This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

An Open-Source Path Computation Element (PCE)
Emulator: Design, Implementation and Performance

Mohit Chamania, Marek Drogon and Admela Jukan
Technische Universitit Carolo-Wilhelmina zu Braunschweig
Email: {chamania, drogon, jukan}@ida.ing.tu-bs.de

Abstract—In this paper, we present the first open-source Path
Computation Element (PCE) emulator along with its key design
and implementation features. The PCE is a network control and
management entity which can be utilized to perform optimal
path computations with multiple constraints in carrier-grade
transport networks. The presented architecture incorporates all
elements of the standardized PCE framework and is scalable
in the number of requests and size of topologies served as well
as path computation algorithm complexity. Given the diversity
in current control and management practices of carrier-grade
transport networks, we also identify key features that are
necessary for innovation within the PCE framework, including
flexible topology description and update mechanisms, extensible
protocol and state machine definitions and fully programmable
path computation. We incorporate all these features in our
design and implementation. This works bridges an important
gap between network engineering, software system design and
algorithmic studies and shows that deplying a PCE system as
such is not only feasible but also well performing in a range of
network scenarios from IP/MPLS to WDM networks.

I. INTRODUCTION

The emergence of dynamic connection-oriented services has
led to need for increased intelligence to support on-demand
service provisioning. With an increased number of location
served, edge devices accessed and service attributes, new
network architectures are enabling edge systems to directly
control their network resources through specialized signal-
ing. These new capabilities can be accessed through policy-
based processes by independent organizations, individuals
and even applications. Among many third-party control and
management subsystems which have been proposed, the Path
Computation Element (PCE) framework and its latest exten-
sions stands out as the de-facto standard for constrained path
computation [1]. The PCE is a third-party network control and
management entity that uses its Traffic Engineering Database
(TED) to compute optimal paths with QoS constraints. The
PCE serves path computation requests sent by a client using
the PCE protocol (PCEP) [2] and returns information about the
computed path which is then used to provision connections.
The ability to perform constrained path computation makes the
PCE especially attractive to network operators who typically
employ multiple technologies in a layered fashion, such as
the IP/MPLS network over a carrier Ethernet network which
is deployed over a WDM network.

In theory, the PCE architecture provides network operators
a simple and scalable solution to perform path computation
across various network technologies and layers. However,

commercial PCE implementations are vendor-specific and
tailor made for deployment in select network technologies,
making it difficult to extend the same PCE implementation
across various networking technologies. For example, the PCE
implementations inside WDM transport equipments such as
[3].[4] are often designed to address the specific path compu-
tation needs in the WDM layer such as physical impairments
and are thus not adequate for path computation in other
networks. Vendor-specific PCEs also differ significantly in
the way topology is stored and updated which also greatly
limits the ability to integrate PCE functionality from dif-
ferent layers inside a single PCE. As an example, whilst
the Telemanagement Forum (TMF) proposes the use of the
Multi-Technology Network Management (MTNM) topology
specifications [5] inside carrier-grade transport network NMSs
(e.g. WDM, carrier Ethernet), most IP NMSs use custom
XML-based topology models to represent IP network topol-
ogy, which are significantly different implementations and
difficult to integrate. Most importantly, however, proprietary
PCE implementations limit the network architect’s capability
to innovate with the PCE itself, especially with core features
such as the PCE protocol and state machine, thus further
limiting the operators capability to experiment as networks
evolve to encompass a growing number of users and service
demands.

To address this challenge, we designed and implemented the
first open-source PCE emulator which is targeted to facilitate
innovation in path computations [6]. An open-source PCE
implementation is an important step towards openness and
programmability of future networks as it allows software
developers, operators and algorithm designers to flexibly adapt
the implementation of various PCE procedures to different
network technologies. At the same time, by implementing
the session management, PCEP protocol and path compu-
tation (including topology update mechanisms) as separate
functions, the proposed architecture is highly modular and
ensures minimal effort for integration. Our implementation
features the complete PCEP protocol stack implementation,
asynchronous network I/O features for scalable concurrent
session support and extensible state machines, which provide
the basic protocol state machines, and can be extended with
ease to integrate new operations. We show that the integration
and modification of path computation and topology updates
are not only feasible, but they largely reduce duplication of
programming effort, when introducing new protocol or session

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

management features, such as security.

