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Institute of Scientific Computing

January 12, 2017



Modelling of reality by ODEs

ODEs are used to model time dependent or so-called dynamical systems.
These systems are described by a state (vector of quantities describing the

system) and evolution rule. The evolution rule is a fixed law which describes the
future states of the system.
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Example: Bathtub

State is the water level given in

inital time: h0 (known)

arbitrary time t: h(t) (not known)

From fluid mechanics (your expert knowledge) we know that the speed of running

water dV (t)
dt = dAh(t)

dt is proportional to the depth of bathtub h(t):

dV (t)

dt
= A

dh(t)

dt
= −kh(t)

⇒ dh(t)

dt
= − k

A
h(t) evolution law
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Example: Heart beat

State

length of muscle fiber x

electrochemical activity b

From interdiscplinary expertise one may model the heart beat as:

ε
dx

dt
= −(x3 − Tx + b) and

db

dt
= (x − c) + U(x − d)

where T is the overall-tension of the system, U is the step function and c and d
are constants describing diastole (realxed state) and sistole (contracted state).
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Dynamical system

is a system that evolves over time possibly under external excitations: river flow,
car, etc. The dynamics of the system is the way the system evolves and the

dynamical model is a set of mathematical laws that describe the system up to
certain precision.
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Classification of a dynamical system

Discrete vs. Continuous

Difference equations vs Differential equations

The discrete system is represented by a finitely many system states. Typical
example of such an system is the bank account.

∆xn = βxn
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Continuous dynamical system

The system is characterised by an infinitely many system states.

The evolution law
dh

dt
= − k

S
h

represents the differential equation.

Bojana Rosić (WiRe) Introduction to Scientific Computing January 12, 2017 7 / 61



Continuous to discrete

www.durofy.com

By computer simulation we transform

continuous system to discrete system,

or better to say

differential equation to difference equation.
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Ordinary differential equations

The ordinary differential equation can be written as

F
(

t, x , x ′, x ′′, · · · , x (n)
)

= 0

in which F is in general nonlinear function and x (n) is the n-th derivative of depen-
dent variable x with respect to independent time variable t. The initial condiions
are given by x(0) = x0. Thus, the ODE is also called the initial value problem.
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Linear vs nonlinear

We may distinguish

linear from

nonlinear ODEs

depending on the nature of operator F .

The dimension of ODE represents the number of elements of the vector x .
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Exercise

Linear:
dx

dt
= 5x

dx

dt
= t

Nonlinear
dx

dt
= sin(π

dx

dt
)

x
dx

dt
+ t = 1
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Explicit vs implicit

The ordinary differential equation can be further classified to

explicit

G
(

t, x , x ′, · · · x (n−1)
)

= x (n)

or implicit

F
(

t, x , x ′, x ′′, · · · , x (n)
)

= 0

equations, and

autonomous (F does not depend on t explicitely)

or non-autonomous (otherwise).

Bojana Rosić (WiRe) Introduction to Scientific Computing January 12, 2017 12 / 61



Exercise

Explicit:
dx

dt
= 5x

Implicit

x(
dx

dt
)2 + t = 1
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Exercise

Autonomous:
dx

dt
= 5x

Non-autonomous

dx

dt
= 5x + t

x
dx

dt
+ t = 1
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Non-autonomus ODEs

Every non–autonomous system can be converted into an autonomous one by adding
a state variable xd+1 := t. Hence, the non-autonomous system

ẋ(t) =
d

dt
x(t) = f(t, x(t)), x(0) = x0,

is equivalent to the following autonomous one:
ẋ1

...
ẋd

ẋd+1

 =

(
f (xd+1, (x1, . . . , xd))

1

)
.
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Exercise

Let us transform non-autonomous

dx

dt
= f (x , t) = 5x + t

into autonomous by taking x1 = x and x2 = t(
ẋ1

ẋ2

)
=

(
f (x , t)

1

)
=

(
5x + t

1

)
=

(
5x1 + x2

1

)
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Order of ODE

The ordinary differential equation can be classified according to the order to

the first order ODE
F (t, x , x ′) = 0

and higher order equatons

F
(

t, x , x ′, x ′′, · · · , x (n)
)

= 0

The order of ODE represents the highest order of derivative in equation.

