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Motivation: bank account example

balance of the bank–account after the n–th year: xn ∈ R, (n ≥ 0)

initial balance: x0 ∈ R
rate of interest: p

Let the annual change be

∆xn := xn+1 − xn

such that the rate of interest can be expressed as

p =
∆xn
xn

⇔ xn+1 − xn = pxn ⇒ xn+1 = (1 + p)xn
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Motivation: bank account example

The equation

xn+1 = (1 + p)xn

is nothing else but difference (re-
curence) equation. Namely,

x1 = (1 + p)x0

x2 = (1 + p)x1 = (1 + p)2x0

etc.
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Motivation: bank account example

For interest rate p = 2%, initial balance
x0 = 500 euros and n = 10 years
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Motivation: Fibonacci and the rabbits

Suppose a newly-born pair of rabbits, one
male, one female, are put in a field. Rab-
bits are able to mate at the age of one
month so that at the end of its second
month a female can produce another pair
of rabbits. Suppose that our rabbits never
die and that the female always produces
one new pair (one male, one female) every
month from the second month on. How
many pairs will there be in one year ?

Leonardo of Pisa/Fibonacci (c. 1170 – c. 1250)
copyright@wiki
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Motivation: Fibonacci and the rabbits

The sequence by months is:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

This can be modelled as

xn = xn−1 + xn−2

where x0 = 1 and x1 = 1.

http://www.landlearn.net.au/
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Motivation: Fibonacci and the rabbits

For x0 = 1, x1 = 1 and n = 10 one ob-
tains
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Motivation: Logistic map

The logistic map was first proposed to de-
scribe the dynamics of insect populations.
If xn is the population of species at year n,
then the simplest model of the population
growth assuming that the generations are
non-overlapping is given by

xn+1 − xn = kxn

in which k denotes the growth rate.
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Motivation: Logistic map

However, the model is improved by includ-
ing the effects such as war, natural dis-
asters etc. This is included by assuming
that the growth rate decreases with the
population growth (less food, less space)

k = b(c − xn)

Here, c denotes the maximum capacity.

cartoonstock.com
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Motivation: Logistic map

After dividing the model equation by c ,
one obtains

xn+1 = rxn(1− xn)

where xn represents the ratio of the ex-
isting populations to a possible maximum
population at year n such that 0 ≤ xn ≤
1. For example, x0 represents the initial
ratio at year 0. The parameter r is a pos-
itive number, representing the rate of re-
production and starvation. lol-rofl.com
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What are these equations?

Models
xn+1 = (1 + p)xn

xn = xn−1 + xn−2

xn+1 = rxn(1− xn)

are used to describe discrete dynamical systems, and are known as

difference equations
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Difference equations

The difference equation can be written in general (abstract) implicit form

H(n, xn+1, xn, . . . , xn−k+1) = 0,

in which H can be linear or nonlinear operator. Sometimes, xn+1 can be expressed
in an explicit form

xn+1 = F (n, xn, xn−1, . . . , xn−k+1),

or
∆xn = xn+1 − xn = G (n, xn, xn−1, . . . , xn−k+1).

Note that the state xn+1 at tn+1 depends on the states of the k time-steps before.
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Some simple examples

Examples of
H(n, xn+1, xn, . . . , xn−k+1) = 0,

or
xn+1 = F (n, xn, xn−1, . . . , xn−k+1),

are

1 xn+1 = nxn ⇒ F = nxn
2 xn+1 = x2

n ⇒ F = x2
n

3 xn+1 = xn + xn−2 ⇒ ∆xn = xn−2 ⇒ G = xn−2

4 x2
n+1 − xn = n⇒ H = x2

n+1 − xn − n
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What is state xn?