We present a performance analysis of the PCE implemen-
tation and show that it is scalable in terms of topology size,
path computation complexity and connection request rate. We
also analyze the effect on performance due to other often
neglected design parameters such as number of concurrent
path computations and topology update frequency, which can
be used as guideline by implementers to adapt the PCE for
optimal performance in specific network scenarios. Finally,
we present a WDM case study to demonstrate the ease of
integration of specialized computation algorithms into our
PCE implementation to support (specialized) lighpath compu-
tations. This works bridges an important gap between network
engineering, software system design and algorithmic studies
and shows that deploying a PCE system is feasible and widely
applicable in carrier-grade networks.

The rest of the paper is organized as follows: Section II
presents a background of the PCE framework and highlights
the need for an open source PCE. The system architecture is
presented in Section III, while Section IV provides insights
into the implementation details. Section V presents the per-
formance study, and Section VI concludes the paper.

II. BACKGROUND

The basic PCE architecture is shown in Fig. 1. In a nutshell,
the PCE is a server which can perform constrained path
computation using topology information stored in its Traffic
Engineering Database (TED). The TED contains information
of the network topology including QoS parameters such as
available capacity, link delay, etc. and is typically updated
using the network control or management planes. The use of
a TED allows the PCE to compute optimal constrained paths
which is especially useful in provisioning services in transport
networks, such as WDM, which have strict QoS requirements.

In this architecture, network nodes are equipped with a
Path Computation Client (PCC) which can communicate with
the PCE using the PCE Protocol [2]. Using this protocol,
the source node RI requests the PCE to compute a path to
R6 under necessary service constraints. The PCE, using the
TED, computes the path and sends it to the PCC at RI. The
computed path is stored inside an Extended Route Object
(ERO) which can be then used at R/ to initiate provisioning
in a control plane (e.g. GMPLS [7]) by including the ERO
into the Resource Reservation Protocol (RSVP) Path message
[8]. Further extensions to the PCE allow a PCE to be a client
to another PCE in order to extend the reach of the optimal
path computation to the multi-layer [9] and multi-domain [10]
scenarios. For example, in an inter-domain scenario, the PCE
in an upstream domain acts as a client to a downstream domain
PCE, requesting an optimal path to the destination and this
process is repeated along a domain chain to compute the inter-
domain path [10].

The PCE architecture can also be used in fully managed
networks where operations such as connection provisioning
are governed by centralized Network Management Systems
(NMS). In this scenario, the NMS can request path information

from the PCE before beginning provisioning of the connection
(either via the control plane or via direct configuration of
network elements). This is advantageous as typical NMSs are
large proprietary software systems and simple changes such as
inclusion of new path computation algorithms in the NMS can
be very complex and expensive when compared to inclusion
of the same in the PCE.

An important issue in deployment of the PCE are the mech-
anisms for management and update of the traffic engineering
database, which is critical to the PCE for facilitating optimal
computation. While TED update mechanisms are not part of
the PCE specifications themselves, the standards propose the
use of routing updates in the control plane to maintain and
update the TED, while custom implementations such as [3],
[4] also use the topology information stored in the NMS to
update the TED. TED update frequency is also crucial as a
TED update can interrupt active path computation operations
inside the PCE leading to reduced performance. As a result,
implementations must have the capability to integrate and
support different TED update mechanisms to be ubiquitous
and future-proof.

A. PCE Protocol (PCEP)

The PCE protocol (PCEP) is an integral part of the PCE
which enables communication between two PCE peers. The
protocol specifications in [2] define seven unique message
types: The Open and Close messages are used to initialize
and close the connection, the path computation requests are
sent in a Path Computation Request message to which the
response is sent in the Path Computation Response Message
and the Keepalive, Notification and Error are used in order to
convey additional information to remote peers.

