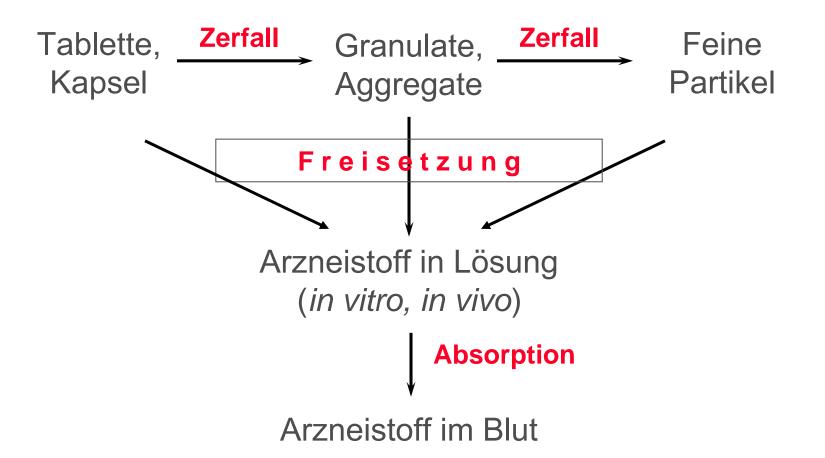
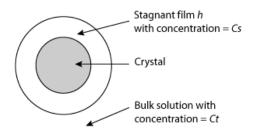

Bestimmung der Wirkstofffreisetzung invitro: Methoden im Spagat zwischen Qualitätskontrolle und Biorelevanz

Peter Langguth


Institut für Pharmazie und Biochemie


Unter Wirkstofffreisetzung

- ...versteht man das Ausmaß und die Geschwindigkeit, mit der sich ein Feststoff in einer Flüssigkeit auflöst
- aus pharmazeutischer Sicht sind es Ausmaß und Geschwindigkeit, mit der eine Arzneiform einen Wirkstoff in die sie umgebende Flüssigkeit abgibt

Zerfalls- & Auflösungsprozesse

Auflösungsgeschwindigkeit

Noyes-Whitney:

$$\frac{dM}{dt} = -kA(C_s - C)$$

,,sink": **c << c**_s:

$$\frac{dM}{dt} = -kAC_s$$

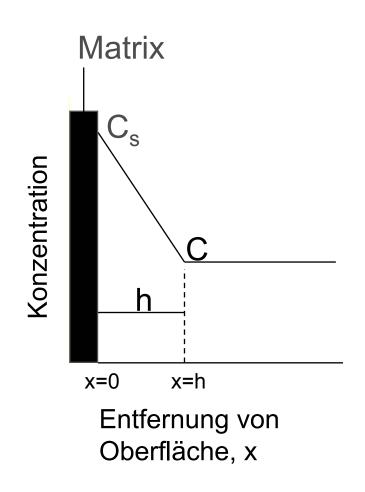
Menge Substanz (Wirkstoff), die pro Zeiteinheit bei gegebener Temperatur, Lösungsmittelzusammensetzung und spezifischer Oberfläche des Feststoffes in Lösung geht

k = Intrinsische Auflösungsgeschwindigkeitskonstante

A = Oberfläche

C_s = Löslichkeit im Auflösungsmedium

C = Konzentration im Auflösungsmedium


Auflösungsgeschwindigkeit

Nernst & Brunner:

$$\frac{dM}{Adt} = J = -D\frac{dC}{dx}$$

$$\frac{dM}{Adt} = -D\frac{(C_s - C)}{h}$$

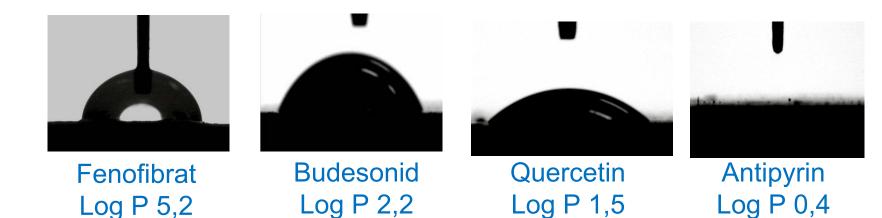
Beeinflussung der Freigabegeschwindigkeit durch Veränderung von h, A, C_s, D

Weshalb Prüfung der *in-vitro* Wirkstofffreisetzung?

- Formulierungsentwicklung
 Kritische Herstellungs- und Produktvariable
- Qualitätskontrolle
 - Sicherstellung einer einheitlichen Produktqualität innerhalb der technischen Schwankungsbreite (GMP) eines Herstellungsprozesses (Chargenfreigabe)
 - Indikator der Produktstabilität (Shelf-life)
- Vorhersage des Produktverhaltens unter unterschiedlichen Bedingungen nach der Einnahme
- Zulassungsrelevanz (NDA, ANDA)
 - Unterschiedliche Dosisstärken
 - Variationen (Post-approval changes)
 - Produkte verschiedener Hersteller (Multi source products)

Welche Faktoren beeinflussen die Wirkstofffreisetzung aus Arzneiformen?