“The state is the smallest possible subset of system variables that can represent
the entire state of the system at any given time”

Example:

the water depth in the bathtub problem

the amount of money on the bank account

the number of pairs of rabbits, etc.
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Order vs degree vs dimension

Order:
k = highest index n−

lowest index n

Degree :
p = the highest power of

the highest indexed term

Dimension :

d = number of quantities that the state vector counts
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Exercise: DE of dimension 1

Order:

1 xn+1 = nxn ⇒ k = n + 1− n = 1

2 xn+1 = x2
n ⇒ k = n + 1− n = 1

3 xn+1 = xn + xn−2 ⇒ k = n + 1− (n − 2) = 3

4 x2
n+1 − xn = n⇒ k = n + 1− n = 1

Degree:

1 xn+1 = nxn ⇒ p = 1 linear

2 xn+1 = x2
n ⇒ p = 1 linear

3 xn+1 = xn + xn−2 ⇒ p = 1 linear

4 x2
n+1 − xn = n⇒ p = 2 nonlinear
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Difficulty level

The higer are order and degree the more
difficult is to solve!
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Homogeneous vs inhomogeneous

Homogeneous:

equation does not have right hand side

xn+1 − 3xn = 0

Inhomogeneous :

equation has non-zero right hand side

xn+1 − 3xn = n
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Autonomus vs non-autonomus

Autonomus:

equation does not depend on n

xn+1 = 3xn

Non-autonomus :

equation depends on n

xn+1 = 3xn + n
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Exercise

Homogeneous:

1 xn+1 = nxn ⇒ yes

2 xn+1 = x2
n ⇒ yes

3 xn+1 = xn + xn−2 ⇒ yes

4 x2
n+1 − xn = n⇒ no

Autonomus:

1 xn+1 = nxn ⇒ p = 1 no

2 xn+1 = x2
n ⇒ p = 1 yes

3 xn+1 = xn + xn−2 ⇒ p = 1 yes

4 x2
n+1 − xn = n⇒ p = 2 no
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First order difference equations (FODE)

The first order difference equation takes the form

xn+1 = F (n, xn),

or
H(n, xn, xn+1) = 0

such that
k = n + 1− n = 1.

Example: the model of the bank account

xn+1 = (1 + p)xn
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Solving FODE

To solve
xn+1 = F (xn, n)

or
H(xn+1, xn, n) = 0

one may use

algebraic method

iterative (numerical) scheme
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Iterative solving

To solve
xn+1 = F (xn, n)

or
H(xn+1, xn, n) = 0

iteratively, one

starts from x0, n = 0

and applies recurrence relation

xn+1 = F (xn, n)

Note: take care about condition number of function F .
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Iterative solving

The process of solving of

xn+1 = axn

can be done iteratively:

xn+1 = axn

= a2xn−1

= a3xn−2

= ...

= an+1x0

Thus, to compute xn+1 one has to know the initial
condition x0 (the initial state).

www.vetcheryl.com
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Algebraic solving

On the other side, one may solve

xn+1 = F (xn, n)

or
H(xn+1, xn, n) = 0

directly—algebraically.

However, note that this is not always possible!. Thus, we will only study the
process of algebraic solving linear FODE.
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Linear homogeneous FODE

The difference equation
xn+1 = F (n, xn),

is linear if F is linear function in xn. In addition, it is homogeneous if

F (n, xn) = axn

holds.

Example: the model of the bank account

xn+1 = (1 + p)xn ⇒ a = (1 + p)
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Algebraic solving

In case of linear homogeneous equation

xn+1 = axn

the iterative method leads us to the solution

xn+1 = an+1x0

which is power function of a. This knowledge one can use to predict the solution
of any linear homogeneous FODE by taking the the ansatz

xn = cρn

in which c denotes the integration constant and ρ is the root of the so-called
characteristic equation.
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Solving linear homogeneous FODE

Substituting the ansatz
xn = cρn

into
xn+1 = axn ⇒ xn+1 − axn = 0

one obtains
cρn+1 − acρn = 0.

