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Problem

Our goal is to solve the nonlinear system of equations

F (x) = 0

for unknown x by iterative procedures. The exact solution will be denoted by x∗.
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Newton method
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One dimensional problem

Find the root of equation
f (x) = 0
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What this means?
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Newton-Raphson method
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Geometrical interpretation

Let us observe the line which connects two points (x0, f (x0)) and (x , y). The
equation of line passing through these two points reads

y = f (x0) + (x − x0)f ′(x0)

in which f ′(x0) is the slope (tangent line) at point x0. We would like to find the
point where this line crosses x axis (hopefully this will be our root). This matches
with the condition

y = 0, x = x1

Hence,

0 = f (x0) + (x1 − x0)f ′(x0)⇒ x1 = x0 −
f (x0)

f ′(x0)

Bojana Rosić, Thilo Moshagen (WiRe) Introduction to Scientific Computing November 22, 2017 7 / 65



Geometrical interpretation

When we iterate this expression, one obtains

xk+1 = xk −
f (xk)

f ′(xk)

which further will be denoted by

x (k+1) = x (k) − f (x (k))

f ′(x (k))
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Mathematical interpretation

Let the solution at iteration k be denoted by x (k) , then one may expand the function
f (x) in the neighbourhood of x (k) by

f (x) = f (x (k)) + f ′(x (k))(x − x (k)) + h.o.t

Because f (x) = 0, one has

0 = f (x (k)) + f ′(x (k))(x − x (k)) + h.o.t

i.e.
x ∼ x (k) − (f ′(x (k)))−1f (x (k))
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Mathematical interpretation

The last relation can be iterated in the following manner

x (k+1) = x (k) − (f ′(x (k)))−1f (x (k))

until convergence. From this it follows that the initial point x (0) can have huge
influence on the quality of solution. Namely, if x (0) is too far from the solution
the method can even diverge. Why? The reason is the accuracy of the Taylor
expansion.
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Example

Solve the following equations

1 x3 − 1 = 0

2 (x − 5)2 = 0

3 x3 − 2x + 2 = 0
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Example: Newton method

The Newton method reads

x (k+1) = x (k) − f (x (k))

f ′(x (k))

i.e. in our particular case

1 f (x) = x3 − 1 = 0⇒ x (k+1) = x (k) − (x (k))3−1
3(x (k))2

2 f (x) = (x − 5)2 = 0⇒ x (k+1) = x (k) − (x (k)−5)2

2(x (k)−5)

3 f (x) = x3 − 2x + 2 = 0⇒ x (k+1) = x (k) − (x (k))3−2x (k)+2
3(x (k))2−2
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Example: solution

No. of iter. 1. case 2. case 3. case
1 8 8 8
2 5.3385 6.5000 5.3789
3 3.5707 5.7500 3.6470
4 2.4066 5.3750 2.5068
5 1.6620 5.1875 1.7509
6 1.2287 5.0938 1.2137
7 1.0399 5.0469 0.6514
8 1.0015 5.0234 1.9905
9 5.0117 1.3932

10 5.0059 0.8915
11 -1.5163
12 -1.8320
13 -1.7719
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Newton method
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Sensitivity on initial point

Convergence as well as number of iterations depend on the initial guess!
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Do we always converge and hit global minimum?
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Convergence of the method

To check convergence, one may observe the mapping

x (k+1) = Φ(x (k)) = x (k) − f (x (k))

f ′(x (k))

and check its contractivity. For this we may check

q = sup
x∈[x∗−δ,x∗+δ]

|Φ′|

where x∗ is the solution (fixed point) and δ is the neighborhood of x∗.
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Is the method convergent?

Since

Φ′ = 1− (f ′)2 − ff
′′

(f ′)2
=

ff
′′

(f ′)2
,

and f ′(x∗) 6= 0 (unles x∗ is multiple root), as well as f (x∗) = 0 (solution), then

Φ′(x∗) = 0.

