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Motivation

Let us resolve the problem scheme by using Kirchhoff’s laws:

−I1 + I2 − I3 = 0

−I1R1 + I3R3 = −V1

−I2R2 − I3R3 = −V2

the algebraic sum of all the currents
flowing toward a node is equal to zero.∑

I = 0

In any closed circuit, the algebraic sum
of all the voltages around the loop is
equal to zero∑

V =
∑

IR
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Motivation

Hence, we end up with the system of equations

−I1 + I2 − I3 = 0

−I1R1 + I3R3 = −V1

−I2R2 − I3R3 = −V2

which is easy to solve algebraically by elimination

I1 = I2 + I3

and substitution

−(I2 + I3)R1 + I3r3 = −V1 ⇒ I2 = (V1 + I3(R3 − R1))R−1
1

and so on...
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What to do in this case?

Algebraically is difficult to solve.
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But, engineering goal

is to solve large-scale (realistic) systems

This usually matches with solving
x = F(x)

in which x is the system state.
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Special case

Special case are systems in a linear form

Ax = b

in which matrix A can be of dimensions larger than 10. Think about

A ∈ R1000×1000

A ∈ R1000000×1000000

Examples are: solving linear partial differential equations (elasticity, heat equation etc.)

In these cases one cannot compute

x = A−1b

as one would have problem with memory or computation time.
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Linear systems

There are many methods one can use to solve the system

Ax = b

such as:

Stationary iterative methods (approximate operator)

Gauss-Seidel (GS)
Jacobi (JM)
Successive over-relaxation (SOR)

Krylov subspace methods

Conjugate Gradient (CG)
Biconjugate gradient method (BiCG)
generalized minimal residual method (GMRES)

combination
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Solving system

Remembering fixed point iteration, we may try something similar. Let us guess the solution
by putting

x = x(k)

Since we do not know if our guess is correct, we
may check its accuracy by evaluating

Ax(k)

and check if the value matches b. Usually our
guess will not be correct, and hence we may com-
pute the error

d(k) = b− Ax(k)

Now we may have educated guess by drawing con-
clusions from the error value.
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What would be our next guess?

Thus, our next guess x(k+1) will be smaller or larger than x(k) depending on the error d(k).
Hence,

x(k+1) = x(k) + v(k)

in which v(k) denotes correction.

Our goal is now to find the best correction!

Naturally, the best correction v(k) would be the correction which satisfies the equation

x(k) + v(k) = x.

The only problem is that we do not know x!!
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But,

we do know that the best correction v(k)) has to satisfy

Ax = A(x(k) + v(k)) = b

This in turn gives us equation for the correction

Av(k) = b− Ax(k) = d(k)

which further yields
v(k) = A−1(b− Ax(k)) = A−1d(k)
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Problem

However, thhe process of solving

v(k) = A−1d(k)

requires inversion of A which may be very expensive.

size time [s]

10× 10 7.6000e-05
100× 100 8.4500e-04
103 × 103 0.394
104 × 104 415.64
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Solution: pose the problem differently

Do not invert matrix A, but find some simpler matrix C ≈ A which is easy to invert!

Then the problem
v(k) = A−1d(k)

reduces to
v(k) = C−1d(k)

i.e.
Cv(k) = d(k)

which takes only small computational time.
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Linear iteration scheme

Then we can formulate the general linear iteration scheme

x(k+1) = x(k) + C−1
(

b− Ax(k)
)

︸ ︷︷ ︸
v(k)

.

in which C can be chosen in different ways. With respect to the type of approxi-
mation one may distinguish:

Jacobi method

Gauss-Seidel method

The successive over relaxation method, etc.

These methods choose C from LDU decomposition of a matrix A.
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LDU decomposition

A = L + D + U,

where L is a lower triangular matrix with main diagonal equals 0, D is a diagonal matrix
und U is an upper triangular matrix with main diagonal equals zero. Decomposition of A:
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Jacobi method

Let us take that C is approximated only by diagonal

C := D = diag(aii ).

Then it follows

x(k+1) = x(k) + D−1
(

b− Ax(k)
)

︸ ︷︷ ︸
v(k)

.