Bojana Rosić (WiRe) Introduction to Scientific Computing January 12, 2017 17 / 61



Exercise

First order
dx

dt
= 5x

Second order
d2x

dt2
= 5x + t

Third order
d3x

dt3
= −x
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Higher order ODE

Higher order ODE can be transformed to a first order ODE by taking

y1 = x , y2 = ẋ , y3 = ẍ , . . . , yk = x (k−1),

and obtaining an equivalent representation of the ODE as

ẏ =


ẏ1

ẏ2

...
ẏk

 =


y2

y3

...
yk

F (t, yk , . . . , y1)

 .
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Exercise

Let us transform

d3x

dt3
= f (x) = −x

into first order by taking

y1 = x , y2 = ẋ , y3 = ẍ , f (x) = −y1ẏ1

ẏ2

ẏ3

 =

 y2

y3

f (x)

 =

 y2

y3

−y1


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FIRST ORDER ODE
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First order ODE

Let be given the first order ODE

F (t, x , x ′) = 0, x(0) = x0

The following questions arise:

under which conditions the previous equation has solution?

if exists, is the solution unique?

A solution of this ODE on an interval I ⊂ R is a function x : I → Xn for which x ′

exist at each t ∈ I , and

∀t ∈ I F (t, x(t), x ′(t)) = 0

Note that to ∈ I and X is either R or C. This further implies that x ∈ C (I ) as well
as x ′ ∈ C (I ) (space of continuous functions).
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Solution of first order ODE

Let us observe the first order ODE

dx

dt
= f (x , t), x(t0) = x0

and let f : I → Xn be a continuous function (meaning that for each t̂ ∈
I limt→t̂ f (t) = f (t̂)). Then the general solution of the previous equation is
given as

x(t) = x(t0) +

∫ t

t0

x ′(s)ds = x(t0) +

∫ t

t0

f (x(s), s)ds

for fixed t0 ∈ I .
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Solution of first order ODE

Looking closer at the previous slide one may conclude that x(t) is the solution of
the ODE

dx

dt
= f (x , t), x(t0) = x0

if and only if x(t) is solution of the integral equation (IE)

x(t) = x(t0) +

∫ t

t0

x ′(s)ds = x(t0) +

∫ t

t0

f (x(s), s)ds

This result allow us to study the ODEs via IEs.
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Solving IEs: Picards iteration

To compute the solution of IE one may use the fixed point iteration (also called
Picard-Lindelöf iteration):

x (k+1)(t)− x0 =

∫ t

t0

f (x (k)(s), s)ds = F (x (k), s)

by starting from x (0) = x0.

Bojana Rosić (WiRe) Introduction to Scientific Computing January 12, 2017 25 / 61



Existance and uniqueness of the solution

Hence, the Banach fixed point theorem has to be satisfied:

the mapping F : X → X
the mapping is Lipschitz continuous

the mapping is contractive
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Completness

Let us observe all continuous functions x which satisfy

x(t0) = x0, |x − x0| ≤ r

when
t0 < t < b = t0 + h, 0 < h ≤ α.

This is some “interval” X := {x(t0) = x0, |x − x0| ≤ r}. To prove Picard’s
theorem, we have to prove that

x = x0 +

∫ t

t0

f (x , s)ds ⇒ x − x0 =

∫ t

t0

f (x , s)ds

is a mapping from X to X .
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Completness

Taking absolute values one obtains inequality

|x − x0| ≤
∫ t

t0

|f (x , s)|ds

Denote the maximum of f (x , t) on the rectangle
R as M, then the integral as area under function
is smaller than the area of rectangle (width=h,
height=M), i.e.

|x − x0| ≤ M(t − t0)

As t0 < t < t0 + h, then

|x − x0| ≤ M(t − t0) ≤ M(t0 + h − t0) = Mh
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Completness

We started from
|x − x0| ≤ r

Hence, to have self-mapping the right hand side of inequality

|x − x0| ≤ Mh

has to be smaller than r , i.e.

|x − x0| ≤ Mh ≤ r

If this is satisfied then F is a mapping from X → X . Now we need to prove that
the mapping is contraction.
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Contraction

To prove contraction one has to assume that f is Lipschitz continuous w.r.t. to x :

Definition

Let I ⊂ R be an interval and X ⊂ Xn. We say that f (t, x) mapping I ×X into
Xn is uniformly Lipschitz continuous with respect to x if there is a constant L
(called the Lipschitz constant) for which ∀t ∈ I , ∀x , y ∈ X

|f (t, x)− f (t, y)| ≤ L|x − y |

We say that f is in (C , Lip) on I ×X if f is continuous on I ×X and f is
uniformly Lipschitz continuous with respect to x on I ×X .