Since c 6= 0 (if it is 0 then we would not have solution), one may divide the previous
relation by c to obtain

ρn(ρ− a) = 0.

The last equation is known as characteristic and has the non-trivial (different than zero)

solution
ρ = a.
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Solving linear homogeneous FODE

Hence, the solution of
xn+1 = axn

is
xn = cρn = can

In the last equation the constant c is unknown. Its estimate follows from the
initial conditions:

x0 = ca0 ⇒ c = x0

Finally,
xn = anx0
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Examples

To compute the solution of

xn+2 − 5xn+1 = 0, x0 = 1

one may assume ansatz
xn = cρn.

Substituting the second into the first equation one obtains

cρn+2 − 5cρn+1 = 0

which leads to the characteristic equation (polynomial)

ρ− 5 = 0⇒ ρ = 5
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Examples

Hence,
xn = c5n

where c can be found from

x0 = c50 = c ⇒ c = x0 = 1

Finally, the solution is
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What about non-autonomous equation?

To find solution of non-autonomous equation

xn+2 − nxn+1 = 0, x1 = 1, n > 0

one may assume the same ansatz as before

xn = cρn

such that
ρ− n = 0

holds. Thus,
ρ = n

and
xn = cnn
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What about non-autonomous equation?

From initial condition
x1 = c11 ⇒ c = 1

such that
xn = nn

Check: plug-in the obtained solution xn = nn into the original difference equation
xn+2 − nxn+1 = 0 and check if you get identity

nn+2 − n · nn+1 = 0 ≡ 0

Hence, we may conclude that xn = nn is the solution of the difference equation
xn+2 − nxn+1 = 0.
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What about non-homogeneous equation?

To solve
xn+1 − 0.5xn = n, x0 = 0 (1)

one has to use a bit different approach than previously. Namely, the ansatz

xn = cρn

only satisfies the homogeneous part of the considered equation

xn+1 − 0.5xn = 0

Therefore, the solution of Eq. (1) requires correction also known as the particular
solution. Hence, the solution of Eq. (1) consists of two parts making the sum

xn = x (h)
n + x (p)

n

in which x
(h)
n denotes the homogeneous part and x

(p)
n represents the particular part

of the solution.
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What about non-homogeneous equation?

The homogeneous part is the solution of

x
(h)
n+1 − 0.5x (h)

n = 0

and reads
x (h)
n = cρn = c0.5n.

To get the general solution, we add to this one the particular solution

x (p)
n = an + b

which is obtained as a variation of the right hand side of Eq. (1) (the method is
also known as variation of constants). Finally,

xn = x (h)
n + x (p)

n = c0.5n + an + b
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What about non-homogeneous equation?

Substituting
xn = x (h)

n + x (p)
n = c0.5n + an + b

into Eq. (1) one obtains

c0.5n+1 + a(n + 1) + b − 0.5(c0.5n + an + b) = n

Having that (because of the homogeneous solution.)

c0.5n+1 − 0.5c0.5n ≡ 0

one may write
a(n + 1) + b − 0.5an − 0.5b = n
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What about non-homogeneous equation?

From
a(n + 1) + b − 0.5an − 0.5b = n

one obtains two equations
0.5an = n

and
a + 0.5b = 0

After solving one has
a = 2, b = −4
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What about non-homogeneous equation?

Thus, the general solution obtains the form

xn = c0.5n + 2n − 4

The constant c can be obtained from the initial conditions:

x0 ≡ 0⇒ x0 = c0.50 + 2 · 0− 4 = c − 4⇒ c = 4

Finally,
xn = 4 · 0.5n + 2n − 4

Check: plug-in the solution to original equation to obtain

4 · 0.5(n+1) + 2(n + 1)− 4− 0.5(4 · 0.5n + 2n − 4) = 2n − 2− n + 2 = n

Thus, xn = c0.5n + 2n − 4 is the solution of xn+1 − 0.5xn = n
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What about non-homogeneous equation?