With D−1 = diag
(
a−1
ii

)
and

(
b− Ax(k)

)
i

= bi −
n∑

j=1

aijx
(k)
j
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Jacobi method

The iterative procedure in element-wise form reads:

x
(k+1)
i =

1

aii

bi −
n∑
j=1
i 6=j

aijx
(k)
j

 , i = 1, . . . , n.

Hence, the values aii must be different than zero.
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Exercise

Let us use Jacobi method to solve

2x + y = 11

5x + 7y = 13

by starting at x(0) = (1; 1)T . Hence,

A =

(
2 1
5 7

)
, b =

(
11
13

)
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Exercise

The first iteration reads

x(1) = x(0) + D−1
(

b− Ax(0)
)

where D is the diagonal part of the matrix A:

D =

(
2 0
0 7

)
with the inverse

D−1 =

(
1/2 0

0 1/7

)
.
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Exercise

Hence,

x(1) =

(
1
1

)
+

(
1/2 0

0 1/7

)
(

(
11
13

)
−
(

2 1
5 7

)(
1
1

)
)

x(1) =

(
5.0000
1.1429

)
After 22 iterations one obtains:

x(22) =

(
7.1110
−3.2222

)
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Exercise

Let us check solution

Ax(22) =

(
2 1
5 7

)(
7.1110
−3.2222

)
=

(
11
13

)
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Exercise

Let us use Jacobi method to solve

3x + 2y − z = 1

2x − 2y + 4z = −2

−x + 1
2
y − z = 0

Hence,

A =

 3 2 −1
2 −2 4
−1 0.5 −1

 , b =

 1
−2
0
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Exercise

The diagonal part of the matrix is

D =

3 0 0
0 −2 0
0 0 −1

⇒

D−1 =

1/3 0 0
0 −1/2 0
0 0 −1/1


and the Jacobi method reads:

x(k+1) = x(k) + D−1
(

b− Ax(k)
)

︸ ︷︷ ︸
v(k)

.
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Exercise

Start with
x(0) = 0 = (0, 0, 0)T

such that
x(1) = x(0) + D−1

(
b− Ax(0)

)
x(1) = 0 + D−1

 1
−2
0

−
 3 2 −1

2 −2 4
−1 0.5 −1

 0


holds.
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Exercise

Hence,

x(1) =

1/3 0 0
0 −1/2 0
0 0 −1/1

 1
−2
0

 =

1/3
1
0


Similarly, one may write

x(2) =

1/3
1
0

+ D−1

 1
−2
0

−
 3 2 −1

2 −2 4
−1 0.5 −1

1/3
1
0


x(2) =

−0.3333
1.3333
0.1667
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Exercise

Iter x1 x2 x3

1 0.33 1.00 0.00
2 -0.33 1.33 0.17
3 -0.50 1.00 1.00

100 -0.43e6 1.94e6 1.29e6
1000 -0.29e59 1.3e59 0.87e59

However, by iterating one may notice that the solution
does not converge. This happens even by changing the
initial condition. The question is why this happens?
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Convergence

From
x(k+1) = x(k) + D−1

(
b− Ax(k)

)
= F (x(k))

we may conclude that this is one kind of fixed point iteration scheme with the Lipschitz
constant

F ′(x) = 1−D−1A

Since
A = D + R

in which R is the rest of the matrix (“residual ”)

F ′(x) = 1−D−1(D + R) = −D−1R
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Convergence

To cheek if the method is convergent, one has to check contractivity

q = sup ‖F ′‖ = sup ‖D−1R‖2 < 1.

The last relation is equivalent to the condition for the spectral radius

ρ
def
= max

i
(|λi |) < 1

where λi are the eigenvalues of D−1R.
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Exercise

In the first example one has

D−1R =

(
0 0.5000

0.7143 0

)
Hence,

ρ = 0.5976 < 1

Bojana Rosić (WiRe) Introduction to Scientific Computing December 6, 2016 28 / 97



Exercise

In the second example one has

D−1R =

 0 0.6667 −0.3333
−1.0000 0 −2.0000
1.0000 −0.5000 0


Hence,

ρ = 1.14 > 1
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Can we make this conclusion apriori?