- Eigenschaften des Wirkstoffes
- Art und Qualität der Darreichungsform
- Bedingungen, unter denen ein Dissolutionstest durchgeführt wird



Auflösungsgeschwindigkeit -1-Arzneistoff-relevante Faktoren

- 1. Löslichkeit des Arzneistoffs im Auflösungsmedium
- Lipophilie oder Hydrophilie des Arzneistoffes (Oberflächenbenetzung)
- 3. Partikelgröße des Wirkstoffes
- 4. Kristallinität / Polymorphie des Arzneistoffs in der Arzneiform
- 5. Salzform

Substanzlipophilie & Benetzbarkeit

Auflösungsgeschwindigkeit und Salzform

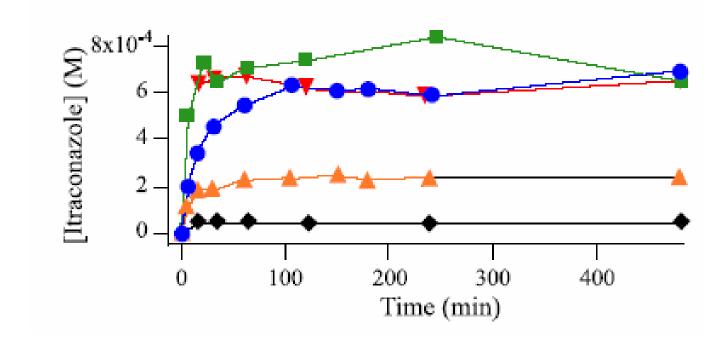
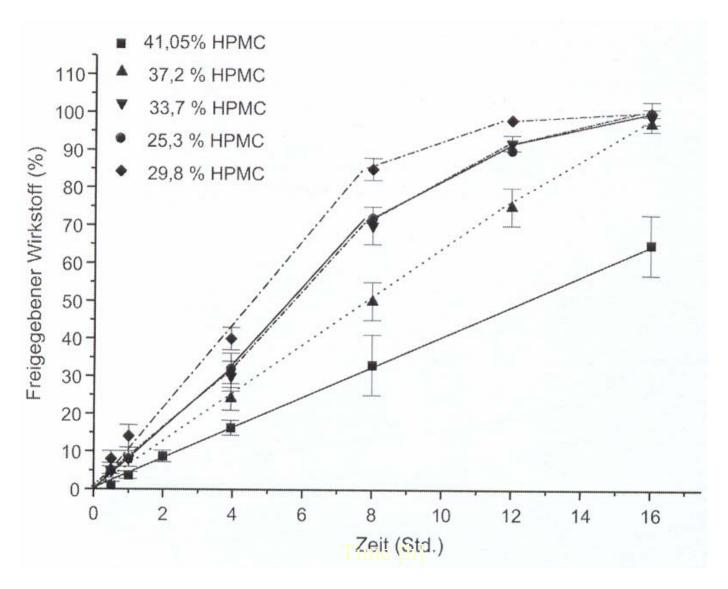
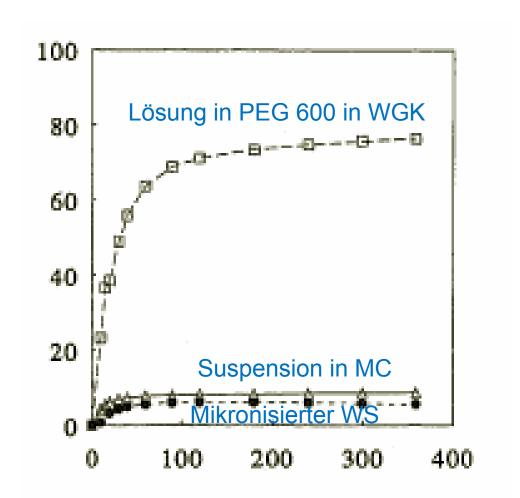



Fig. 9. Dissolution profiles into 0.1 N HCl at 25 °C plotted as itraconazole concentration ([itraconazole]) as a function of time for Sporanox® beads (■), crystalline itraconazole-free base (♦) and co-crystals of itraconazole with L-malic acid (▼), L-tartaric acid (♠) and succinic acid (♠) (from [44], with permission).

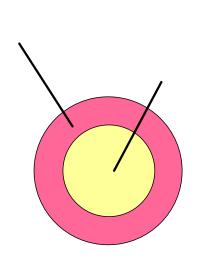
Auflösungsgeschwindigkeit -2-Arzneiform-relevante Faktoren

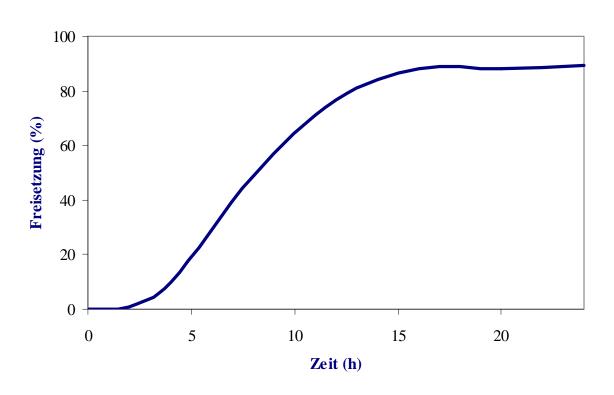
- 1. Unverändert freisetzende oder modifiziert freisetzende Arzneiform?
- 2. Bei verändert freisetzenden AF Verlängert, verzögert oder pulsatil freisetzend?
- Zusammensetzung des Produkts (Art und Menge der Hilfsstoffe)
- 4. Herstellungsprozess (Art) & Prozessparameter


Einfluss der Menge an Hydroxypropylmethylcellulose auf die Wirkstofffreisetzung aus einer Matrixtablette