Let us now try to solve
xn+1 − xn = n

iteratively starting from x0 = 0. Thus,

x1 = x0 + 0 = 0

x2 = x1 + 1 = 1

x3 = x2 + 2 = 3

x4 = x3 + 3 = 6

...

xn =
1

2
n(n − 1)
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What about non-homogeneous equation?

However, the analytical solution is not so easy to obtain. Starting from

xn+1 − xn = n

we have
xn = x (h)

n + x (p)
n

where x
(h)
n is easy to obtain from the homogeneous equation

x
(h)
n+1 − x (h)

n = 0

This leads to
x (h)
n = cρn = c1n = c .
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What about non-homogeneous equation?

Similarly to before, let us assume the particular solution in a form:

x (p)
n = an + b

Then substituting
xn = x (h)

n + x (p)
n = c + an + b

to
xn+1 − xn = n

one obtains
c + a(n + 1) + b − c − an − b = n

i.e.
a = n
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What about non-homogeneous equation?

Following this, our general solution would be

xn = x (h)
n + x (p)

n = c + n2,

where the integration constant c can be found from the initial condition

x0 ≡ 0⇒ 0 = c + 0⇒ c = 0.

Hence,
xn = n2

But, this is not the solution we obtained by iterative algorithm!!!
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What about non-homogeneous equation?

Also, if we subtitute
xn = n2

into
xn+1 − xn = n

we obtain
(n + 1)2 − n2 = n2 + 2n + 1− n2 = 2n + 1 6= n.
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What is the problem?

Well, we have assumed the wrong particular solution! I When ρ = 1 the
particular solution obtained by variation of constants of the right hand side

x (p)
n = an + b

has to be multiplied by n, i.e.

x (p)
n = n(an + b)
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Re-solving

So, our new general solution is of the form:

xn = x (h)
n + x (p)

n = c + (an + b)n

such that
xn+1 − xn = n

turns into
c + (a(n + 1) + b)n − c − (an + b)n = n

i.e.
2an = n

and
a + b = 0.

The solution of the last two equations is

a = 0.5, b = −0.5
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Re-solving

Hence, the general solution is

xn = x (h)
n + x (p)

n = c +
1

2
(n − 1)n,

where the constant c can be computed
from

x0 = 0⇒ 0 = c + 0⇒ c = 0. 0 20 40 60 80 100
0

50

100

150

200

n

x
n

Finally, we obtain

xn =
1

2
(n − 1)n

which matches the iterative solution!!
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Particular solution of non-homogeneous FODE

For
xn+1 = axn + r(n)

where r(n) is a polynomial of order m and a is a constant, the particular solution
obtains the following form

for a 6= 1⇒ x
(p)
n = bmnm + bm−1nm−1 + ...+ b0

for a = 1⇒ x
(p)
n = (bmnm + bm−1nm−1 + ...+ b0)n

For
xn+1 = axn + brn

where a and b are constants, the particular solution is of the following form

for a 6= r ⇒ x
(p)
n = drn

for a = r ⇒ x
(p)
n = dnrn
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Saber Elaydi, An Introduction to Difference Equations

Arne Jensen, Lecture notes on difference equations
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Linear systems of FODE (LSFODE)

The linear homogeneous system of first order difference equations is given in a form:

x1
n+1 = a11x

1
n + a12x

2
n + ...+ a1dx

d
n

x2
n+1 = a21x

2
n + a22x

2
n + ...+ a2dx

d
n

...

xd
n+1 = ad1x

1
n + ad2x

2
n + ...+ addx

d
n

which further can be written as
xn+1 = Axn

in which xn = [x1
n , ..., x

d
n ]T .
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Solving

The process of solving of

xn+1 = Axn

can be done iteratively:

xn+1 = Axn

= A2xn−1

= A3xn−2

= ...

