h

ti

g(t) dt

Then in each subinterval apply interpolation by

left rule

right rule

lower sum

upper sum

mid-point rule
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Local left (here also lower) rule
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Local right (here also upper) rule
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Local midpoint rule
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Exercise: Local interpolation

Problem: Compute the integral of g(t) = 15t2 on interval [1, 2]
using composite left rule.

Answer: Divide the interval into N small subintervals and take
h = 2−1

N
. Then compute the values of function g(t) in points

ti = t0 + hi , i = 0, 1, · · · ,N. Let us take, for example, N = 2,
then h = 0.5 and the points are t0 = 1, t1 = 1.5, t2 = 2. The
values of function in those points are:

g(t0) = 15, g(t1) = 15 · 1.52 = 33.75, g(t2) = 15 · 22 = 60

Left rule reads: ∫ 2

1

g(t)dt =
N−1∑
i=0

g(ti )h
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Exercise: Local interpolation

In our case N = 2 and hence∫ 2

1

g(t)dt = (15 + 33.75) · 0.5 = 24.375

This value is closer to the correct one compared to the global
rule. Precision will improve with the increase of number N. On
the other side, with the increase of N the number of function
evaluations g(ti ) will also increase (and hence the computation
time).
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Local midpoint rule:coarser vs finer
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Global linear interpolation

To compute the integral ∫ T

t0

g(t) dt

we may approximate the function g by a linear polynomial

P1(t) = a0 + a1t

such that for given two points (ti , gi := g(ti )) and (ti+1, gi+1 := g(ti+1)) in I the
following interpolation conditions hold

P1(ti ) = g(ti ), P1(ti+1) = g(ti+1)
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Global linear interpolation

The last relation represents the system of equations(
1 ti
1 ti+1

)(
a0

a1

)
=

(
g(ti )
g(ti+1)

)
=

(
gi
gi+1

)
After solving one obtains

a1 =
gi+1 − gi
ti − ti+1

and

a0 = gi −
gi+1 − gi
ti − ti+1

ti
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Global linear interpolation

Now substitute back the coefficients into polynomial:

P1(t) = a1t + a0

P1(t) =
gi+1 − gi
ti − ti+1

t + gi −
gi+1 − gi
ti − ti+1

ti

=
(gi+1 − gi )t − gi ti+1 − gi+1ti

ti − ti+1

P1(t) =
t − ti+1

ti − ti+1
gi +

t − ti
ti+1 − ti

gi+1
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Global linear interpolation

Note that in

P1(t) =
t − ti+1

ti − ti+1
gi +

t − ti
ti+1 − ti

gi+1

we have polynomials

`i :=
t − ti+1

ti − ti+1
, `i+1 :=

t − ti
ti+1 − ti

gi+1

These are known as Lagrange polynomials. Hence, our polynomial P1(t) is actu-
ally Lagrange expansion:

g(t) ≈ P1(t) = `igi + `i+1gi+1

Once we know this, the integration can be performed.
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Properties of `i

We have

`i (tk) := δik :=

{
1, k = i
0, k 6= i

,

where δik is the so-called Kronecker-product.
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Global linear interpolation

Integration reads ∫ T

t0

P1(t)dt =

∫ T

t0

`igidt +

∫ T

t0

`i+1gi+1dt

i.e. ∫ T

t0

P1(t)dt = gi

∫ T

t0

`idt + gi+1

∫ T

t0

`i+1dt∫ T

t0

P1(t)dt = giwi + gi+1wi+1

where

wi :=

∫ T

t0

`idt, wi+1 =

∫ T

t0

`i+1dt
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Global linear interpolation

Weights in last relation do not depend on the function g(t). They read

w0 :=

∫ T

t0

t − T

t0 − T
dt, w1 =

∫ T

t0

t − t0

T − t0
dt

However, they do depend on the interval I = [t0,T ], which prevents us from
precomputing them. To resolve this issue, one may transform interval [t0,T ] to
[0, 1]. To achieve this use the transformation formula

τ :=
t − t0

T − t0

which for t = t0 gives 0 and for t = T gives 1.
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Global linear interpolation

From the transformation formula one has

dτ =
1

T − t0
dt

as well as
t = τ(T − t0) + t0

This leads to

w0 :=

∫ T

t0

t − t0

T − t0
dt =

∫ 1

0

τ(T − t0) + t0 − t0

T − t0
(T − t0)dτ

i.e.

w0 := (T − t0)

∫ 1

0

τdτ
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Global linear interpolation

in last relation

w0 := (T − t0)