Langguth, Fricker, Wunderli-Allenspach, Biopharmazie, Wiley-VCH (2004)

Nichtwässrige Lösungen in WGK

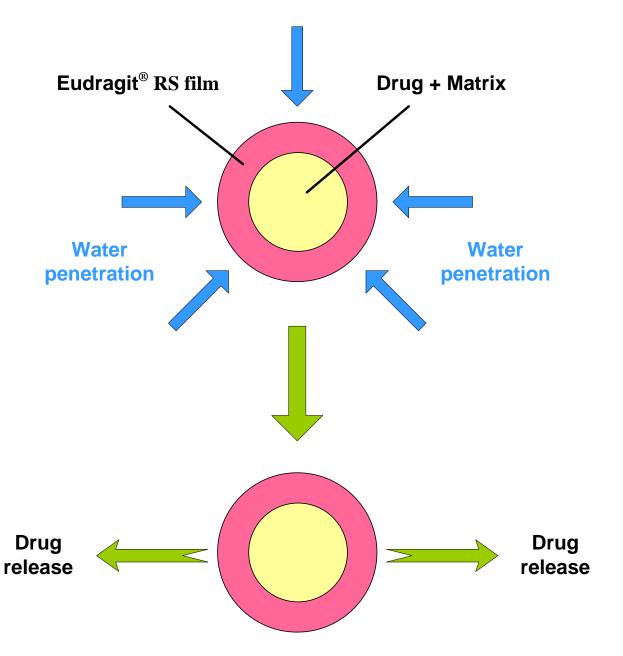

Löslichkeit < 2 μg/ml



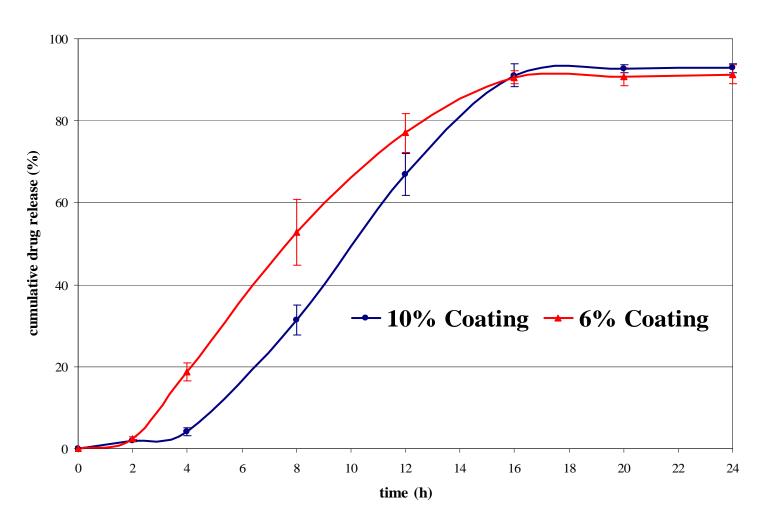
Time [min]

Lin et al., Biopharm. Drug Dispos. (1996)

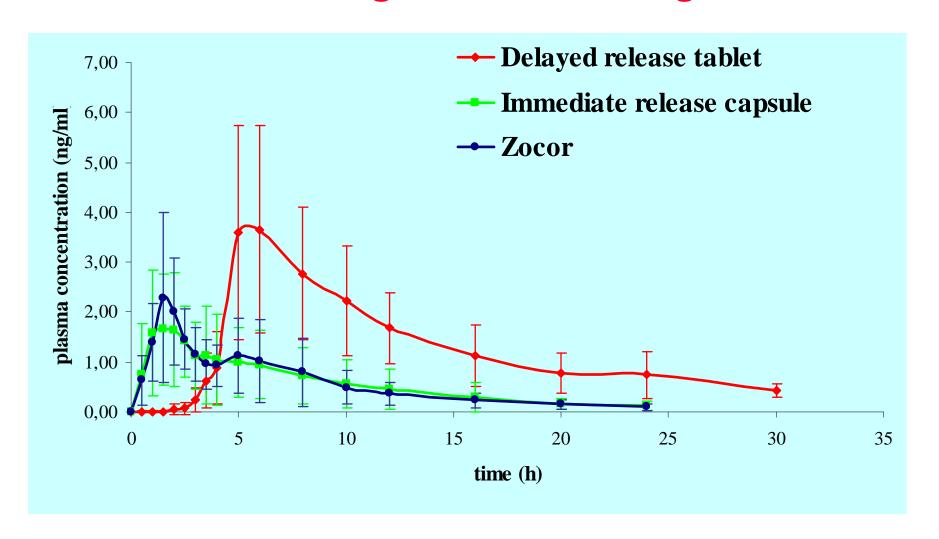
Transitzeitkontrolliertes System mit verzögerter Freisetzung



Tubic M., Dissertation, Universität Mainz (2008)


$$\begin{array}{c|ccccc} CH_3 & CH_3 \\ & & \\ & & \\ & & \\ & & \\ C-C-CH_2-C-\cdots \\ & & \\ & & \\ C=O-C=O \\ & & \\ & & \\ O-O-C=O \\ & & \\ & & \\ & & \\ CH_2-CH_2 \\ & & \\ & & \\ CH_2-CH_2 \\ & & \\ & & \\ CH_2-CH_2 \\ & & \\ & & \\ & & \\ CH_2-CH_2 \\ & &$$

Eudragit® RS


Tubic M., Dissertation, Universität Mainz (2008)