Then the integrals

y = x0 +

∫ t

t0

f (y , s)ds, x = x0 +

∫ t

t0

f (x , s)ds

give

y − x =

∫ t

t0

(f (y , s)− f (x , s))ds
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Contraction

By taking absolute values:

|y − x | ≤
∫ t

t0

|f (y , s)− f (x , s)|ds ≤
∫ t

t0

L|y − x |ds

Furthermore∫ t

t0

L|y − x |ds ≤
∫ t

t0

L max|y − x |ds = L(t − t0) max|y − x |

Hence
|y − x | ≤ L(t − t0)d = Lhd

where d := max|y−x |. This means that x is a continuous mapping and contractive
when Lh < 1.
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Existance and uniqueness

Theorem

Let I = [t0, t0 + β] and X = Br(x0) = x ∈ Xn : |x − x0| ≤ r , and suppose f (t, x)
is in (C, Lip) on I × X . Then there exisits α ∈ (0, β] for which there is a unique
solution of the integral equation

x(t) = x(t0) +

∫ t

t0

x ′(s)ds = x(t0) +

∫ t

t0

f (x(s), s)ds

in C (Iα), where Iα = [t0, t0 + α]. Moreover, we can choose α to be any positive
number satisfying α ≤ β, α ≤ r

M and α < 1
L , where M = max |f (t, x)|

(t,x)∈I×X
and L is the

Lipschitz constant for f in I ×X .
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Picards iteration

Theorem (Global existance)

Let I = [t0, t0 + β], and suppose f (t, x) is in (C, Lip) on I ×Xn. Then there exists
a solution x(t) of the integral equation (IE) in C (I ).

Theorem (Local existance)

Let I = [t0, t0 + β] and X = Br(x0) = x ∈ Xn : |x − x0| ≤ r , , and suppose f (t, x)
is in (C, Lip) on I ×X . Then there exists a solution x(t) of the integral equation
(IE) in C (Iα), where Iα = [t0, t0 + α], α = min(β, r

M ), and
M = max(t, x) ∈ I ×X|f (t, x)|.

Corollary

|x − x0| ≤ M0

L (eL(t−t0) − 1) for t ∈ I or t ∈ Iα where M0 = maxt∈I |f (t, x0)| or
M0 = maxt∈Iα |f (t, x0)|
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Stability of first order ODE

The dynamical system is in equilibrium state when the change of its state in time
is equal to zero:

dx

dt
= f (x) = 0

This further means that the equilibrium state x∗ satisfies the nonlinear (or linear)
equation

f (x∗) = 0

To find the root of the previous equation, one may use any of the previously studied
methods such as Newton-Raphson procedure, etc.
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Stability of first order ODE

The Lyapunov stability of equilibrium point x∗ is judged according to the behaviour
of intergal curves

x(t) = x(t0) +

∫ t

t0

x ′(s)ds = x(t0) +

∫ t

t0

f (x(s), s)ds

obtained from the initial conditions x0 which are in close vicinity of the equilibrium
point

x0 = x∗ + δ

where δ is small perturbation. Hence, the definition of the stability is similar as in
case of the difference equations.
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Stability of first order ODE

Let x∗ be an equilibrium of the ODE ẋ(t) = f (t, x(t)), x(0) = x0.

1 x∗ is called stable if

∀ε > 0 ∃δ > 0 ∀x0 : ‖x0 − x∗‖ ≤ δ =⇒ ∀t > 0 : ‖x(t)− x∗‖ ≤ ε.

2 x∗ is an attractor or attractive if there is an δ > 0 such that

∀x0 : ‖x0 − x∗‖ ≤ δ =⇒ ‖x(t)− x∗‖ −→ 0 as t −→∞.

3 x∗ is asymptotically stable if x∗ is stable and an attractor.

4 x∗ is unstable if x∗ is not stable.