∫ 1

0

τdτ

integral
∫ 1

0
τdτ can be computed analytically. Let us denote its value as α0 such

that

w0 := (T − t0)

∫ 1

0

τdτ = (T − t0)α0

holds. Note that α0 is the weigth which can be stored in a table. in a similar
manner one may compute

w1 =

∫ T

t0

t − t0

T − t0
dt

Bojana Rosić (WiRe) Introduction to Scientific Computing December 12, 2017 34 / 73



Global linear interpolation

Once the weights are found, the final formula for linear numerical integration reads∫ T

t0

g(t)dt =

∫ T

t0

P1(t)dt = g0w0 + g1w1

= (T − t0)
1∑

i=0

αigi = 0.5(T − t0)(g(t0) + g(T )).

Hence, the integral is approximated by area of trapozoid. Thus, this numerical
integration is named as trapezoidal rule.
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Global linear interpolation
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Exercise: Global interpolation

Compute the integral of f (x) = 15x2 on interval [1, 2]. Hence,
t0 = 1, t1 = 2.∫ 2

1

g(t)dt =

∫ 2

1

15t2 =
1

2
(t1 − t0)[g(t0) + g(t1)]

∫ 2

1

15t2dt =
1

2
(2− 1)[15 · 12 + 15 · 22] = 0.5 · 75 = 37.5

True value:∫ 2

1

15t2dt = 15
t3

3
|21 =

15

3
(23 − 13) = 5 · 7 = 35
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Local linear interpolation

In similar manner as before the global linear interpolation can be translated to the
local linear interpolation by using cummulative rule∫ T

t0

g(t) dt ≈
N−1∑
i=0

∫ ti+h

ti

g(t) dt

and in each subinterval interpolating function g(t) by a linear polynomial∫ ti+h

ti

P1(t)dt =

∫ ti+h

ti

`igidt +

∫ ti+h

ti

`i+1gi+1dt

Finally, ∫ T

t0

g(t) dt ≈
N−1∑
i=0

0.5h(gi + gi+1)
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Local linear interpolation
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Exercise: Local interpolation

Compute the integral of g(t) = 15t2 on interval [1, 2] by com-
posite rule. Hence, let us take N = 2. Then, t0 = 1, t1 =
1.5, t2 = 2. ∫ 2

1

g(t)dt =

∫ 1.5

1

15t2 +

∫ 2

1.5

15t2

=
1

2
(t1 − t0)[g(t0) + g(t1)] +

1

2
(t2 − t1)[g(t2) + g(t1)]∫ 2

1

15t2dt =
1

2
(1.5− 1)[15 · 12 + 15 · (1.5)2]

+
1

2
(2− 1.5)[15 · (1.5)2 + 15 · (2)2] = 12.1875 + 23.4375 = 35.625
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Global quadratic interpolation

To compute the integral ∫ T

t0

g(t) dt

we approximate the function g by a quadratic polynomial

g(t) ≈ P2(t) = a2t
2 + a1t + a0

where
P2(ti ) = gi

P2(ti+1) = gi+1

P2(ti+2) = gi+2

Here, points ti are equidistant in the interval [t0,T ].
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Global quadratic interpolation

Having that ti+1 = ti+ti+2

2 and after solving previous system for a2, a1 and a0 one
obtains

a2 =
(2gi − 4gi+1 + 2gi+2)

(t2
i − 2ti ti+2 + t2

i+2)

a1 = − (gi ti − 4gi+1ti + 3gi ti+2 + 3gi+2ti − 4gi+1ti+2 + gi+2ti+2)

(t2
i − 2ti ti+2 + t2

i+2)

a0 =
(gi t

2
i+2 + gi+2t

2
i + gi ti ti+2 − 4gi+1ti ti+2 + gi+2ti ti+2)

(t2
i − 2ti ti+2 + t2

i+2)

Bojana Rosić (WiRe) Introduction to Scientific Computing December 12, 2017 42 / 73



Global quadratic interpolation

After substitution in P2(t) one obtains:

P2(t) =
(t − ti+1)(t − ti+2)

(ti − ti+1)(ti − ti+2)
gi +

(t − ti )(t − ti+2)

(ti+1 − ti )(ti+1 − ti+2)
gi+1

+
(t − ti )(t − ti+2)

(ti+2 − ti )(ti+2 − ti+1)
gi+2.

in which the quadratic Lagrange polynomials read

`i =
(t − ti+1)(t − ti+2)

(ti − ti+1)(ti − ti+2)
, `i+1 =

(t − ti )(t − ti+2)

(ti+1 − ti )(ti+1 − ti+2)