Kontrolle der Freisetzung durch die Stärke der Polymerwand

Tubic-Grozdanis, Hilfinger, Amidon, Kim, Kijek, Staubach, Langguth, Pharm. Res. 25: 1591-1600 (2008)

Phase-I Studie: Erhöhte Bioverfügbarkeit bei verzögerter Freisetzung

Tubic-Grozdanis, Hilfinger, Amidon, Kim, Kijek, Kim, P. Kijek, Staubach, Langguth, Pharm. Res. 25: 1591-1600 (2008)

Auflösungsgeschwindigkeit -3-Faktoren der Testbedingungen

- Apparatur
- 2. Agitationsbedingungen: Rühr-, Hub-, Flußrate
- 3. Zusammensetzung des Auflösungsmediums
- 4. Art der Probennahme (manuell vs. automatisiert)
- 5. Standardisierung des Verfahrens

In-vitro Wirkstofffreisetzung Übersicht über Apparaturen der AB

Ph. Eur. 6.6

App. 1 (Drehkörbchen App.)

App. 2 (Blattrührer App¹)

App. 3 (Eintauchender Zylinder)

App. 4 (Durchflusszelle²)

Intrinsische Lösungsgeschwindig-

keit(2.9.29)

Wirkstoffhaltige Kaugummis (2.9.25)

USP 33 (2010)

App. 1 (Basket)

App. 2 (Paddle)

App. 3 (Reciproc. cylinder³)

App. 4 (Flow-through cell)

App. 5 (Paddle over disk³)

App. 6 (Cylinder)

App. 7 (Reciprocating holder)

³Dissolution Test für transdermale Systeme

¹Modifikationen für Freisetzung aus transdermalen Systemen

²Modifikationen für Freisetzung aus Suppositorien

Wirkstofffreisetzung aus festen Arzneiformen (Ph. Eur., USP)

- Drehkörbchen-Apparatur (Rotating Basket, App. 1, USP)
- Blattrühr-Apparatur (Rotating Paddle, Apparatur 2, USP)
- Eintauchender Zylinder (Reciprocating cylinder, Apparatur 3, USP)
- Durchflusszellen-Apparatur (Flow-through cell, Apparatur 4, USP)

Notwendige Angaben:

- Apparatur
- Zusammensetzung, Menge, Temp. der Prüfflüssigkeit ("sink"-Bedingungen)
- Drehzahl, Durchflussrate (Agitation)
- Zeitpunkt, Art und Menge der Proben entnahmen
- Bestimmungsmethoden
- Menge des Wirkstoffes oder der Wirkstoffe, die sich innerhalb vorgeschriebener Zeit gelöst haben müssen; Vgl. mit Spezifikationsgrenzen

Empfohlene Prüfflüssigkeiten Ph. Eur. 6.6 (2.9.3)

pH 1,0 – 1,5: HCl (HCl/NaCl)

- pH 4,5: Phosphat- oder

Acetatpuffer

pH 5,5 & 5,8: Phosphat- oder

Acetatpuffer

pH 6.8: Phosphatpuffer

pH 7.2 & 7.5: Phosphatpuffer

Empfohlene Prüfflüssigkeiten USP 33

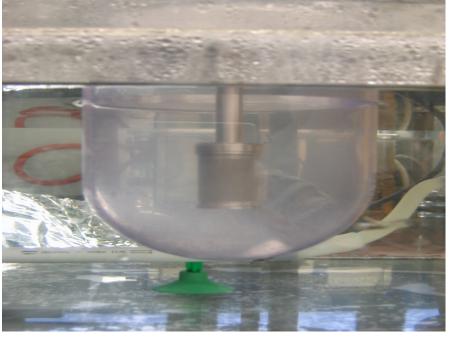
- Simulated gastric fluid (SGF)
- Simulated intestinal fluid (SIF)
- Water
- Phosphate buffer
- Acetate buffer
- Citrate buffer
- Dilute hydrochloric acid
- Tris buffer

"Biorelevante" Prüfflüssigkeiten

FaSSIF

Fasted state simulated intestinal fluid KH₂PO₄ (3.9 g); Sodium taurocholate (3 mM); Lecithin (0.75 mM); KCl (7.7 g); NaOH (q.s. pH 6.5); Aqua demin. ad 1000 ml

FeSSIF


Fed state simulated intestinal fluid Acetic acid (8.65 g); Sodium taurocholate (15 mM); Lecithin (3.75 mM); KCl (15.2 g); NaOH (q.s. pH 5.0); Aqua demin. ad 1000 ml