5 x∗ is called exponentially stable if x∗ is asymptotically stable and there is an
a > 0 and C > 0 such that

∀t ≥ 0 : ‖x(t)− x∗‖ ≤ Ce−at .
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LInear first order ODE

The linear ordinary differential equation has a form

dx

dt
= ax , x(t0) = x0

to which correspond the solution

dx

x
= a⇒ x = x0eat

and the equilibrium point
0 = ax∗ ⇒ x∗ = 0,

respectively.
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Linear first order ODE

The equilibrium point is

stable and attractive (even exponentially stable) if a < 0. Why? Because
x = x0eat → 0 when a < 0.

|x̃(t)− x∗| = |x̃ | = |x̃0|eat ≤ Ce−pt , p > 0

stable if a = 0. Why? Because x = x0eat = x0.

unstable if a > 0. Why? Because x = x0eat →∞ when a > 0.
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Linear Systems of ODEs

Linear systems of ODEs with constant coefficients are only slightly more complicated
than one single equation. They can be written as

ẋ = Ax, x(0) = x0,

where A ∈ Rd×d is a constant matrix. It is again obvious that x∗ = 0 is an
equilibrium point. As before, we try to express the solution in the form of the
exponential ansatz

x(t) = veαt ,

where v is a fixed vector.
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Linear Systems of ODEs

Inserting this ansatz into the ODE, we obtain

vα eαt = A
(
veαt

)
= eαtAv.

As eαt 6= 0, this becomes
Av = αv,

i.e. the ansatz is a solution if v is an eigenvector and α the corresponding eigenvalue
of the matrix A.
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Linear Systems of ODEs

At the initial time t0 this solution has the value

x(t0) = v

If we are lucky, this may be exactly the prescribed value x0, but this is unlikely. As
the ODE is linear, any linear combination of solutions such as our ansatz satisfies
the ODE, and hence we are able to satisfy the initial condition.
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Linear Systems of ODEs

For simplicity, we shall now assume that the matrix A is diagonisable ( A has
a full set of linearly independent eigenvectors— the eigenvectors form a basis in
Rd). Let {v1, . . . , vd} be these eigenvectors and {λ1, . . . , λd} be the corresponding
eigenvalues (which may be complex), i.e. we have

Avj = λjvj ,

and each function of the form

y(t) = vje
λj t

satisfies the ODE, as well as any linear combination.
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Linear Systems of ODEs

Since {v1, . . . , vd} is basis, we may find coefficients {γ1, . . . , γd}, such that

x0 =
d∑

j=1

γjvj

holds. Then

x(t) =
d∑

j=1

γje
λj tvj

satisfies both the ODE and the initial condition, and hence is a solution.
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Linear Systems of ODEs

This can also be seen by expanding the solution

x(t) =
d∑

j=1

βj(t)vj .

As the solution varies in time, so do the coefficients βj(t), j = 1 . . . d . Inserting this
into the ODE

ẋ = Ax, x(0) = x0,

we arrive at

d∑
j=1

β̇j(t)vj = A

 d∑
j=1

βj(t)vj

 =
d∑

j=1

βj(t)Avj =
d∑

j=1

βj(t)λjvj ,
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Linear Systems

Or
d∑

j=1

(β̇j(t)− βj(t)λj)vj = 0.

As {v1, . . . , vd} are linearly independent, the previous relation can only hold if

β̇j(t) = λjβj(t),

which is a single linear ODE. Taking into account the initial condition, where βj(0) =
γj , we get the solution

βj(t) = γje
λj t .
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Linear Systems of ODEs

However, note that λj can be complex

λj = pj + iωj

where pj = Re(λj), ωj = Im(λj) and i is the imaginary unit. In such a case the
exponential becomes

eλj t = e(pj+iωj )t = epj te iωj t .

As
∣∣e iωt

∣∣ = 1 (a pure oscillation with frequency ω), stability or instability is deter-
mined by the factor epj t .
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Linear systems of ODEs

Another way of solving first order systems that resembles the one-dimensional case
closely is to write the solution of a linear first order system

ẋ = Ax, x(0) = x0,

abstractly as
x̃(t) = etAx0,

where the matrix exponential function is used. This is defined just like the usual
exponential function by its power series

et =
∞∑
k=0

1

k!
tk =⇒ exp(tA) = etA =

∞∑
k=0

1

k!
tkAk .
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Linear systems of ODEs

Of course, this expression cannot be utilised for practical computations. To obtain
an expression which can be evaluated, assume that A is diagonisable and thus can
be represented as A = QΛQ−1, where Q contains the eigenvectors of A and Λ is a
diagonal matrix consisting of the eigenvalues λi , i = 1, . . . , n. This gives

etA = QetΛQ−1 = Q diag(etλi ) Q−1.