In most of cases when the matrix A is strictly or irreducibly diagonally dominant,
Jacobi method will converge. Strict row diagonal dominance means that for each row, the
absolute value of the diagonal term is greater than the sum of absolute values of other
terms:

|aii | >
∑
j 6=i

|aij |.
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Gauss-Seidel method

Going back to the general scheme

x(k+1) = x(k) + C−1
(

b− Ax(k)
)
.

we may take the approximation for C to
be equal

C := L + D

Then it follows

x(k+1) = x(k) + (L + D)−1
(

b− Ax(k)
)
.
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Gauss-Seidel method

However, we said before that inversion is avoided in numerical schemes. Due
to this reason, let us multiply both sides of equation by (L + D):

(L + D)x(k+1) = (L + D)x(k) + b− Ax(k).

Having that A = L + D + U we obtain

(L + D)x(k+1) = (L + D)x(k) + b− (L + D + U)x(k) = b−Ux(k)

Splitting the left side of equation, one obtains

Dx(k+1) = b− Lx(k+1) −Ux(k).
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Gauss-Seidel method

In component form one obtains

aiix
(k+1)
i = bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j , i = 1, . . . , n.

and

x
(k+1)
i =

1

aii

bi − i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 i = 1, . . . , n.
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Exercise

Let us use Gauss-Seidel method to solve

2x + y = 11

5x + 7y = 13

by starting at x(0) = (1; 1)T . Hence,

A =

(
2 1
5 7

)
, b =

(
11
13

)
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Exercise

The first iteration reads

x
(1)
i =

1

aii

bi − i−1∑
j=1

aijx
(1)
j −

n∑
j=i+1

aijx
(0)
j

 i = 1, . . . , n.

x
(1)
1 =

1

a11
[b1 −

2∑
j=2

a1jx
(0)
j ] = 5

x
(1)
2 =

1

a22
[b2 −

1∑
j=1

a2jx
(1)
j ] = −1.7143

It takes approximately the same number of iterations as Jacobi to get the solution.
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Exercise

Let us use Gauss-Seidel method to solve

3x + 2y − z = 1

2x − 2y + 4z = −2

−x + 1
2y − z = 0

Hence,

A =

 3 2 −1
2 −2 4
−1 0.5 −1

 , b =

 1
−2
0
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Exercise

The first iteration reads

x
(1)
i =

1

aii

bi − i−1∑
j=1

aijx
(1)
j −

n∑
j=i+1

aijx
(0)
j



x
(1)
1 =

1

a11
[b1 −

3∑
j=2

a1jx
(0)
j ] = 0.333

x
(1)
2 =

1

a22
[b2 −

1∑
j=1

a2jx
(1)
j −

3∑
j=3

a2jx
(0)
j ] = −1.333

x
(1)
3 =

1

a33
[b3 −

2∑
j=1

a3jx
(1)
j ] = 0.333
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Exercise

Similarly to the Jacobi method, the Gauss-Seidel does not
converge for this system of equations.
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Convergence

From
x(k+1) = x(k) + (L + D)−1

(
b− Ax(k)

)
.

we may conclude that this is one kind of fixed point iteration scheme with the
Lipschitz constant

F ′(x) = 1− (L + D)−1A

Since
A = L + D + U

one has
F ′(x) = 1− (L + D)−1(L + D + U) = −(L + D)−1U
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Convergence

Thus, the method is convergent if the spectral radius of

ρ((L + D)−1U) < 1

The convergence properties of the Gauss–Seidel method are dependent on the ma-
trix A. Namely, the procedure is known to converge if either:

A is symmetric positive-definite (symmetric A = AT , positive definite matrix
is a symmetric matrix A for which all eigenvalues are positive).

A is strictly or irreducibly diagonally dominant.
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Convergence

In the first example one has that

ρ((L + D)−1U) = 0.3571 < 1

and in the second example

ρ((L + D)−1U) = 1.24 > 1
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Successive over relaxation method (SOR)

The SOR-scheme tries to improve the convergence properties of the Gauß-Seidel method.
The idea is to introduce a relaxation parameter ω > 0 such that

C :=
1

ω
D + L

Inserting yields

x(k+1) = x(k) +

(
1

ω
D + L

)−1 (
b− Ax(k)

)
.