A typical PCEP message format consists of a standard
header and body and information inside the message body
is encapsulated in the form of PCEP objects which use Type-
Length-Value (TLV) type representations. Each message con-
tains some mandatory objects and some optional objects based
on the type of information exchange required: for example, a
Keepalive message is used only to check if a remote peer is
still active and does not have any mandatory objects while
a complex message such as the Path Computation Request
message must contain an RequestParameters object containing
the Request ID and an EndPoints object which defines the end-
points for a path computation request and can additionally
contain objects such as the Bandwidth and Metric objects
which provide constraints on the path computation request.

Extensions to the PCE architecture almost always require
updates to the basic PCE protocol specification defined in [2].
While the initial set of protocols are targeted to facilitate basic
path computation, the PCE working group [11] is also focusing
on extending the PCE architecture and protocol specifications
to address administrative issues such as policy integration
[12] and monitoring [13], technical issues such as point-to-
multipoint path computation [14], [15], synchronized depen-
dent path computation [16] as well as extensions to support

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

highly specialized networks such as Wavelength Switched
Optical Networks (WSON) [17].

The PCEP specifications also propose mechanisms such as
[18], [19] to secure the communication channel between PCE
peers and other proposals such as [20] have also proposed
security extensions to the PCEP to exchange authorization
tokens for facilitating authentication and authorization between
inter-domain PCEs to secure service provisioning.

Given the large body of PCE protocol extensions that
are currently under standardization, it is imperative for any
PCE implementation to support an extensible PCE protocol
implementation to provide researchers and implementers a
platform to design and evaluate these extensions in an em-
ulated environment.

B. Importance of an Open-source Approach

Most current implementations of the PCE framework are
vendor-dependent, making integration between PCEs in a
multi-vendor environment difficult. While some implemen-
tations such as the [21] are independent of the vendor, the
lack of openness limits the ability of users/operators to extend
the PCE in order to implement new functionalities with ease.
In a different approach, the path computation mechanism in
the OSCARS-IDC [22] provide a web-services Application
Programmer Interface (API) which can be used by developers
to incorporate additional path computation algorithms into
the PCE. However, the aforementioned mechanism does not
conform with the PCE standards and can only be used in a
network supporting the OSCARS framework.

Given the extensive research currently being carried out to
extend the PCE architecture and the number of choices avail-
able for implementing features of path computation, security
and topology update among others, it is necessary to have an
open platform which supports easy integration of new fea-
tures into the standard framework, providing researchers and
implementers a platform to test their proposals in an emulated
environment. Based on our work presented in [6], here we give
all the details regarding the architecture, implementation and
tested performance of this first open-source implementation
of a PCE framework, which, as we show, can address the
aforementioned drawbacks.

III. ARCHITECTURE

In this section, we describe the architecture of our PCE
emulator, designed to conform to the requirements of the
PCE operation and the protocol as specified in [1] and [2],
respectively. The presented architecture was created on the
following guiding principles:

« Flexibility through Modularity: In our implementation,
we consider the need for updating or even replacing
parts of the PCE implementation without affecting the
other components of the PCE. To facilitate the same,
critical functions of the PCE are implemented as separate
modules which can be modified independently.

« Extensibility through Loosely Coupled Modules and
Flexible Message Interface: Our design considers

extensibility as a major objective, which in our view
incorporates integration of new possible modules and
protocols extensions into the architecture with ease. To
this end, we ensure that the inter-modular coupling in the
architecture is not tightly constrained. By doing so, new
modules (e.g., for policy management and security) can
easily be integrated into the proposed architecture without
affecting communication between the other modules.

o Adaptability through Module-internal Processing Op-
timizations: The performance requirements of different
modules inside the PCE depend significantly on the
deployment scenario; for instance, in optical networks,
we expect the PCE to serve a relatively small number of
computation requests which require execution of fairly
complex path computation algorithms due to physical
impairments. On the other hand, in an MPLS network, a
PCE would serve a comparably larger number of requests
with relatively lower path computation complexity. Our
architecture therefore facilitates optimization of each in-
dividual module in the architecture to better suit specific
characteristics of the network in use.