= An+1x0

Thus, to compute xn+1 one has to know the initial
condition x0 (the initial state). www.vetcheryl.com
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Exercise

Small system:

1 xn+1 = 0.5xn ⇒ xn = (0.5n)x0

2 for n = 103 and x0 = 1

3 x1001 = 9.3e − 302

4 Elapsed time is 0.000008 seconds.

Large system xn+1 = A1000x0, x0 = 1

1 A = I ∈ R2000×2000

2 Elapsed time is 10.915375 seconds.

3 A = I ∈ R3000×3000

4 Elapsed time is 34.982872 seconds.

The

computational time of A1000 will drastically increase with the dimension of A!!
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How to solve the problem?
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Diagonalise matrix

Definition: Let A ∈ Rd×d be a matrix. A is
called diagonisable, if it has d linearly inde-
pendent eigenvectors v1, . . . , vd ∈ Cd such
that

Avi = λivi , i = 1, . . . , d ,

where λ1, . . . , λd ∈ C are the eigenvalues of
A. Note that the eigenvalues and eigenvec-
tors may be complex.

davidson.edu
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Then it is easy...

Assumption: Let A ∈ Rd×d be diagnosable. Then, its eigenvectors v1, . . . , vd can be taken
as a basis in

xn+1 = Axn = An+1x0, n ∈ N,
such that

x0 =
d∑

i=1

civi

holds. The coefficients c1, . . . , cd can be found by solving the linear set of equations

(v1 v2 · · · vd)

c1

...
cd

 = x0.
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Hence,..

the solution of the linear difference equation

xn+1 = Axn, n ∈ N,

is

xn = Anx0 = An
d∑

i=1

civi =
d∑

i=1

ciA
nvi =

d∑
i=1

ciA
n−1[Avi ]

=
d∑

i=1

ciA
n−1λivi =

d∑
i=1

ciA
n−2λ2

i vi = · · ·

=
d∑

i=1

ciλ
n
i vi .
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How to compute eigenvalues and eigenvectors?

From
Av = λv

one has
(A− λI )v = 0.

This is homogeneous system of equations which has non-trivial solution if

det(A− λI ) = 0.

Once λ is found, the eigenvectors can be easily computed by solving

(A− λI )v = 0.
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Exercise

For

A =

(
2 1.5
2 0

)
one has

det

(
2− λ 1.5

2 −λ

)
= 0⇒ (2− λ)(−λ)− 3 = 0

Thus, the eigenvalues are

λ1 = 3, λ2 = −1
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Exercise

For corresponding eigenvector solve

(A− 3I )v1 = 0, (A− 3I )v2 = 0(
−1 1.5
2 −3

)
v1 = 0

−v (1)
1 + 1.5v

(2)
1 = 0

2v
(1)
1 − 3v

(2)
1 = 0

v
(1)
1 = 1.5v

(1)
2

This one has infinitely many solutions, and hence one may choose one pair v
(1)
1 = 3, v

(1)
2 =

2. Similarly, the second eignevector can be computed to read (1,−2).
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Why eigenvectors are so special?

Let us take the matrix

A =

(
6 5
1 2

)
and see what this matrix does to an arbitrary vector

v =

(
1
2

)
⇒ Av =

(
16
5

)
Hence, it rotates the vector as well as scales it.
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Why eigenvectors are so special?

Let us take the same matrix

A =

(
6 5
1 2

)
and see what is does to its eigenvector

v =

(
5
1

)
⇒ Av =

(
35
7

)
= 7

(
5
1

)
= 7v
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Hence, it only scales the vector v. Thus, eigenvectors cannot be rotated by A.
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Why eigenvectors are so special?

Example: when you strech elastic band with an arrow drawn in some direction, then the
arrow will preserve the direction if it represents the eigendirection (eigenvector). The

eigenvalue is then the measure of its deformation.

http://www.physlink.com
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Why eigenvectors are important?