Multiplying by 1
ω

D + L, and using A = L + D + U one obtains(
1

ω
D + L

)
x(k+1) =

(
1

ω
− 1

)
Dx(k) + b−Ux(k)
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SOR method

Then
1

ω
Dx(k+1) =

1− ω
ω

Dx(k) − Lx(k+1) + b−Ux(k)

and
Dx(k+1) = (1− ω)Dx(k) + ω

(
b− Lx(k+1) −Ux(k)

)
.

The representation with components is now given by

aiix
(k+1)
i = (1− ω)aiix

(k)
i + ω

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

)
,

and

x
(k+1)
i = (1− ω)x

(k)
i +

ω

aii

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

)
.
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SOR method

Note that when ω = 1 the method

Dx(k+1) = (1− ω)Dx(k) + ω
(

b− Lx(k+1) −Ux(k)
)
.

becomes
Dx(k+1) =

(
b− Lx(k+1) −Ux(k)

)
.

which is Gauß-Seidel method.
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SOR: how to choose ω?

With an optimal choice of ω we can improve the convergence of the SOR-method
in comparison with the Gauß-Seidel method. But the optimal value for ω depends
on the problem, i.e. in general one has to try several values. One should start with
larger values, i.e. ω = 1.7, then ω = 1.3 ... and take a look on the convergence
behaviour.

Bojana Rosić (WiRe) Introduction to Scientific Computing December 6, 2016 45 / 97



Convergence

From

x(k+1) = x(k) +

(
1

ω
D + L

)−1 (
b− Ax(k)

)
we may conclude that this is one kind of fixed point iteration scheme with the Lipschitz
constant

F ′(x) = 1−
(

1

ω
D + L

)−1

A

and hence the spectral radius must satisfy

ρ(1−
(

1

ω
D + L

)−1

A) < 1

to get convergence.
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Convergence

For ω = 1.7 the spectral radius in the previous two examples becomes

ρ(1−
(

1

ω
D + L

)−1

A) = 0.7 < 1

and in the second example

ρ(1−
(

1

ω
D + L

)−1

A) = 3.008 > 1
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General convergence results

The equation

x(k+1) = x(k) + C−1
(

b− Ax(k)
)
.

for the general iteration method can be transformed into

x(k+1) = x(k) + C−1
(

b− Ax(k)
)

= C−1b + (I − C−1A)x(k)

i.e.
x(k+1) = Mx(k) + g

in which M = I −C−1A and g = C−1b. This equation is often called normal form. Every
linear iteration method can be written in normal form. The matrix M is called iteration
matrix of the method.
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General convergence results

For the derivation of convergence criteria we need the spectral radius of a matrix which
can be defined in the following way:

Definition

For a given matrix M ∈ Rn,n let λi , i = 1, . . . , n be the eigenvalues of M. Then

ρ(M) := max
i=1,...,n

|λi |

is called the spectral radius of M.
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General convergence results

Theorem

The linear iteration method with the iteration matrix M converges for an arbitrary start
vector x(0) if and only if ρ(M) < 1 and if in a dedicated matrix norm ‖ · ‖, the condition
‖M‖ ≤ 1 is satisfied. In this case the following error estimates are true:∥∥∥x(k) − x∗

∥∥∥ ≤ ‖M‖k

1− ‖M‖

∥∥∥x(1) − x(0)
∥∥∥ , (1)∥∥∥x(k) − x∗

∥∥∥ ≤ ‖M‖
1− ‖M‖

∥∥∥x(k) − x(k−1)
∥∥∥ . (2)

Inequality (1) is called a priori estimate and (2) is called a posteriori estimate.
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Conjugate Gradient Method

In order to solve
Ax = b (3)

let us observe the function

f (x) =
1

2
xTAx − bT x + c

and find its derivative (Jacobian)

f ′(x) = Ax − b. (4)

By comparing Eq. (1) and Eq. (2) we may conclude that they are the same in case
when

f ′(x) = 0
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Conjugate gradient method

The condition
f ′(x) = 0

is actually equivalent to finding the maximum or minimum of a function f (x).
Assuming that A is positive definite (this means that the term xTAx is always
positive no matter how we choose the non-zero vector x) and symmetric, one may
prove that x satisfying

f ′(x) = 0

is the minimum of a function f (x), i.e.

x = min
x

(
1

2
xTAx − bT x + c

)
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Conjugate gradient method

Graph a) represents f (x) for positive definite matrix A and graph b) f (x) for negative
definite matrix A.