And so, in order to compute the explicit solution via the matrix exponential, again
the eigenvectors and eigenvalues of A have to be found.
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Exercise

Solve
y ′1 = y1

y ′2 = y1 − y2

with i.c. y1(0) = 1, y2(0) = 2. The system reads

ẏ = Ay

in which

A =

(
1 0
1 −1

)
The eigenvalues and eigenvectors are

Λ =

(
−1 0
0 1

)
,V =

(
0 0.8944

1.0000 0.4472

)
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Exercise

The solution can be written as

y = c1e−t
(

0
1

)
+ c2et

(
0.8944
0.4472

)
Constants can be found from initial conditions(

1
2

)
= c1

(
0
1

)
+ c2

(
0.8944
0.4472

)
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Equilibrium of linear Systems of ODEs

The equilibrium point of
ẋ = Ax, x(0) = x0,

is trivial since
x∗ = 0.
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Stability of linear Systems of ODEs

To study the stability of linear systems of ODEs, one has to take the initial condition
x̃0 which is perturbed equilibrium point and to study the behaviour of the solution
x̃(t) in time. Hence, the same rules apply as on slide 25. However, note that the
stability will now depend on the vector of eigenvalues λj = pj + iωj in the following
manner:

If for any λj we have Re(λj) = pj > 0, then x∗ = 0 is an unstable equilibrium.

If for all λj we have Re(λj) = pj ≤ 0, and at least one pj = 0, then x∗ = 0 is
stable but not attracting/asymptotically stable.

If for all λj we have Re(λj) = pj < 0, then x∗ = 0 is asymptotically stable
and even exponentially stable.
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Exercise

For the ODE Solve
y ′1 = y1

y ′2 = y1 − y2

the eigenvalues are λ1 = −1 < 0 and λ2 = 1 > 0. Hence,
the system is not stable at equilibrium point 0.
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Nonlinear systems of ODEs

In case of the nonlinear system of ODEs

dx

dt
= f(x, t), x(t0) = x0

one may investigate stability by observing perturbed system

y(t) = x(t)− x∗

where x is the solution for the initial point x̃ = x∗+ ε. By differentiating y one has

ẏ = ẋ

and after substituting ẋ from the first equation one obtains

ẏ = ẋ = f(x, t) = f(y + x∗, t)
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Nonlinear systems of ODEs

The last equation
ẏ = f(y + x∗, t)

now can be expnaded in Taylor series

ẏ(t) = f(x∗ + y(t))

= f(x∗) + Df(x∗)y(t) + O(‖y(t)‖2)

ẏ(t) ≈ Df(x∗)y(t),

such that one obtains linearised version of the system model around the equilibrium
point.
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Lyapunov stability

Theorem

Under certain conditions the results obtained in the stability analysis of linear
systems can be applied to nonlinear systems:
Let x∗ be an equilibrium state of the ODE ẋ = f(x). Let Df(x∗) be the Jacobian
matrix of f in x∗. Then the following statements hold:

(i) If all eigenvalues µ of Df(x∗) have negative real part, Re(µ) < 0, then x∗ is
stable for the nonlinear ODE.

(ii) If there is at least one eigenvalue µ of Df(x∗) with positive real part,
Re(µ) > 0, then x∗ is unstable for the nonlinear ODE.
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Lyapunov stability

(iii) If Re(µ) ≤ 0 for every eigenvalue µ, and if for at least one eigenvalue Re(µ) = 0,
then the nonlinear part of f determines the stability of the equilibrium and our
theorem is not applicable.

(iv) Our definition of stability is stability in Lyapunov’s sense, that is we investi-
gate the stability with respect to a perturbation of the initial conditions. A
perturbation of the governing equation (structural stability) is not considered
here.
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Exercise

The nonlinear ODE

y ′1 = y 2
1 − 1

can be linearised around the equilibrium point y∗ = 1 such
that

y ′1 = Df (y∗)y1 = 2y1

holds. Since 2 > 0 one concludes that this equilibrium
point is not stable.
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