A. Overview

In designing the architecture, we identified components
which are likely to be specialized in different commercial
PCE implementations and have designed our PCE as to allow
flexible modification of these functions. Each of the functions
identified is designed as a module with fixed interfaces based
on the encapsulation. At the same time, we also ensured that
the introduction of modules incorporates minimal overheads
into the implementation to ensure scalability of the PCE
implementation. The proposed module encapsulation and the
PCE architecture with the interaction between the different
modules in the client and server are shown in Figs. 2 and
3 respectively. The introduction of distinct modules with
fixed interfaces allows developers to individually change or
optimize the operation of modules without disrupting the
overall operation of the PCE. As seen in Fig. 3, both the
server and the client have three primary operation modules,
with the module management function responsible for ini-
tializing/stopping/replacing a specific module during run-time.
As the names suggest, the network module is responsible for
facilitating communication between the PCE peers over the
TCP/IP protocol and the client module provides the user an
interface to communicate with the PCE server.

The Session Management module is responsible for man-
agement of all PCEP sessions in a PCE peer. While all
other modules maintain the session ID for active sessions, the
session management module implements the state machine for
the PCE protocol which orchestrates internal operation inside
a peer as well as message exchange with other peers.

Finally, the computation module is responsible for facili-
tating path computation. Note here that we have not made a
separate TED module as it is assumed to be integrated inside
the computation module. In the computation module, functions
related to path computation such as choice of computation

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

algorithms, mechanisms for prioritizing different types of
requests and handling topology updates in the TED can be
adjusted or modified without any change in the rest of the
implementation. In order to support extensibility, the archi-
tecture does not restrict the number of modules used inside
the architecture nor does it restrict duplication of modules.
However, the inter-module messaging interfaces should be
adapted to the specific implementation in these scenarios.

As shown in Fig. 2, each module implements standard
interfaces including the internal messaging interfaces and
inter-module communication interfaces, which is presented in
the next subsection. We then go on to describe the working
of individual modules as well as the PCE protocol mapping
in our architecture.

1) Module Interfaces: Each module implements six in-
terfaces to facilitate communication between modules and
support basic management functions. Messages exchanged
between the modules are identified by a unique session ID
which is used to correlate a message to a particular session.
In order to support flexibility inside the PCE architecture, the
modules as well as the communication system between them
are loosely coupled. This not only facilitates integration of
intermediate modules in the architecture to incorporate specific
functionality but also allows the implementer to change the
mechanism used for communication between the modules.

2) Operation State Management: Each module in the PCE
may be running multiple process threads and to support grace-
ful start, stop, or restart, the module encapsulation provides
two interfaces for initializing (start) and terminating (stop) all
processes inside a module. Implementation of these functionns
inside each module supports graceful initiation and termination
of operations inside each module.

3) Session State Management: The module encapsulation
provides two interfaces for individual session management,
namely, register and close. These interfaces are responsible
for managing the initiation and the termination of individual
PCEP sessions. Note that the initial trigger for initiation or
termination of a session can come from any module, and
to avoid inconsistency, the implementer must ensure that a
session is registered in all modules before session specific
inter-module messaging is initiated.