`i+2 =
(t − ti )(t − ti+2)

(ti+2 − ti )(ti+2 − ti+1)
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Global quadratic interpolation

Hence,
P2(t) = `igi + `i+1gi+1 + `i+2gi+2

which after integration leads to∫ T

t0

P2(t)dt = gi

∫ T

t0

`idt + gi+1

∫ T

t0

`i+1dt + gi+2

∫ T

t0

`i+2dt

If we employ transformation of the interval [t0,T ] into [0, 1] in a similar manner as
for linear interpolation one obtains∫ T

t0

P2(t)dt = (T − t0)
n∑

i=0

g(ti )

∫ 1

0

n∏
j=0
j 6=i

nt − j

i − j︸ ︷︷ ︸
=:αi

dt
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Global quadratic interpolation

After simple mathematical operations one finally obtains:∫ T

t0

g(t)dt =

∫ T

t0

P2(t)dt =
T − t0

6
(gi + 4gi+1 + gi+2)

which is known as Simpson’s rule.
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Global quadratic interpolation
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Exercise: Global interpolation

Compute the integral of g(t) = 15t2 on interval [1, 2]. Hence,
t0 = 1, t1 = 1.5, t2 = 2.∫ 2

1

g(t)dt =
T − t0

6
(gi + 4gi+1 + gi+2)

∫ 2

1

g(t)dt =
1

6
(15(1)2 + 4 · 15 · (1.5)2 + 15 · (2)2 = 35

This shows us that the global quadratic interpolation is exact
for the function of polynomial order 2. Namely, this method is
exact for function of polynomial order 3 or less.
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Local quadratic interpolation

Quadratic interpolation applied on each subinterval h of interval I is called local.
And can be applied in a similar manner as previous interpolations.
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Exercise: Local interpolation

Compute the integral of g(t) = 15t2 on interval [1, 2] by com-
posite rule. Hence,N = 2 and t0 = 1, t1.25 t2 = 1.5, t3 = 1.75
t4 = 2. ∫ 2

1

g(t)dt =

∫ t2

t0

g(t)dt +

∫
t2

t3g(t)dt

∫ 2

1

g(t)dt =
0.5

6
(15(1)2 + 4 · 15 · (1.25)2 + 15 · (1.5)2)

+
0.5

6
(15(1.5)2 + 4 · 15 · (1.75)2 + 15 · (2)2)

= 35

Hence, the same conclusion as for global interpolation.
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Error of polynomial approximation

Let us define the function

φ(t) = g(t)− Pn(t)− g(tp)− Pn(tp)

v(tp)
v(t)

in which g(t) is the function we would like to integrate (belongs to C n+1(I )a) and
Pn(t) is the n-th order interpolation polynomial (through ti , i = 0, .., n interpolation
points). Argument tp is some chosen (fixed) point in interval of definition I , not
neccessary the interpolation point. Here,

v(t) =
n∏

i=0

(t − ti ), v(tp) =
n∏

i=0

(tp − ti )

ag is in the interval I n + 1-times continuously differentiable
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Error of polynomial approximation

The function

φ(t) = g(t)− Pn(t)− g(tp)− Pn(tp)

v(tp)
v(t)

has the following properties

φ(t) = 0 when t = ti or t = tp, i.e. it has (n + 2) roots

φ′(t) has n + 1 roots

φ(n+1)(t) has only one root denoted by ξ, i.e. φ(n+1)(ξ) = 0
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Error of polynomial approximation

This allows us to write

φ(n+1)(t) =
d (n+1)

dt(n+1)
(g(t)− Pn(t)−

g(tp)− Pn(tp)

v(tp)
v(t)

= g (n+1)(t)− P(n+1)
n (t)− g(tp)− Pn(tp)

v(tp)
v (n+1)(t)

= g (n+1)(t)− P(n+1)
n (t)− g(tp)− Pn(tp)

v(tp)
(n + 1)!