Besides making our lifes easier, eigenvectors can be used in data analysis:

In such a case one has that eigenvectors descibe directions of varying data.
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Why eigenvectors are important?

In every point of the body under pressure one may define principal stress planes and
principal stresses (case of no shear stress). The stress values are eigenvalues of the stress
tensor, and the plane normals are the eigenvectors.

@RockMech
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Back to our system

The linear difference equation

xn+1 = Axn, n ∈ N,

has solution

xn = Anx0 = An
d∑

i=1

civi =
d∑

i=1

ciA
nvi =

d∑
i=1

ciA
n−1[Avi ]

=
d∑

i=1

ciA
n−1λivi =

d∑
i=1

ciA
n−2λ2

i vi = · · ·

=
d∑

i=1

ciλ
n
i vi .
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Can we always express the solution like this?

Well, the previous theory only holds when the matrix A is diagonasible which means that
if

A ∈ Rd×d

then the matrix A needs to have d linearly independent vectors. Actually, this means that
the matrix A has distinct eigenvalues and eigenvectors. In general case for each eigenvalue
λi we may introduce algebraic multiplicity mi :

det(A− λI ) = (λ− λ1)m1 (λ− λ2)m2 ...(λ− λn)mn

as well as geometric multiplicity mgi of λi as the number of corresponding eigenvectors.
When the matrix is diagonasible then algebraic multiplicity of each eigenvalue and eigen-
vector is 1 (they do not repeat).
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I case: distinct eigenvalues

Let

A =

(
1 3
2 −1

)
whose eigenvalues and eigenvectors are distinct

λ1 = 2.6458, λ2 = −2.6458

v1 = [0.87670.4810]T , v2 = [−0.63540.7722]T .

Then, the solution is

xn = c1(2.6458)n
(

0.8767
0.4810

)
+ c2(−2.6458)n

(
−0.6354
0.7722

)
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II case: repeated eigenvalues

The matrix

A =

(
0 1
−4 4

)
has repeated eigenvalues (algebraic multiplicity is 2)

λ := λ1 = λ2 = 2

and eigenvectors

v1 =

(
1
2

)
, v2 =

(
−1
−2

)
.

Note that these two vectors are not independent because

v1 = −v2
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II case: repeated eigenvalues

This further means that we have one eigenvector and two repeated eigenvalues.
Hence, the matrix A is deficient and one has to search for another eigenvector in
order to be able to express the solution of the previous difference equation. To do
this, we will introduce the so-called Jordan’s form.
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Jordan form

Let us transform
xn+1 = Axn

by
xn = Cyn

to
yn+1 = C−1ACyn = Jyn,

where the matrix J is of the Jordan type:

J =

(
λ 1
0 λ

)
.
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Jordan form

Then we have that
CA = JC ,

where the unknown matrix takes the form

C = [v1 v2].

Its elements can be evaluated by solving the system CA = JC which in component form
reads

Av1 = λv1 ⇒ the normal eigenvalue

and
Av2 = λv2 + v1 ⇒ the generalised eigenvalue
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II case: repeated eigenvalues

Once the genrealised eigenvalue v2 is computed, one may assume the solution in a form

xn = c1λ
nv1 + c2λ

n(nv1 + v2)
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II case: repeated eigenvalues

So, in our particular example one has

A =

(
0 1
−4 4

)
and

λ1 = λ2 = 2, v1 =

(
1
2

)
Thus,

Av2 = λv2 + v1

i.e. (
0− 2 1
−4 4− 2

)
v2 =

(
1
2

)
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II case: repeated eigenvalues

which then produces
−2v 1

2 + v 2
2 = 1

−4v 1
2 + 2v 2

2 = 2

from which it follows one independent equation

−2v 1
2 + v 2

2 = 1

Choosing
v 1

2 = 0

one obtains
v 2

2 = 1

So, the general solution is

xn = c12n

(
1
2

)
+ c2

(
n2n

(
1
2

)
+ 2n

(
0
1

))
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Higher order linear difference equations (HOLDE)

These equations have a form:

k∑
i=1

aixn−i = gn, qi ∈ R, i = 0, ..., k,

in which x0, x1, ...xk−1 ∈ R are known.