The fact that f (x) is paraboloid helps us to understand why x is minimum of the
function f (x)
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Conjugate gradient method

The idea of this algorithm is to find minimum by starting from some point x(0)

and then move one step in first search direction d(0), then one step in orthogonal
search direction d(1) and so on until we hit the minimum.
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Conjugate gradient method

Thus, we move according to the following rule

x(i+1) = x(i) + α(i)d(i)

where α(i) is the step length and d(i) are orthogonal directions.After moving in
iteration (i), one may compute the error between the new position x(i) and the real
minimum x :

e(i) = x(i) − x .

Similarly, the error between the iteration (i + 1) and the real minimum x is

e(i+1) = x(i+1) − x = x(i) + α(i)d(i) − x = e(i) + α(i)d(i)
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Conjugate gradient method

Hence, for now we have two important equations:

change of position
x(i+1) = x(i) + α(i)d(i) (5)

error propagation (measures how far are we from the real position)

e(i+1) = e(i) + α(i)d(i) (6)
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Conjugate gradient method

Because we move in orthogonal directions
our error e(i+1) is orthogonal to the direc-
tion d(i), i.e.

dT
(i)e(i+1) = 0

By taking e(i+1) = e(i) + α(i)d(i) the last
realtion becomes

dT
(i)(e(i) + α(i)d(i)) = 0.

From this one we then may compute the step length

α(i) = −
dT

(i)e(i)

dT
(i)d(i)
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Conjugate gradient method

Looking at

α(i) = −
dT

(i)e(i)

dT
(i)d(i)

we may notice one thing:

We do not know e(i) = x(i) − x because x is something we want to compute!!

Solution: do not take orthogonal directions, but A-orthogonal directions (also
known as conjugate).
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Conjugate gradient method

A-orthogonal (conjugate) directions d(i) and d(j) are the directions which satisfy

〈d(i), d(j)〉A = dT
(i)Ad(j) = 0
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Conjugate gradient method

Similarly, it must hold that
dT

(i)Ae(i+1) = 0
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Conjugate gradient method

Now from dT
(i)Ae(i+1) = 0 one has

dT
(i)A(e(i) + α(i)d(i)) = 0

which leads to

α(i) = −
dT

(i)Ae(i)

dT
(i)Ad(i)

The term
Ae(i) = A(x(i) − x) = Ax(i) − Ax = Ax(i) − b = −r(i)

leads us to the residual
r(i) = b − Ax(i)
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Conjugate gradient method

Finally, one has

step length

α(i) =
dT

(i)r(i)

dT
(i)Ad(i)

(7)

change of position
x(i+1) = x(i) + α(i)d(i) (8)

error propagation
e(i+1) = e(i) + α(i)d(i) (9)

But, the problem is that we also do not have A-orthogonal directions d(i).
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Conjugate gradient method

The question is how to choose d(i)’s?
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Conjugate Gram-Schmidt process

Suppose that u(0), ...u(m) form a basis in a vector space. The Gram-Schmidt process
means orthogonalisation of the previous basis. The procedure starts by choosing:

d(0) = u(0).