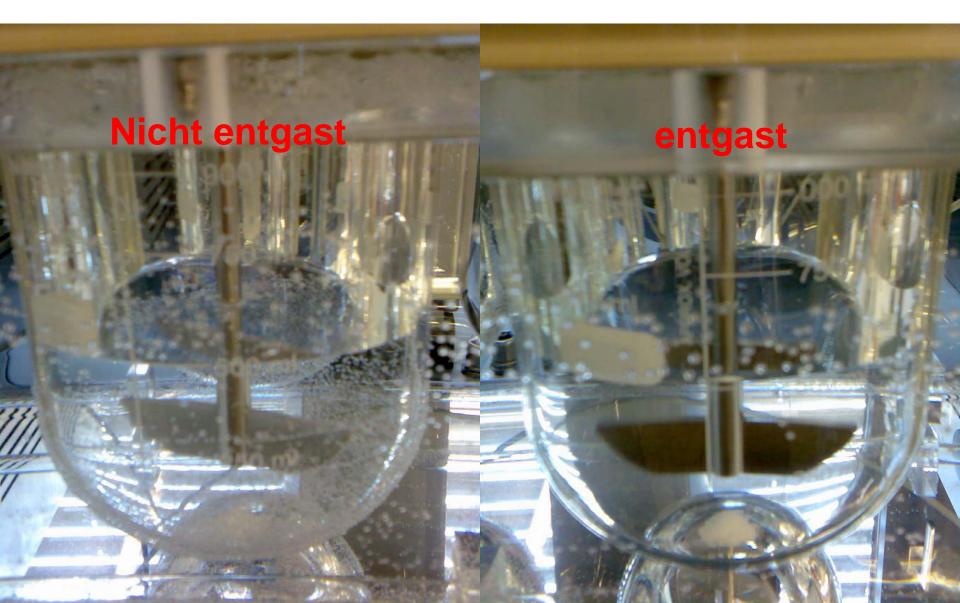
> Galla et al., Pharm. Res. 15: 698-705 (1998) Dressman et al., Pharm. Res. 15: 11-22 (1998)

Blattrührer- und Drehkörbchenmethode

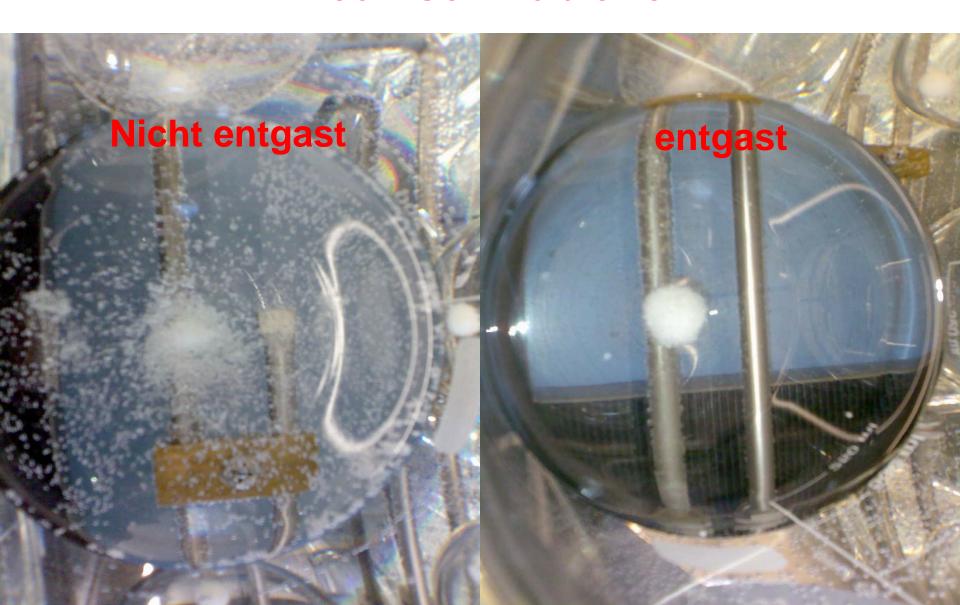
(Ph.Eur., USP)

Blattrührer- und Drehkörbchenmethode Gerätequalifizierung & Mechanische Kalibrierung

- Temperatur und Volumen der Prüfflüssigkeit & Entgasung
- Rotationsgeschwindigkeit
- Einwaagen und Art der Probeentnahme
- Abmessungen und Toleranzen der Komponenten der Apparatur (z.B. Gefäße)
- Position der Rührer (zentriert, Abstand zum Gefäßboden) und Axialschlag
- Vibrationen


Blattrührer- und Drehkörbchenmethode Leistungsbestätigung – Performance verification

Einsatz von Kalibrierstandards
 USP Dissolution Kalibratortabletten


- Disintegrating:
 Prednison Tabletten RS
- Non-disintegrating*:
 Salicylsäure Tabletten RS

^{*}Seit 1.12.2009 ist die Verwendung von Salicylsäure Tabletten RS nicht mehr vorgesehen

Einfluss der Entgasung des Mediums – Prednison Tabletten

Einfluss der Entgasung des Mediums – Prednison Tabletten

Einfluss der Entgasung des Mediums Freisetzung aus Prednison Tabletten

30 Minuten

Gefäß Nr.	Extinktion	Freisetzung [%]	
Entgast			
1	0,3439	43,83	
2	0,3738	47,64	
3	0,3625	46,20	
Nicht entgast			
1	0,6635	84,57	
2	0,5587	71,21	
3	0,5947	75,79	