By the evident continuity of Φ′, given any K > 0 and K < 1

Φ′(x) < K

if x ∈ [x∗ − δ, x∗ + δ] and δ is sufficiently small.
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Order of convergence

To compute the order one may evaluate the error

dk+1 := xk+1 − x∗ = Φ(xk)− Φ(x∗)

= Φ(x∗ + dk)− Φ(x∗)

= Φ(x∗) + Φ′(x∗)︸ ︷︷ ︸
=0

dk +
1

2
Φ′′(x∗)d2

k +O(d3
k )− Φ(x∗)

=
1

2
Φ′′(x∗)d2

k +O(d3
k ).

It follows
|x (k+1) − x∗| ≤ C |x (k) − x∗|2.

Hence, the convergence is quadratic.
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Is the method convergent?

For vector valued problems, using

D(A−1)C = −A−1CA−1 ∀C

with C = Id

DΦ = Id−(Df (x∗))−1Df (x∗)− D((Df (x∗))−1)f (x∗)

= ((Df (x∗))−1)2f (x∗)

and again f (x∗) = 0 (solution), and then

Φ′(x∗) = 0

again.
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Previous example: error

No. of iter. 1. case 2. case 3. case
0 2.6615 1.5000 2.6211
1 1.7678 0.7500 1.7320
2 1.1641 0.3750 1.1401
3 0.7447 0.1875 0.7560
4 0.4333 0.0938 0.5371
5 0.1887 0.0469 0.5623
6 0.0384 0.0234 1.3391
7 0.0015 0.0117 0.5974
8 2.2828e-06 0.0059 0.5017
9 0.0029 2.4078

10 0.0015 0.3157
11 0.0007 0.0601
12 0 0.0026
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Previous example: error

Check now the error between 6th and 7th iteration

ε(6) = ‖x (6) − x (5)‖

ε(7) = ‖x (7) − x (6)‖

1 case:ε(6) = 0.0384⇒ (ε(6))2 = 0.0015 = ε(7) (quadratic convergence)

2 case: ε(6) = 0.0234⇒ (ε(6))2 = 5.4756e − 04 < 0.0117 = ε(7) (linear
convergence)

3 case: ε(6) = 1.3391 > ε(7), ε(6) > ε(5) (local divergence)
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Newton method
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Example: Why this?

1 case has quadratic convergence because the root is not double and the initial
point is not near any change from local minima to local maxima

2 case has linear convergence because the root is double

3 case has local divergence because the function changes its convexity (local
minima/maxima) in a point between the initial point and the root of the
function
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Why local divergence?
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Why local divergence?
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Convergence is not always quadratic!

In case of multiple roots the method is only linearly convergent. Let x∗ be a root
of multiplicity 2, i. e. f (x∗) = 0 and f ′(x∗) = 0. Then the Newton’s method
converges only linear for x0 ∈ (x∗ − δ, x∗ + δ), since

Φ′(x∗) = lim
x→x∗

f (x)f ′′(x)

(f ′(x))2
=

1

2
.

Example:
f (x) = (x − 1)2

f ′(x) = 2(x − 1)
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Is the method convergent?
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Modified Newton method

Let x∗ be a root of multiplicity m, i. e. f (x∗) = 0, f ′(x∗) = 0, and f (m)(x∗) = 0.
Then the modified Newton scheme reads as

xk+1 := xk −m
f (xk)

f ′(xk)
.

The convergence is then quadratic.
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Modified Newton
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Stopping criteria

There are several stopping criteria that can be used in the practice

1 ε = ‖x (k) − x (k−1)‖ < tol

2 ε = ‖f (x (k))‖ < tol

3 ε = ‖f ′(x (k))‖ < tol (this one is not easy to satisfy)

Note that other criteria also exist. They can combine some of the previous ones.
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Stopping criteria

For the same tolerance 1e − 3
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Newton-Raphson method for general system

In general case (not only for scalar function):

x (k+1) = x (k) − (DF (x (k)))−1F (x (k))

where (k) denotes the iteration number.
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Never invert the matrix: inexact Newton method

The formula
x (k+1) = x (k) − F ′(x (k))−1F (x (k))

can be rewritten as

F ′(x (k))(x (k+1) − x (k)) = −F (x (k))

By denoting ∆x (k) = (x (k+1) − x (k)) and Jk = F ′(x (k)) one may further write

Jk∆x (k) = −F (x (k))