4) Inter-Module Message Exchange: The send and receive
interfaces in the module encapsulation are used to facilitate
sessions specific information exchange between modules. A
flexible message object, identified by a unique session ID, is
used for inter-module communication. Note that the message
definition used here does not directly use the PCEP mes-
sages and instead PCEP messages are encapsulated inside the
message definition as individual objects. Therefore, a change
in the PCEP message library does not necessarily signify
large changes in the inter-module communication itself. The
message interface is flexible so as to facilitate exchange of
PCEP messages as well as control data for individual sessions.
For example, in a client, the message interface may be used
to inform the client module of the initiation of the SESSION
UP state, after which the client module can send a request for

path computation to the server. The send/receive functions
also employ identifiers to remote modules used to define
the destination/source of the message respectively. The use
of this identifier enables use of a single interface pair for
communication with different modules (example session to
network and session to computation), and provides a single
point for policy integration into inter-module communication.
The feature also supports implementation of different mecha-
nisms for communication with different modules. A possible
exploitation of this design feature is shown in Fig. 4, where we
attempt to distribute path computation across multiple physical
computation nodes. Each node implements a computation
module independently and exposes the module interfaces over
web-services. The PCE session management module also
implements web-service calls instead of direct function calls
to communicate with the different computation modules, while
direct function calls are used for communication with the
network module which is at the same physical node. The web-
services can then be inter-connected over an Enterprise Service
Bus which routes the request from the session management
to one of the computation nodes and vice versa in order
to facilitate load balancing across multiple physical nodes.
We also demonstrate an example of this exploitation in our
results where we modify the module interfaces in the session
management module to support two path computation modules
on the same node simultaneously.

B. Object-Oriented PCE Protocol Mapping

The PCE protocol is a critical component in the PCE
architecture as it is likely to be frequently updated to provide
additional functionality in the PCE architecture or address
protocol extensions. In our architecture, the TLV like objects
of the PCE protocol are mapped to an object-oriented class
hierarchy for internal usage. Therefore, PCEP messages are
represented as objects inside the different modules making
it easier to define internal logic based on them. The use
of an object-oriented hierarchy makes inter-module PCEP
message exchange easier when incorporating changes to the
protocol, such as inclusion of new PCEP messages or objects.
The use of the object-oriented hierarchy also means that all
PCEP messages, regardless of message and object types are
represented as a PCEPMessage object, thus ensuring that
simple changes in the implementation do not lead to changes
in all modules.

In the architecture, the PCE protocol is mapped into a
simple object-oriented class hierarchy as shown in Fig. 5. Each
PCEP message is represented as a single object, which consists
of a Header and a MessageFrame. While the header remains
unchanged for different message type, a unique PCEP message
type is implemented as an independent class which implements
the MessageFrame interface. The interface contains functions
to add PCEP objects and provides an interface to check the
validity of the message where implementers can incorporate
conditions to check for necessary objects. For example, for a
regular PCEP Path Computation Request, we incorporate
checks to ensure that a RequestParameters object and an

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

EndPoints object are included in the MessageFrame. The
PCEP objects themselves contain a similar structure which
includes a Header object and the Object body.

Finally, all the classes in this hierarchy implement two
methods: serialize and deserialize. These methods help inter-
change a PCEP message between an object instance (used for
communication between modules) and a bit-string byte]] (used
for communication with remote PCE peers). The hierarchy
of the PCE protocol also means that the inclusion of a new
object does not affect the serialize and deserialize functions in
PCEPMessage if these functions are implemented correctly
in the new PCEPODbject.

C. Network Module

The network module is responsible for managing commu-
nication with remote peers for all sessions inside the PCE.
Typically, the network module obtains a PCEP message object
to be sent to the remote peer and uses the serialize interface
to convert it into a bit-string. This bit-string is then sent over
the network to the remote peer, which uses the deserialize
interface to convert it back into a PCEP message object.

The network module also supports basic functions of ad-
mission control and can request or deny new connections
based on policy and current operational state of the PCE. For
example, constraints in the protocol which dictate that only
one active PCEP session per remote IP address be allowed can
be implemented in the network module. Similarly, in cases
of extreme load, other modules, e.g., computation module,
may instruct the network module to stop accepting more
connections so that other internal modules are not overloaded.

In order to design a scalable network module, we take
into consideration the rate of session arrivals, data exchanged
during the session and average session durations. Together, the
choice of implementation as well as the aforementioned char-
acteristics determine the performance of the network module.