Then the next vector u(1) is decomposed into the vector u+ parallel to d(0) and the
vector u∗ A-orthogonal to it.
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Projection of a vector onto vector

The parallel vector can be obtained by projecting u(1) onto d(0) such that

u+ = projd(0)
u(1) = |u(1) cos θ|d̂(0)

in which θ is the angle between u(1) and d(0), and d̂(0) is the unit vector. From
scalar product of vectors

〈u(1), d(0)〉 = |u(1)||d(0)| cos θ, d̂(0) =
d(0)

|d(0)|

one obtains the formula

u+ = projd(0)
u(1) =

〈u(1), d(0)〉
〈d(0), d(0)〉

d(0)
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Conjugate Gram-Schmidt process

However, in case of conjugate Gram-Schmidt process we search for A-orthogonal
projection and hence the last relation

u+ =
〈u(1), d(0)〉
〈d(0), d(0)〉

d(0)

transforms to

u+ =
〈u(1), d(0)〉A
〈d(0), d(0)〉A

d(0)

in which
〈u(1), d(0)〉A = uT(1)Ad(0), 〈d(0), d(0)〉A = dT

(0)Ad(0)
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Conjugate Gram-Schmidt process

Once we have u+ we may compute u∗ by substruction

u∗ = u(1) − u+ = u(1) −
uT(1)Ad(0)

dT
(0)Ad(0)

d(0) =: d(1)

The last relation is exactly our next search direction d(1).
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Conjugate Gram-Schmidt process

Furthermore, we may compute the search direction d(2) by taking u(2) and projecting
both d(0) and d(1) onto u(2) such that

u∗ = u(2) − u+
(0) − u+

(1)

holds. Here, u+
(0) is A-orthogonal projection of u(2) onto d(0) and u+

(1) is the A-

orthogonal projection of u(2) onto d(1) . Hence,

d(2) = u(2) −
uT(2)Ad(0)

dT
(0)Ad(0)

d(0) −
uT(2)Ad(1)

dT
(1)Ad(1)

d(1)
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Conjugate Gram-Schmidt process

Finally, we may write general formula for computation of A-orthogonal directions

d(i) = u(i) +
i−1∑
k=0

βikd(k)

in which

βik = −
uT(i)Ad(k)

dT
(k)Ad(k)

, i > k

Note that this is expencive operation (O(n3)) since one has to keep all the old
search vectors to construct the new one.
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Conjugate gradient method

The conjugate gradient method uses conjugate Gram-Schmidt process by taking
for the vector set u(0), ..., u(m) the set of residuals r(0), ...r(m). Then, we walk in the
solution space by

x(i+1) = x(i) + α(i)d(i)

where

α(i) =
dT

(i)r(i)

dT
(i)Ad(i)

, r(i) = b − Ax(i)

and

d(i) = r(i) +
i−1∑
k=0

βikd(k), βik = −
rT(i)Ad(k)

dT
(k)Ad(k)

, i > k

.
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Conjugate gradient method

From
dT

(i)Ae(i+1) = 0.

and r(i+1) = −Ae(i+1) one concludes

dT
(i)r(i+1) = 0

or more generally
dT

(i)r(j) = 0, j > i

Hence, the residuals are orthogonal (not that there is no prefix A) to the seacrh
directions.
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Conjugate gradient method
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Conjugate gradient method

Furthermore, since r(i) are taken to be u(i) one may write

d(i) = r(i) +
i−1∑
k=0

βikd(k)

Taking the inner product of the last one with r(j) one obtains

dT
(i)r(j) = rT(i)r(j) +

i−1∑
k=0

βikd
T
(k)r(j)

and using orthogonality condition dT
(i)r(j) = 0, j > i one obtains

rT(i)r(j) = 0, j > i , as well as dT
(i)r(j) = rT(i)r(j).
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Conjugate gradient method

Thus, each new residual is made to be orthogonal to the all previous residuals
and search directions, and each new search direction is made from residual to be
A-orthogonal to all previous residuals and search directions.
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Conjugate gradient method

Furthermore, from

r(i+1) = −Aei+1 = −A(e(i) + α(i)d(i))

r(i+1) = r(i) − α(i)Ad(i)

one concludes that the residual r(i+1) is only linear combination of the previous
residual r(i) and Ad(i). Hence, our search space is Krylov subspace

K = span {d(0),Ad(0), ...,A
id(0)}

Having that r(0) = d(0) this is the same as

K = span {r(0),Ar(0), ...,A
i r(0)}
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Conjugate gradient method

To simplify formulas
x(i+1) = x(i) + α(i)d(i)

where

α(i) = −
dT

(i)r(i)

dT
(i)Ad(i)