Spezifikation: 30 – 57% in 30°

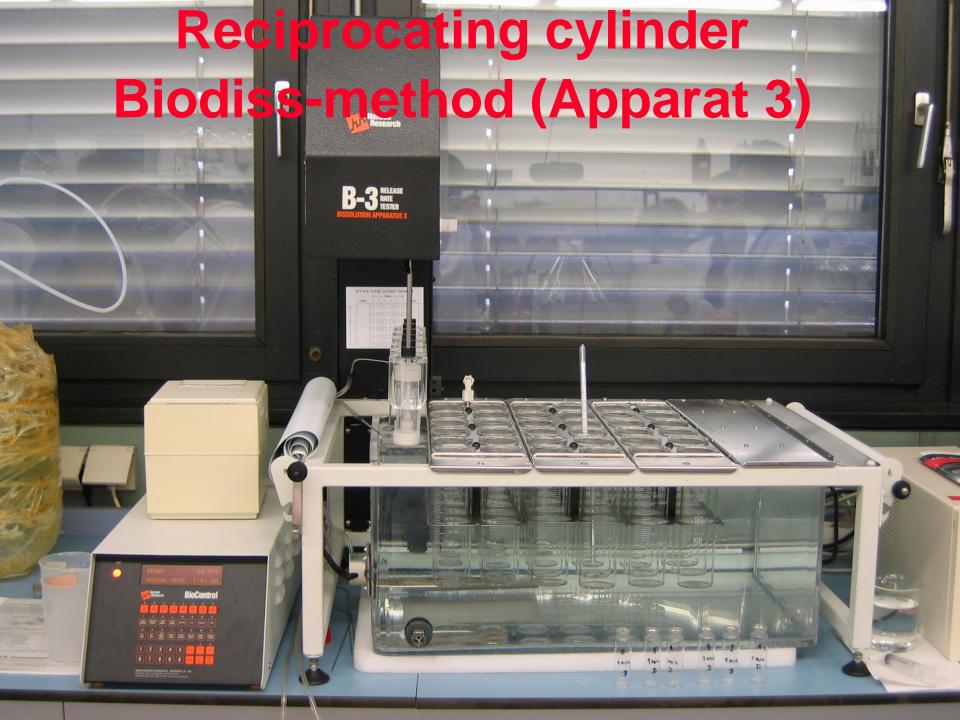
Einfluss der Entgasung des Mediums Freisetzung aus Salicylsäure Tabletten

30 Minuten

Gefäß Nr.	Extinktion	Freisetzung [%]	
Entgast			
1	0,1755	22,28	
2	0,1846	23,43	
3	0,1866	23,69	
Nicht entgast			
1	0,1766	22,42	
2	0,1418	17,99	
3	0,1815	23,04	

Spezifikation: 17 – 25% in 30°

Einfluss der Vibration – Freisetzung aus Prednison Tabletten

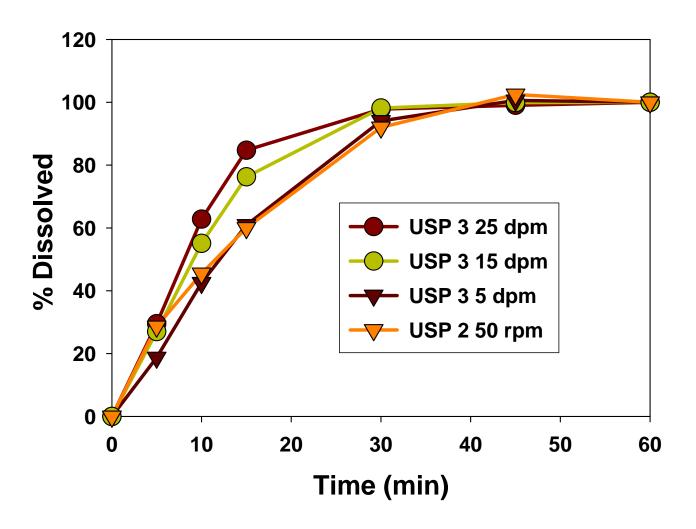

Vessel	No Vibration		With Vibration				
			PT DT 8	PTW S III C	PTW S III		
Machine	PTW S III C	PT DT 8	(0.5 →	$(0.5 \to 0.4 -$	C (0.5 –	PTW S III C	PTW S III C
Displacement	(0.32 µm)	(0.21 µm)	0.22µm)	0.5µm)	0.6 µm)	(0.8µm)	(1.1 µm)
1	40.11	40.80	48.51	56.90	56.67	59.25	63.33
2	41.95	44.83	42.30	61.15	56.32	66.38	62.41
3	43.45	43.33	45.98	62.07	55.17	55.69	61.03
4	46.90	45.16	42.41	61.38	61.84	60.75	66.09
5	43.68	46.44	45.40	53.22	62.87	62.64	62.99
6	45.98		44.60	55.98	66.09	65.69	61.03
Average	43.68	43.81	44.87	58.45	59.83	61.73	62.81

Erhöhung in % der Freisetzung im Vergleich zum Ergebnis ohne Vibration (43.68%)

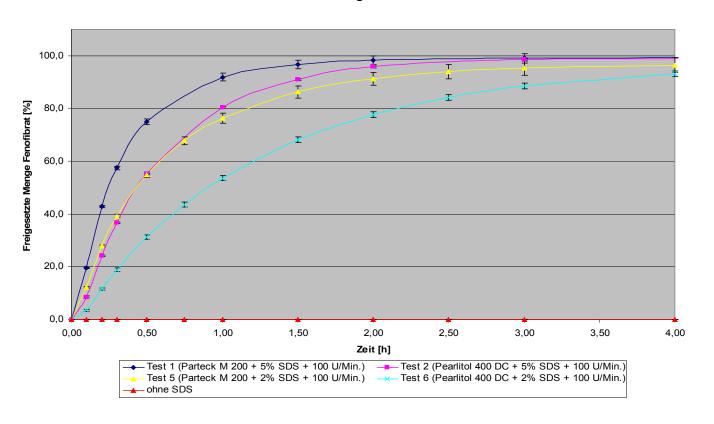
2.72% 33.82% 36.97% 41.34%

43.81%

Stärkere Vibration → Höhere Freisetzung!!