Furthermore,

φ(n+1)(ξ) = 0⇒ g (n+1)(ξ)− P(n+1)
n (ξ)− g(tp)− Pn(tp)

v(tp)
(n + 1)! = 0

Here note that P
(n+1)
n (ξ) = 0 since Pn is polynomial of order n
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Error of polynomial approximation

Thus,

g (n+1)(ξ)− g(tp)− Pn(tp)

v(tp)
(n + 1)! = 0

from which one obtains the estimate of the error

g(tp)− Pn(tp) =
1

(n + 1)!
g (n+1)(ξ)v(tp) =

1

(n + 1)!
g (n+1)(ξ)

n∏
i=0

(tp − ti )

in point tp of interval.
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Error of polynomial approximation

Theorem

Let g ∈ C n+1(I ), then there exists for every t a ξ ∈ Is (smallest interval which
contains points) such that

g(t)− Pn(t) =
1

(n + 1)!
g (n+1)(ξ)

n∏
j=0

(t − tj)

holds. Since ξ is unknown, the error is estimated by

|g(t)− Pn(t)| ≤ 1

(n + 1)!
max
ξ∈Is
|g (n+1)(ξ)|

∣∣∣∣∣∣
n∏

j=0

(t − tj)

∣∣∣∣∣∣ .
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Error of numerical integration

Aim: Find an error estimator for

E I
n(g) :=

∫ T

t0

g(t)dt −
n∑

j=0

αjg(tj)

Theorem: Let H := T−t0

n and g be sufficiently often differentiable in I . Then
there exists a constant cn independent of the interval I such that

|E I
n(g)| ≤ cn

(n + 1)!
max
ξ∈I

∣∣∣g (n+1)(ξ)
∣∣∣ , cn := |

∫ T

t0

n∏
i=0

(t − ti )|

holds. If n is even, then there exists a constant dn independent of the interval I
such that

|E I
n(g)| ≤ dn

(n + 2)!
max
ξ∈I

∣∣∣g (n+2)(ξ)
∣∣∣ , dn := |

∫ T

t0

t
n∏

i=0

(t − ti )|

holds.
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Exercise: error

Before we have used linear global interpolation to compute the
value of intergral of a function f (x) = 15t2 on interval [1, 2].

We got the following result
exact approximated
35 37.5

Let us

now compute the error using error estimate

|E I
n(g)| ≤

cn
(n + 1)!

max
ξ∈I

∣∣∣g (n+1)(ξ)
∣∣∣ , cn := |

∫ T

t0

n∏
i=0

(t − ti )|

in which n + 1 = 2.
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Exercise: error

Having

g
′
= 30t, g

′′
= 30

one concludes that

max
ξ∈I

∣∣∣g (n+1)(ξ)
∣∣∣ = 30

Furthermore,∫ T

t0

n∏
i=0

(t − ti ) =

∫ 1

0

(t − 0)(t − 1)dt =
t3

3
− t2

2
= −1

6

Thus,

|E I
n(g)| ≤

1
6

(2)!
30 = 2.5
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Exercise: error

Let us compute the error of linear global interpolation to com-
pute the value of intergral of a function f (x) = 15t on interval
[1, 2]. by applying linear integration one gets the following re-

sult
exact approximated

45
2

45
2

Let us now compute the error

using error estimate

|E I
n(g)| ≤

cn
(n + 1)!

max
ξ∈I

∣∣∣g (n+1)(ξ)
∣∣∣ , cn := |

∫ T

t0

n∏
i=0

(t − ti )|

in which n + 1 = 2.
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Exercise: error

Having

g
′
= 15, g

′′
= 0

one concludes that

max
ξ∈I

∣∣∣g (n+1)(ξ)
∣∣∣ = 0

and hence
|E I

n(g)| ≤ 0

Thus, our integration is exact for linear polynomials (as well as
for constant).
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What we know so far?

So far we have learned that given any set of n points ti over the time interval I we
may build Newton-Cotes quadrature rule

wi , ti

which can be used to exactly integrate polynomials of order n − 1 or less by
using the formula ∫ T

t0

P(t) dt =
n−1∑
i=0

P(ti )wi

The question is: can we do better than that?
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Yes, we can

Newton-Cotes formula

one chooses n points ti in which the value of function will be evaluated
(uniformly distributed)
weigths are computed according to given points ti
accurate for polynomials of order n − 1 given n points

improvement: Gauss quadrature

vary both n points ti and n weights wi (both are unknown)
make the integration formula exact for polynomials of order 2n − 1
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Gauss quadrature

The Gauss quadrature has for a goal to vary the placements ti such that the inte-
gration is more accurate. In general Gauss formula approximates:∫ 1

−1

g(t)dt ≈
∫ 1

−1

P(t)dt =
n∑

i=0

g(ti )wi , wi =

∫ 1

−1

`i (t)dt

in the same way as Newton-Cotes. But, ti are unknown and have to be found.
Additionaly to them are also unknown the coefficients of a polynomial P(t).
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1 point Gauss quadrature

Let us have 1 point formula in which ti and hence wi are unknown. Having two
unkowns, one has to build the system of two equations. This can be achieved by
letting the formula to exactly integrate constant and linear polynomial. One does
not loose on generality by letting∫ 1

−1

1dt = wig(ti ) = wi · 1.