, r(i) = b − Ax(i)

and

d(i) = r(i) +
i−1∑
k=0

βikd(k), βik = −
rT(i)Ad(k)

dT
(k)Ad(k)

, i > k

.
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Conjugate gradient method

one may take the inner product of

r(i+1) = r(i) − α(i)Ad(i)

and r(j) such that

rT(j)r(i+1) = rT(j)r(i) + α(i)r
T
(j)Ad(i)

holds. This then leads to

rT(j)Ad(i) =
1

α(i)

[
rT(j)r(i) − rT(j)r(i+1)

]
The right hand side will be different from zero only when i = j or i + 1 = j (due to
orthogonality of residuals).
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Conjugate gradient method

This simplifies the coefficients

βi,i−1 = −
rT(i)Ad(k)

dT
(k)Ad(k)

, i > k

because their number drastically reduces to

βi,i−1 = −
rT(i)Ad(i−1)

dT
(i−1)Ad(i−1)

=
1

α(i−1)

rT(i)r(i)

dT
(i−1)Ad(i−1)

In addition, from dT
(i)r(j) = rT(i)r(j) and r(i) = r(i−1) − α(i−1)Ad(i−1) one obtains

β(i) := βi,i−1 =
rT(i)r(i)

rT(i−1)r(i−1)
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Conjugate gradient method

Finally, the CG algorithm looks like this

d(0) = r(0) = b − Ax(0)

α(i) =
rT(i)r(i)

dT
(i)Ad(i)

x(i+1) = x(i) + αid(i)

r(i+1) = r(i) − α(i)Ad(i)

βi+1 =
rT(i+1)r(i+1)

rT(i)r(i)

d(i+1) = r(i+1) + β(i+1)d(i)

Bojana Rosić (WiRe) Introduction to Scientific Computing December 6, 2016 80 / 97



Conjugate gradient method

The number of iterations neccessary to obtain the error ε is given as

k ≤ 1

2
κln(

1

ε
)

where κ is condition number of matrix A (associated with the linear equation Ax = b
the condition number gives a bound on how inaccurate the solution x will be after
approximation).

κ(A) =
∥∥A−1

∥∥ · ‖A‖ .
Hence, the larger condition number the slower algorithm is.
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Preconditioned conjugate gradient method

To speed up convergence, one may try to altrenate the condition number of a matrix
A by premultiplying the system of equations

Ax = b

by preconditioner M: a positive-definite matrix that approximates A but is easier
to invert. Then,

M−1(Ax − b) = 0

in which tκ(M−1A) << κ(A). This may lead us to faster convergence, but the
problem is that M−1A is not neccessarily symmeteric an positive definite.
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Preconditioned conjugate gradient method

To overcome this issue, one may perform the Cholesky decomposition of a matrix
M

M = QQT

such that one solves the problem

Q−1AQ−T x̂ = Q−1b =: b̂, x̂ = QT x

This system is characterised by a matrix

Â = Q−1AQ−T

which is symmetric and positive definite.
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Preconditioned conjugate gradient method

Some of possible choices of perconditioner are

diagonal : M = diag A (also known as Jacobi preconditioner)

incomplete Cholesky preconditioner (The Cholesky factorization of a positive
definite matrix A is A = LL∗ where L is a lower triangular matrix. An
incomplete Cholesky factorization is given by a sparse lower triangular matrix
K that is in some sense close to L. The corresponding preconditioner is KK∗.)
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Exercise

Let us solve by CG method Ax = b where

A =

(
2 −1
−1 2

)
, b =

(
1
0

)
, x(0) = 0

Hence, we start with

d(0) = r(0) = b − Ax(0) = b =

(
1
0

)
Then we compute

α(0) =
rT(0)r(0)

dT
(0)Ad(0)

=
1

2
, x(1) = x(0) + α0d(0) =

(
0
0

)
+

1

2

(
1
0

)
=

(
0.5
0

)
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Exercise

Let us check if x(1) is the solution? Compute

r(1) = r(0) − α0Ad(0) =

(
0

0.5

)
which is the same as

r(1) = b − Ax1 =

(
1
0

)
−
(

1
−0.5

)
=

(
0

0.5

)
Check if r(0) and r(1) are orthogonal: rT(1)r(0) = 0. Also check if r1 and d(0) are

orthogonal dT
(0)r1 = 0. Since both hold for now we are fine.
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Exercise