Example:

xn+2 − 3xn+1 − 5xn−4 = 0
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Solving HOLDE

Basically there are two directions you can take:

to directly solve the problem

to transform it to the first order system and then solve
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Direct solution

Every solution {xn} of the inhomogeneous difference equation

k∑
i=0

aixn−i = gn, ai ∈ R, i = 0, . . . , k

can be written as
xn = x (h)

n + x (p)
n

where

x
(h)
n denotes the homogeneous solution

x
(p)
n represents the particular solution
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Homogeneous solution

The homogeneous solution of

k∑
i=0

aixn−i = gn, ai ∈ R, i = 0, . . . , k

is obtained by solving only homogeneous part
of the difference equation

k∑
i=0

aix
(h)
n−i = 0, ai ∈ R, i = 0, . . . , k
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Homogeneous solution ansatz

The homogeneous solution can be assumed in a form of power function

x (h)
n = bρn.

This is an educated guess (ansatz), which after inserting to

k∑
i=0

aix
(h)
n−i =

k∑
i=0

aibρ
n−i = 0

gives the polynomial equation

χ(ρ) :=
k∑

i=0

aiρ
k−i = 0

known as characteristic polynomial.
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Homogeneous solution

The polynomial

χ(ρ) :=
k∑

i=0

aiρ
k−i

is polynomial of degree k with roots:
ρ1, . . . , ρk .

In general, the polynomial can have:

single roots (all are different) ρl ∈ R
a root of multiplicity s (s times the same root) ρl = ρl+1 = · · · = ρl+s

complex root ρl ∈ C \ R
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Homogeneous solution for single roots

For single roots ρl the homogeneous so-
lution obtains the form:

x (h)
n = c1ρ

n
1 + ...+ ckρ

n
k

where cl are contstants to be determined
from the initial conditions.
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Roots with multiplicity s

If ρl is a root of multiplicity s, i.e.

ρl = ρl+1 = · · · = ρl+s = ρ,

then the corresponding homogeneous so-
lution is

x (h)
n = c1ρ

n + c2nρ
n...+ csn

s−1ρn
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Complex roots

Let ρl = α + iβ and ρl+1 = α − iβ (α, β ∈ R) be the complex root and its conju-
gate. To formulate the solution, let us first transform these roots to polar coordinates:

ρl = µe iφ = µ(cosφ+ i sinφ)

ρl+1 = µe−iφ = µ(cosφ− i sinφ),

where

µ = |ρl | = |ρl+1| =
√
α2 + β2, tan(φ) =

β

α

http://en.citizendium.org/

are the modulus and the phase, respectively.
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Complex roots

Hence, the homogeneous solution becomes:

x (h)
n = c1µ

ne inφ + c2µ
ne−inφ.

The last relation can be rewritten in terms of trigonometrical functions:

x (h)
n = c1µ

n((cos nφ+ i sin nφ)) + c2µ
n(cos nφ− i sin nφ)

= µn(d1 cos nφ+ d2 sin nφ)
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Particular solution

Once the homogeneous solution x
(h)
n of

k∑
i=0

aixn−i = 0, ai ∈ R, i = 0, . . . , k

is found, one may insert the general solution xn = x
(p)
n + x

(h)
n to

k∑
i=0

aixn−i =
k∑

i=0

ai (x
(h)
n−i + x

(p)
n−i ) =

k∑
i=0

ai (x
(p)
n−i ) = gn,

and obtain the particular solution by solving the previous sys-
tem.
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Particular solution: variation of constants

Construction of x
(p)
n depends on gn, i. e.