To solve this system you may use any of methods we have learned in last two weeks.
This means that inside the iteraion (k) one would perform another local iteration
to solve the linear system.
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Never invert the matrix: inexact Newton method

Hence,
Jk∆x (k) = −F (x (k))

can be solved by for example Jacobi method by taking

D = diag (Jk), R = Jk −D

and then computing

(∆x (k))(i) = (∆x (k))(i−1) + D−1(−F (x (k))− Jk(∆x (k))(i))

Once ∆x (k) has converged one may compute

x (k+1) = x (k) + ∆x (k)
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Example

f1(x1, x2) = x3
1 + x2 − 1 = 0

f2(x1, x2) = x3
2 − x1 + 1 = 0

The Jacobian:

J :=

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
J11 = ∂f1/∂x1 = 3x2

1

J12 = ∂f1/∂x2 = 1

J21 = ∂f2/∂x1 = −1

J22 = ∂f2/∂x2 = 3x2
2
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Example

x1 x2

0.5000 0.5000
1.0800 0.4400
0.9477 0.2033
0.9881 0.0399
0.9999 0.0008
1.0000 0.0000
1.0000 0.0000
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Stationary Newton method

Does not require the knowledge of the Jacobian in each iteration and can be written
as

x(k+1) = x(k) − B−1
0 F (x(k)),

where the matrix B0 is the exact Jacobian in the first iteration.

This method requires more iterations, but they are cheaper.
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Stationary Newton method
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Newton method
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Stationary Newton method
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Newton method with restarts

Does not require the knowledge of the Jacobian in each iteration and can be written
as

x(k+1) = x(k) − B−1
k F (x(k)), where

Bk = Jk , mod(k ,m) = 0, Bk = Bk−1 otherwise

This means that we compute Jacobian after m iterations
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Newton method with restarts
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Newton method: restart

Bojana Rosić, Thilo Moshagen (WiRe) Introduction to Scientific Computing November 22, 2017 44 / 65



Secant method

Bojana Rosić, Thilo Moshagen (WiRe) Introduction to Scientific Computing November 22, 2017 45 / 65



One dimensional problem

Find the root of equation
f (x) = 0
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Secant method

In each iteration of Newton method

x (k+1) = x (k) − f (x (k))

f ′(x (k))

one has to compute the Jacobian f ′(x (k)) which is usually very expensive operation.
To avoid this, one may use approximation of Jacobian in a form of the difference
quotient

f ′(x (k)) ≈ f (x (k))− f (x (k−1))

x (k) − x (k−1)
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Secant method

Secant method:

x (k+1) = x (k) − x (k) − x (k−1)

f (x (k))− f (x (k−1))
f (x (k))

This method needs two starting values and does not belong to the class of fixed
point iterations.
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Geometrical representation
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Quasi-Newton method
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Quasi-Newton method

Quasi–Newton methods are generalisations of the one dimensional secant method
to higher space dimensions. They do not require the knowledge of the Jacobian
and can be written as

x(k+1) = x(k) − (B(k))−1F (x(k)), where

B(k)s(k) = B(k)(x(k) − x(k−1)) = F (x(k))− F (x(k−1)) = y(x(k)).

The matrices B(k) are the secant-approximation to the Jacobian in the k-th step.

The second equation is called secant condition.

When the iterative scheme satisfies the secant condition , it is called a
Quasi-Newton scheme.

Bojana Rosić, Thilo Moshagen (WiRe) Introduction to Scientific Computing November 22, 2017 51 / 65



Quasi-Newton method

From the secant condition one may get infinitely many matrices Bk (n2 unknowns
given n knowns). To make the system well posed one could observe a series of
secant conditions

B(k)s(j) = y(x(j)), j = i − n + 1, ..., i

This would mean that we have provided n + 1 points of x . However, this would be
very expensive and on the other side very unstable method. Instead of computing
B(k) from scratch, Broyden reasoned that the previous approximation B(k−1) can
be updated toB(k) such that

m = rank (B(k) − B(k−1)) = rank (∆B(k))

is small (typically taken to be m = 1 or m = 2).
The rank of a matrix B is the size of the largest collection of linearly independent columns (rows) of B.