D. Session Management Module

Typically used between the network and the client or
path computation modules, the session management module
implements the primary logic for managing a PCEP session
inside the PCE. The session management module implements
the state machine for the initial PCEP message exchange [2]
(shown in Fig. 6) as well as logic for session and timeout
management. When a session is not active, the state machine
is in idle state and goes into the TCPPending state when a TCP
connection request is made. After session establishment, the
state machine transition sends an Open message to the remote
peer (client/server) and goes into the OpenWait state, where
it waits for an Open message from the remote peer. Upon
receiving the Open message, a peer sends a Keepalive message
to the remote peer and goes into the KeepWait state, where it
waits for the Keepalive message from the remote peer. After
receiving the Keepalive message, the state machine goes into
the Session Up state, after which signaling for exchanging path
computation requests/responses can be initiated. Note that the
initial message exchange and the corresponding state machine

implementation remains static in a given system and does not
change with the type of path computation request.

The state machine used in the session module dictates the
operation of a specific PCEP session. In our architecture the
state machine uses nested state machines with the initial state
machine handling the protocol handshake, shown in Fig. 6,
with the nested state machine responsible for maintaining
state for extended operations such as path computation. For
example, in order to implement the Backward Recursive Path
Computation (BRPC) extension in a PCE [10], the inner state
machine handles state changes for implementing the BRPC
protocol, while the basic state machine handles the initial
PCEP message exchange. The use of nested state machines
allows the architect to easily integrate new protocol and state
machine extensions into the session management module and
manage multiple state machines with duplicating code for
facilitating session initialization.

E. Computation Module

The computation module is responsible for processing path
computation requests coming to the PCE server. The path com-
putation requests inside the PCEP protocol are identified as
point-to-point path requests along with a set of constraints. The
computation module contains implementations of algorithms
for supporting path computation and mechanisms to execute
policy decisions to be imposed on path computation requests.

In our architecture, we do not restrict the choice of TED
used by the computation module for path computation and
the developer can integrate the computation algorithms with a
TED of choice. As a consequence, we also do not inherently
support any specific mechanism to handle topology updates
during path computation.

The performance of the computation module is highly crit-
ical to the operation of the PCE. In specialized networks such
as WDM, computation algorithms can be complex requiring
large processing resources. In our architecture, developers can
address this issue by using more than one computation mod-
ules to balance the implementation complexity. In addition,
it is not only possible to optimize the processing resources
used inside the computation modules but also across all PCE
modules, by reducing the processing resources available for
use by the network and the session management modules.
This will be discussed in more details in the performance
results sections, where we present a PCE architecture with
two computation modules of use in WDM networks.

IV. IMPLEMENTATION DETAILS AND CONSIDERATIONS

In this section, we present the implementation details of
the PCE emulator and its modules. The implementation was
designed to support a large number of concurrent sessions,
which dictated the design choices for the network and the
session management modules. For implementation, we used
Java to ensure operating system independence and the imple-
mentation is compatible with Java compilers (v1.6 or higher).

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

A. Module Encapsulation and Inter-module Communication

Each module implements an interface specifying the module
encapsulation, as shown in Fig. 2. Inter-module communica-
tion was facilitated as function calls with the send () function
in the source module passing arguments to the receive ()
function in the remote module. In order to isolate processing
tasks between different modules, each module implements a
queue inside the receive () function and worker threads inside
the module are used to facilitate intra-module processing.

A module management function, shown in Fig. 3, was
responsible for starting and stopping all modules in the
PCC/PCE. The module management function also provided
references to all modules in an implementation, thereby en-
suring that individual modules were not required to main-
tain static references and that modules could be initial-
ized/terminated during the operation of the PCE if so required.