Komponenten der Durchflusszelle

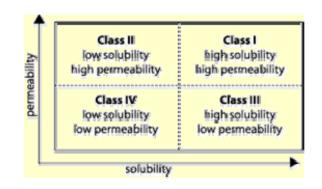
Komponenten der Durchflusszelle



Auflösungsprofile von Metoprolol IR Tabletten: Apparat 2 vs. 3

Einfluss des SDS Gehalts im Auflösungsmedium auf die Freisetzung von Fenofibrat aus Tabletten mit unveränderter Wirkstofffreisetzung

Medienvergleich - SDS-Gehalt

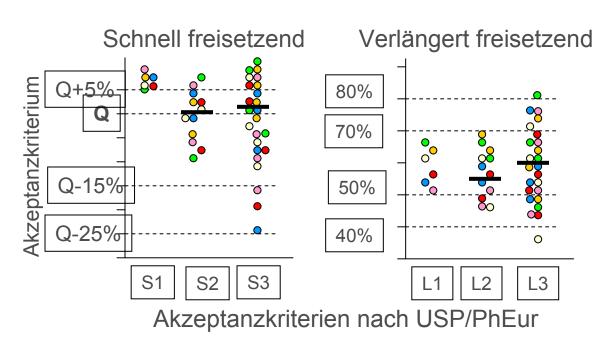


Blattrührer, 75 upm, 0,1N HCl, 37 °C

Auswertung der Wirkstofffreisetzung und Definition von Spezifikationen

- 1. Q als Prüfgröße: freigesetzte Menge AS in % der Dosis
- 2. Angabe von Prüfverfahren und Prüfbedingungen
- Definition von Grenzwerten: prozentualer Anteil der Dosis, der zu bestimmten Zeitpunkt(en) freigesetzt werden soll (min – max)
- 4. Definition von Akzeptanzkriterien: Anforderungen an Mittelwert, Einzelwerte, zulässige Abweichungen bei gegebener Anzahl Prüflinge

Spezifikationen



- Unverändert freisetzende AF:
 - BCS I & III: ≥ 75% der Dosis zu definiertem Zeitpunkt (z.B. nach 15, 30, 45 oder 60 min; n=6-24; CV<10%)
 - BCS II & IV: freigesetzte % nach 2 Zeitpunkten: 15, t < 60 min Bsp: USP Carbamazepin T.: 45-75% nach 15 min ≥ 75% nach 60 min
- Verzögert freisetzende AF:
 - in 0.1 N HCl ≤10% der Dosis nach 2 h
 - in pH 6.8: ≥ 75% der Dosis in 60 min
- Verlängert freisetzende AF:
 - Ganzes Freisetzungsprofil,
 - mind. 3 Zeitpunkte (1-2, 4-6, 7-12h)
 - Bsp (Tab.): USP Methylphenidat Retard-T

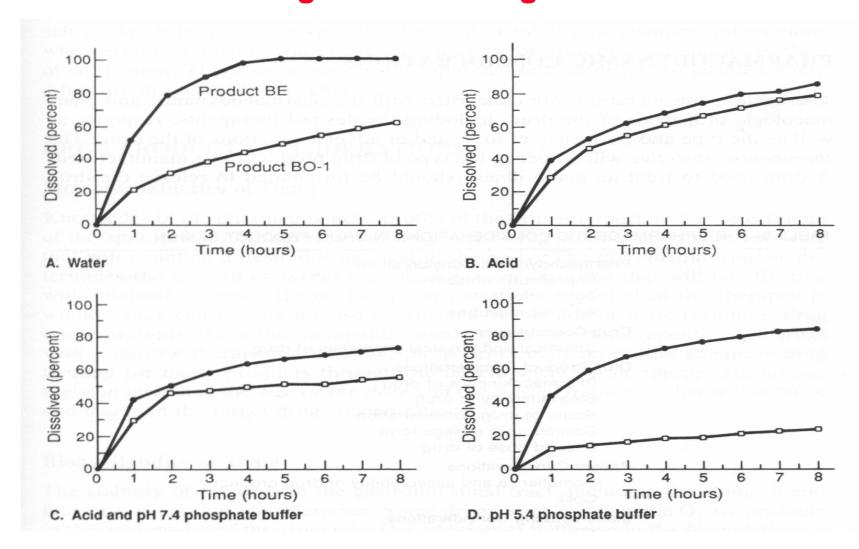
Zeitpunkt	Freigesetzter
(h)	Wirkstoff
` ,	(% Dosis)
1	25-45
2	40-56
3.5	55-80
5	70-90
7	> 80

Akzeptanzkriterien (AK)

- Neue AS-Formulierungen: Hersteller definiert AK basierend auf Daten klinischer Studien
- Generika: Vergleichbare Freisetzungsdaten zum Originalprodukt (Referenz Standard)