gn x
(p)
n

an d1a
n

nk d0 + d1n + · · ·+ dkn
k

nkan (d0 + d1n + · · ·+ dkn
k)an

The coefficients di should be choosen, such that they match the difference equation.
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General solution

Finally, the general solution is obtained by summing homogeneous and particular
solutions:

xn = x (h)
n + x (p)

n

in which the constants ci are found from k initial conditions (known time steps)

x0 = x
(h)
0 + x

(p)
0

x1 = x
(h)
1 + x

(p)
1

...

xk = x
(h)
k + x

(p)
k
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Exercise

To solve the difference equation

xn+2 + 2xn+1 + xn = 2n, x0 = 1, x1 = 2

let us first find the homogeneous solution by inserting the ansatz
xn = bρn to

xn+2 + 2xn+1 + xn = 0.

In this manner we obtain the characteristic equation

ρn+2 + 2ρn+1 + ρn = 0
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Exercise

whose non-trivial solutions are obtained from

ρ2 + 2ρ+ 1 = (ρ− (−1))2 = 0

Hence, the roots are
ρ1,2 = −1

Thus, we have multiple root and homogeneous solution obtains
the form

x (h)
n = c1(−1)n + c2n(−1)n
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Exercise

Further more, the particular solution can be obtained from

x
(p)
n+2 + 2x

(p)
n+1 + x (p)

n = 2n

by variation of constants of the right hand side:

x (p)
n = d0 + d1n

(d0 + d1(n + 2)) + 2(d0 + d1(n + 1)) + (d0 + d1n) = 2n

4d0 + 4d1 = 0, 4d1n = 2n⇒ d1 = 0.5, d0 = −0.5

x (p)
n = −0.5 + 0.5n
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Exercise

Hence, the general solution is given as:

xn = x (h)
n + x (p)

n

xn = c1(−1)n + c2n(−1)n − 0.5 + 0.5n

The unknown constants can be found from initial conditions

x0 = c1 − 0.5 = 1⇒ c1 = 1.5

and
x1 = −c1 − c2 − 0.5− 0.5 = 2⇒ c2 = −1.5

Thus,
xn = 1.5(−1)n − 1.5n(−1)n − 0.5− 0.5n
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Transformation to the FODE

The difference equation

xn+1 = F(n, xn, xn−1, . . . , xn−k+1), n ≥ k − 1

where x0, x1, . . . , xk−1 ∈ Rd are given, can be rewritten as a
first order system of dimension d · k

ym+1 = F̃(m, ym), m ≥ 1,

where y0 ∈ Rd·k is given.
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Transformation to the FODE

New state vector:

yn =


y(1)
n

y(2)
n

...

y(k)
n

 :=


xn−k+1

xn−k+2

...
xn−1

 ∈ Rd·k , n ≥ k − 1

leads to

yn+1 =


y(1)
n+1

y(2)
n+1

...

y(k)
n+1

 =


y(2)
n

y(3)
n

...

F (n, y(1)
n , y(2)

n , . . . , y(k)
n )

 , n ≥ k
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Transformation to the FODE

where the initial conditions become
y(1)

0

...

y(k)
0

 =

 x0

...
xk−1

 .
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Exercise

The difference equation

xn+2 + 2xn+1 + xn = 2n, x0 = 1, x1 = 2

can be first rewritten as

xn+1 + 2xn + xn−1 = 2(n − 1), x1 = 1, x2 = 2

and then transformed to

yn =

(
y

(1)
n

y
(2)
n

)
:=

(
xn−1

xn

)
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Exercise

Hence,

yn+1 =

(
y

(1)
n+1

y
(2)
n+1

)
=

(
xn

−2xn − xn−1

)
+

(
0

2(n − 1)

)
and thus,

yn+1 =

(
y

(2)
n

−2y
(2)
n − y

(1)
n

)
+

(
0

2(n − 1)

)

yn+1 =

(
0 1
−1 −2

)
yn + b

And now you may iterate...
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