In order to synchronize session state in the different mod-
ules, the register () function used two additional parameters
apart from the sessionID parameter. A boolean parameter
connectionlnitialized was used to indicate if the local PCE
peer was responsible for initializing the connection (indicating
that it should wait for TCP connect to finish) while the boolean
connectionEstablished was used to indicate that a connection
setup was successful. Using these parameters, we ensured that
the session was registered in the different modules before
initializing the operations inside the session state machine or
the read/write operations in the network module.

B. PCE Protocol

The PCE protocol package developed is responsible for
converting incoming PCEP messages into Java objects, and
vice versa. The protocol package uses an object-oriented in-
heritance hierarchy, as illustrated in Fig. 5. All PCEP messages
are instantiated as a PCEPMessage object, which contains
a MessageHeader and a an PCEPMessageFrame interface
implementation. The content of the different message types in
the PCEP specification are defined as an implementation of
the PCEPMessageFrame interface and the implementation
contains a list of objects implementing the PCEPODbject
interface. The PCEPObject itself contains an ObjectHeader
and body content, which might include additional objects. The
PCEPMessageFrame implements an interface which checks
if the necessary objects are available inside the message body.

We wuse the factory method pattern for generating
PCEPMessage objects from the incoming bit-strings and from
inside the different modules. The factory provides a single
decision unit to incorporate new PCEP messages and logic
to determine the structuring and parsing of PCEP messages.
A single factory method also helps eliminate complexity of
creating PCEPMessage objects from the rest of the modules.

C. Network Module

The network module was designed to support asynchronous
I/O for both the PCE client and server implementations.
The module supports initiation of connections and accepts

incoming connection requests from remote peers. The high
level architecture of its implementation is shown in Fig. 7.

The network module is implemented using the Java Network
I/O (NIO) library [23] which supports asynchronous network
I/O with support for simultaneous read/write operations. In the
Java NIO framework, all active sessions are registered with a
selector process and the selector waits for events on these
sessions. In our architecture, the selector waits for incoming
connection requests and incoming data (read) requests.

A connection socket is registered with a) selector for
reading incoming data, and b) Map structure which stores the
association between a Session ID and the socket inside the
network module. The data is received as a bit-string (byte]])
over the network and the PCEP Protocol package is used to
generate a PCEPMessage object which is then sent up to the
session management module. We also implement functions to
identify if an incoming bit-string is too short or too long for
a PCEP message. This is required as in asynchronous I/O, as
it is possible that a read operation on the socket may recover
an incomplete message or multiple concatenated messages.

Unlike the read operations, the write operations directly
write onto a Java socket. As mentioned before, the receive
() interface for the network module implements a queue and
a worker thread reads elements in this queue. The worker
converts the incoming PCEPMessage object into a bit-string,
identifies the socket associated with a session ID using the
Map structure and writes the bit-string onto this socket to send
the message to the remote peer.

In the current implementation, we use a single selector
thread with one worker thread to perform actions on the
selector while one worker thread is used to send messages
coming from the session management module over the net-
work. The performance can be improved by implementing
multiple workers for processing but care must be taken to
ensure that a) multiple threads do not perform a simultaneous
read (or write) operation on a session, and b) that the ordering
of messages (incoming or outgoing) is preserved.

D. Session Management Module

As mentioned before, the session management module is re-
sponsible for managing the state machines for all connections
inside the PCE. In our implementation, shown in Fig. 8, we
observe small processing time and frequency required for each
state transition during a session and therefore implement the
state machine as an object instead of an active process. The
StateMachine objects are stored in a Map structure against
their session ID and are initialized or removed by the register
and close interfaces, respectively. Transitions in the state
machine are triggered either by a worker thread processing
incoming messages, or by a timeout. The Session Management
module uses a fixed number of worker threads and a consistent
many-to-one mapping described in the previous section to
assign messages to a worker which ensures that messages to
a single state machine are always processed in sequence.