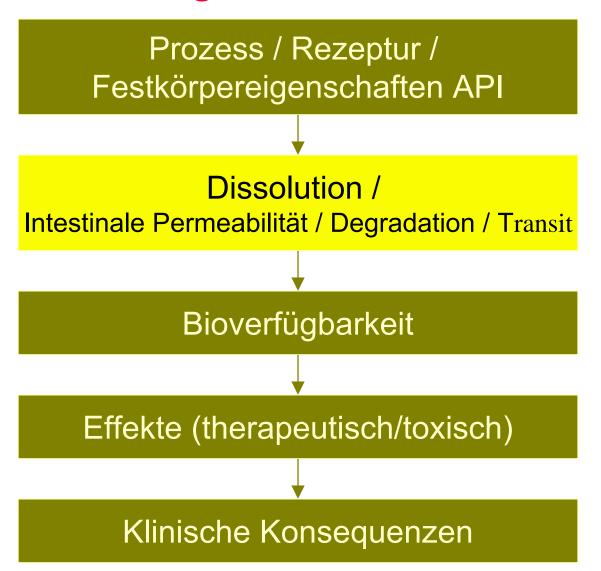
Akzeptanzkriterien

Stufen 1, 2, 3: 6, 12, 24 Tabletten

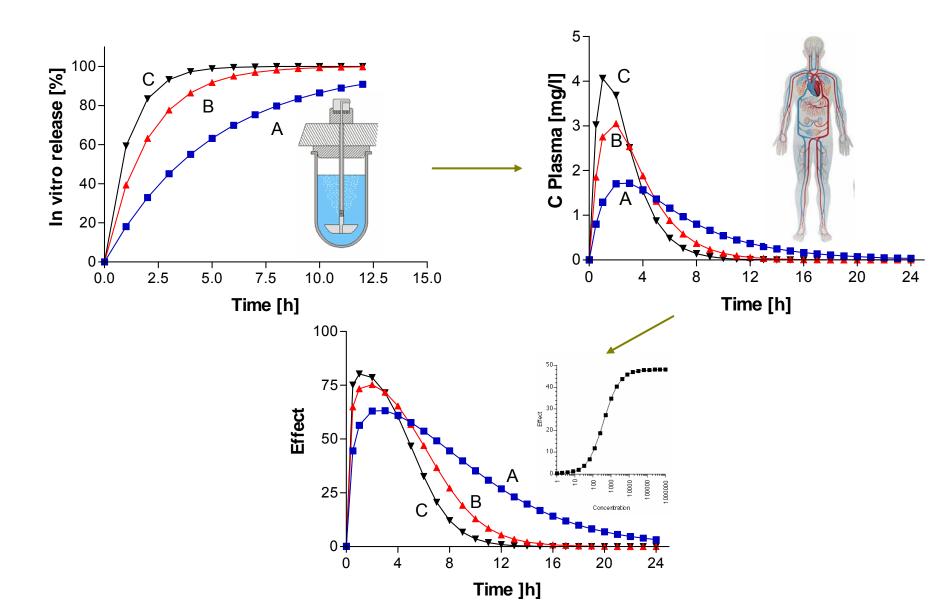

Q: minimal freigesetzte

Menge nach definiertem

Zeitpunkt


Spezifikationsgrenzen von 50-70% freigegebener AS nach definiertem Zeitpunkt

Einfluß des pH-Wertes der Prüfflüssigkeit auf die Wirkstofffreisetzung von Chinidingluconate aus Tabletten



Produkt BE ist vollständig bioverfügbar, BO-1 nicht

Verknüpfung Pharmazeutisch Technologischer Eigenschaften mit Klinischer Relevanz – Bedeutung der Wirkstofffreisetzung

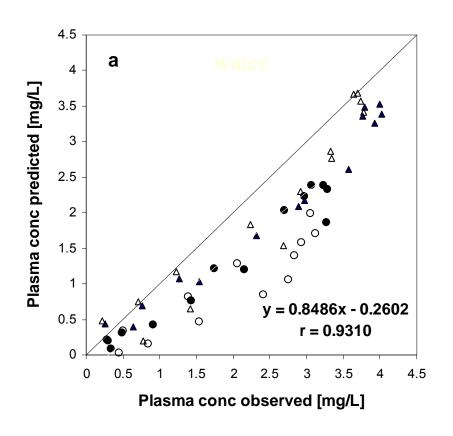
Konzept der In-Vitro/In-Vivo Korrelation

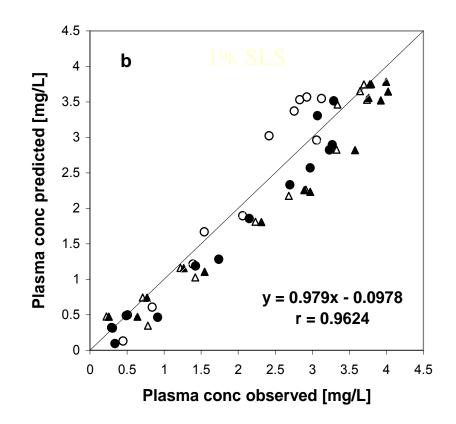
Ebenen einer IVIVC

Ebene A:

Punkt-zu-Punkt Beziehung zwischen einer in-vitro Wirkstofffreisetzung und einer in-vivo Absorption

Ebene B:


Korrelation zwischen mittlerer Freisetzungszeit (MDT) und mittlerer Absorptionszeit (MAT)


Ebene C:

Korrelation zwischen freigesetzter Menge zu einem bestimmten Zeitpunkt und einem pharmako-kinetischen Parameter, z.B. AUC, C_{max} , T_{max}

Multiple Level C

IVIVC Plot für Carbamazepin Tabletten

▲ Generic IR△ Reference IR

• Generic CR

Reference CR

Fazit

- Wirkstofffreisetzung Wichtige technologische Methode zur Qualitätsbeurteilung von Darreichungsformen
- Abhängigkeit von der Methodik Notwendigkeit der Validierung & Standardisierung
- Potenzial hinsichtlich in-vivo Relevanz z.B.
 Vorhersage von Bioäquivalenz noch nicht ausgeschöpft
- Methoden für andere Darreichungsformen in der Vorbereitung