Bojana Rosić, Thilo Moshagen (WiRe) Introduction to Scientific Computing November 22, 2017 52 / 65



Broyden’s method

Broyden’s method updates the matrix B(k−1) by

B(k) = B(k−1) + ∆B(k) = B(k−1) + u(k)(s(k))T

in which u(k)(s(k))T is rank one matrix and u(k) is unknown. From the secant
condition

B(k)s(k) = y (k)

one has
B(k−1)s(k) + u(k)(s(k))T s(k) = y (k)

i.e.

u(k) =
y (k) − B(k−1)s(k)

(s(k))T s(k)
⇒ B(k) = B(k−1) +

y (k) − B(k−1)s(k)

(s(k))T s(k)
(s(k))T
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Broyden’s method

Let A ∈ Rd×d be a non-singular matrix, and let u, v ∈ Rd . Then the following
conclusions hold.

1 The matrix B(k) = B(k−1) + uvT is non-singular if and only if σ is nonzero,
where

σ := 1 + v>(B(k−1))−1u.

2 When σ is nonzero, then the inverse of B(k) can be computed as

B−1 = (B(k−1) + u⊗ v)−1 = (B(k−1))−1 − (B(k−1))−1(uvT )(B(k−1))−1

σ
.

This formula is known as Sherman-Morrison-Woodbury formula.
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Broyden’s method

To use this method, one requires the initial guess for B(0). Some possible choices
are

exact Jacobian at iteration 0

identiity matrix, etc.
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Example
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Nonlinear system seen as optimisation problem
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Optimisation

Note that the process of solving

F (x) = 0

corresponds to the process of minimising the function

x = min
x

G (x)

such that
F (x) = G ′(x)
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Graphical interpretation

Bojana Rosić, Thilo Moshagen (WiRe) Introduction to Scientific Computing November 22, 2017 59 / 65



Optimisation

The minimum can be found by taking

G ′(x) = F (x) = 0, position of x where is minimum of G(x)

and
G
′′

(x) = F ′(x), being ¿0 one has convex function

is positive definite. To find minimum one has to find the direction in which the
function G decreases, performing the step in that direction and then repeating the
process. The direction of decreasing (descent direction) satisfies the condition

G (x + αd(k)) < G (x), α ∈ [0, δ).

for δ > 0.
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Optimisation

Note that the previous relation can be rewritten as

lim
α→0

(G (x + αd(k))− G (x))/α < 0 −→ G ′(x)>d(k) = F (x)>d(k) < 0.

which leads to a sufficient condition for d(k) to be a direction of descent

F (x(k))>d(k) < 0.

The directions taken in Newton’s scheme,

d(k) = −F ′(x(k))−1F (x(k)),

are directions of descent if F ′(x(k)) is positive definite because then F (x(k))>d(k) =
−F (x(k))>F ′(x(k))−1F (x(k)) < 0
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Line search

Iterative solvers for nonlinear equations change the current guess x(k) in the k-th
iteration by walking into a direction d(k),

x(k+1) = x(k) + d(k).

Their robustness can considerably be enhanced by scaling the step-size taken in the
k-th iteration by a factor αk and then taking the step

x(k+1) = x(k) + αkd(k).

Given d(k), a value for αk is found iteratively by searching along the line x(k) +
αd(k), α > 0, hence the name line-searches.
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Line search

There is no fail-proof strategy for choosing αk leading to a convergent scheme in
all cases.
Here, we will only mention the so-called Curry-Principle which is based on choosing
αk as a minimiser of the function φ(α) = G (x(k) + αd(k)). For every minimiser of
φ it holds that φ′ = F (x(k) + αd(k))>d(k) = 0, and hence the following algorithm
results:
Algorithm:
Given a direction of descent d(k), set the next iterate as

x(k+1) = x(k) + αkd(k)

where αk > 0 is chosen as the smallest positive value such that

F (x(k) + αkd(k))>d(k) = 0.
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Line search

Note that the Newton methods are locally convergent. an iterative method is
called locally convergent if the successive approximations produced by the method
are guaranteed to converge to a solution when the initial approximation is already
close enough to the solution. To make methods globally convergent, the idea of
linear search has been introduced.
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