Let us now compute the other seacrh direction

d(1) = r(1) + β(1)d(0)

where

β1 =
rT(1)r(1)

rT(0)r(0)

=
1

4

d(1) =

(
0

0.5

)
+

1

4

(
1
0

)
=

(
1/4
0.5

)
Check if d(1) si A-orthogonal to d(0):

dT
(1)Ad(0) = 0
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Exercise

Now compute

α(1) =
rT(1)r(1)

dT
(1)Ad(1)

=
2

3

and new solution

x(2) = x(1) + α1d(1) =

(
0.5
0

)
+

2

3

(
1/4
1/2

)
=

(
2/3
1/3

)
and residual

r(2) = r(1) − α1Ad(1) =

(
0

0.5

)
−
(

0
0.5

)
) = 0

Hence, we got correct solution.

Bojana Rosić (WiRe) Introduction to Scientific Computing December 6, 2016 88 / 97



Exercise

Let us solve by PCG method Ax = b where

A =

(
4 1
1 3

)
, b =

(
1
2

)
, x(0) = (2 1)T

Hence, we may assume the diagonal preconditioner:

M =

(
4 0
0 3

)
The transformed system of equations becomes Âx = M−1Ax = M−1b = b̂
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Exercise

The new system Âx = b̂ has matrix

Â =

(
1.0000 0.2500
0.3333 1.0000

)
Its condition number is κÂ = 1.82, whereas the condi-
tion number of A is κA = 1.94. Hence, we get slight
imporvement. This shows that we can suggest another
preconditioner (but about this some other time).

In this particular case the matrix Â is positive-definite, and one does not need to
do Cholesky decomposition.
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Exercise

The process of solving then follows the previous example.
Hence, we start with

d(0) = r(0) = b̂ − Âx(0)

=

(
1.5

2.33

)
−
(

1.0000 0.2500
0.3333 1.0000

)(
2
1

)
=

(
−0.7500
0.6667

)

α(0) =
rT(0)r(0)

dT
(0)Âd(0)

and so on.

In this particular case the matrix Â is positive-definite, and one does not need to
do Cholesky decomposition.
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Solving finite element system

If we do linear elastic analysis of
an iron piece of hardware (fixed
at two holes and pulled at the
third hole in z direction) we end
up with the solving the following
system of equations

Ax = b

in which A is the stiffness matrix
and b is the force vector (external
and internal forces).

@Carstensen
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Solving finite element system

The system has 6894 degrees of freedom
(size of matrix A). The total number
of elements in A is 47527236, but only
233863 of them are non-zero. Hence, the
matrix is sparse. Without knowing this we
may solve the system directly by inverting
the matrix A

x = A−1b = inv (A)b

The time neccessary to do that is
179.214366 seconds. 0 1000 2000 3000 4000 5000 6000
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Solving finite element system

In case that you know that the matrix is
sparse then you may use the command

x = A−1b = A \ b

which is multifrontal method for solving
the sparse system of equations. The com-
putation time is 0.584555 seconds. How-
ever, what to do if the matrix is not
sparse? In that case one may use the
CG and PCG method (also Jacobi, Gauss-
Seidel etc.). 0 1000 2000 3000 4000 5000 6000
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Bojana Rosić (WiRe) Introduction to Scientific Computing December 6, 2016 94 / 97



Solving finite element system

To use CG or PCG method the matrix A
has to be positive definite and symmet-
ric . To check if matrix is symmetric it is
enough to check if A = AT holds. On the
other side, the positive definitness can be
checked by cheking the Cholesky decom-
position of a matrix.

[ , p] = chol (A)

if p = 0 then the matrix is positive defi-
nite. 0 1000 2000 3000 4000 5000 6000
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Solving finite element system

In case that the matrix is not positive def-
inite, then one may solve the system

ATAx = ATb

because the matrix ATA will be positive
definite.
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