∫ 1

−1

tdt = wig(ti ) = wi · ti .

Having that
∫ 1

−1
1dt = 2 and

∫ 1

−1
tdt = 0, the last system reduces to

tiwi = 0

wi = 2
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1 point Gauss quadrature

Hence, ti = 0,wi = 2 is 1 point Gauss rule which exactly integrates constant and
linear polynomials over [−1, 1]. Do not forget that in Newton-Cotes formula we
needed two points, i.e. two function evaluations.
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2 point- Gauss quadrature

Let us have 2 point formula in which ti−1, ti and hence wi−1,wi are unknown.
Having four unkowns, one has to build the system of four equations. This can be
achieved by letting the formula to exactly integrate polynomial up to third order.
One does not loose on generality by letting∫ 1

−1

1dt = wi−1 + wi

∫ 1

−1

tdt = ti−1wi−1 + tiwi∫ 1

−1

t2dt = t2
i−1wi−1 + t2

i wi∫ 1

−1

t3dt = t3
i−1wi−1 + t3

i wi
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2 point- Gauss quadrature

This leads to a system of equatons whose solution is

ti−1 = −
√

1

3
,wi−1 = 1

ti =

√
1

3
,wi = 1

Hence, the two point Gauss-quadrature rule approximates exactly the polynomials
of order 3. Newton Cotes formula needed 4 evaluations.
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Generalisation

We need generalisation of 1-point and 2-pont rule. For this, note that 1-point rule

t0 = 0,w0 = 2

is placed in t0 = 0 which is the root of a first order polynomial q(t) = t. Two
point rule

t0 = −
√

1

3
,w0 = 1, t1 =

√
1

3
,w1 = 1

is placed at roots of second order polynomial q(t) = 0.5(3t2 − 1). These two
polynomials are known as Legendre polynomials.

What about n − point rule?
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Generalisation

Let us express 2n−1 order polynomial P(t) over the n-th order Lagrange polynomial q(t)
whose roots are the integration points ti such that

P(t) = q(t)φ(t) + r(t)

holds. Here, φ(t) and reminder r(t) are at most of order n − 1 or less. By applying
integration rule∫ 1

−1

g(t)dt ≈
∫ 1

−1

P(t)dt =

∫ 1

−1

(q(t)φ(t) + r(t))dt ⇒
∫ 1

−1

g(t)dt =

∫ 1

−1

r(t)dt

one may conclude that the last expression reduces only to
∫ 1

−1
r(t)dt having that the

polynomial q(t) is equal to zero in integration points (its own roots) ti . Since r(t) is of
most n − 1 order, the last integration is exact given n points.
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Error estimation

In a similar manner as for Newton-Cotes formula, one may derive the error
estimate: ∣∣∣E [a,b]

n (g)
∣∣∣ ≤ (b − a)2n+1 (n!)4

[(2n)!]3(2n + 1)
max
ξ∈[a,b]

∣∣∣g (2n)(ξ)
∣∣∣

Note that Gauß-formulas can be also made composite in a similar manner as
Newton-Cotes formula.
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Another interval

So we know how to compute ∫ 1

−1

g(t)dt

What to do if ∫ b

a

g(t)dt =?

Then one may apply the transformation formula∫ b

a

g(t)dt =

∫ 1

−1

f (p)dp

in which
t = qp + s, dt = qdp

such that p = −1 for t = a and p = 1 for t = b.
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Another interval

By solving one obtains that

q =
b − a

2
, s =

a+ b

2
.

Hence, ∫ b

a

g(t)dt =

∫ 1

−1

g(
b − a

2
p +

a+ b

2
)
b − a

2
dp =

∫ 1

−1

f (p)dp

and now you are ready to use the quadrature formula on [−1, 1].
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Other Gauss quadratures

Note that Gauss-Legendre formula is the most often used, but it is not the only one.
Integration points can also be selected as roots of other kind of polynomials. If the
integral ∫ b

a

g(t)dt

can be represented as ∫ b

a

g(t)dt =

∫ b

a

v(t)f (t)dt =
n−1∑
i=0

wi f (ti )

in which v(t) is the weight, then integration rule will depend on the type of weight v(t)
as given in the following slide.
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Other Gauss quadratures

Some of Gauss quadrature rules:

Weight v(t) Interval (a, b) Polynomial

1 [−1, 1] Lagrange

e−t2

(−∞,∞) Hermite
e−t (0,∞) Laguerre√
1− t2 [−1, 1] Chebishev (I kind)
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