The incoming message information contains the session ID,
the PCEP message and the identification of the remote module

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

sending the message. State machine transitions triggered by
this message may lead to multiple exchanges which other
modules (or remote peers) in the PCE. Timeouts inside the
state machine are implemented as TimerTasks on a single
Timer process. Regular transitions in the state machine are
responsible for resetting the existing TimerTasks, while in
case of a timeout, the timer process can initiate specific state
machine transitions to deal with timeout events.

The StateMachine object can also be easily extended to
support new state machine functions. A new state machine
can be implemented with the same interface for performing
new functions only and pass messages to these state machines
from inside the original state machine. This mechanism not
only allows the developer to easily extend the state but also
eliminates the need for code duplication to replicate initial
PCEP handshaking.

E. Computation Module

The computation module is responsible for serving path
computation requests in the PCE. In our implementation,
shown in Fig. 9, we use a variable size worker thread-pool to
process path computation requests. All incoming requests are
added to a single receive queue and the worker threads select
requests from the head of this queue for processing. However,
this mechanism can be easily extended to implement priority
queuing for serving high-priority requests.

A critical feature in the computation module is the traffic
engineering database integration. In order to optimize for
time, we implement local topological representation inside
the computation module which reduces the need for polling
topological information while computing paths. Such represen-
tation also makes it easier to implement new path computation
algorithms as the topology format and available interfaces
remain the same. The implementation of a local representation
however poses the issue of synchronization with the TED.
To address this, a push-based mechanism was implemented
for the external TED to send topology updates to the com-
putation module. In the implementation, each worker thread
maintains an individual copy the local topology representation
to reduce deadlock overheads. An interrupt based mechanism
is included to update the topology stored inside each thread
when an external entity sends the new topology information.

The push mechanism allows the TED to send topology up-
dates to the PCE when changes are made inside the topology.
Policy rules can be used to dictate the maximum frequency
and the threshold (of changes in network topology) at which
an update should be sent to the computation module. It should
be indicated here that the aforementioned design choices for
TED integration are specific to our implementation and can
be changed easily in other implementations without requiring
changes to the rest of the module implementations.

V. PERFORMANCE EVALUATION

In this section, we present a performance evaluation study
which demonstrates the scalability of the open-source im-
plementation and also presents examples to demonstrate the

ease of extensibility of our implementation. We utilize a
ROCKS cluster [24] including the Sun-Grid engine with the
PCE server running on the head-node and multiple clients
running on five compute nodes to test the performance of our
implementation. Each node (head, compute) in the cluster is
a DELL OptiPlex760 PC (Intel®Core™2 Quad CPU Q950
(2.83GHz), 2GB Dual-Channel-DDR2-SDRAM).

In a carrier network, typical quantitative PCE quality of
service parameters critical to the network designer are: 2)
Maximum load (req/sec) and 2) Average session duration,
while features such as extensibility and flexibility as a more
qualitative measure. The Maximum load measure is critical as
it helps designers evaluate the reaction of the PCE to different
extreme use scenarios such as a large scale network failure
or even a security attack where the PCE can temporarily
receive a large number of computation requests. The Average
Session Duration is also critical as it determines the location
of the PCE, especially if it is used for critical applications
such as path computation for dynamic restoration in transport
networks. Qualitative features of the PCE can provide cost
and resource savings, especially when deployed in specialized
networks and in our evaluation, we present a two step per-
formance analysis which presents both quantitative as well as
qualitative advantages of our PCE architecture.

In the first part of testing, we assume the network to be
a [P/MPLS network and evaluate the performance of the
PCE when varying four important network design parameters,
namely: path computation request rates, topology sizes, path
computation algorithms used and the effect of TED update
frequency. After that, we demonstrate an example deployment
scenario in a WDM network where the extensible protocol and
TED description and update mechanisms of our implementa-
tion are exploited.

A. Scalability Analysis

1) Path Computation Request Rate: Here, our goal is to test
the scalability of the PCE in terms of rate of path computation
request served. In this test, the PCE uses a simple shortest-path
algorithm for a typical best-effort MPLS connection request
in the Atlanta network topology [25] with 15 nodes and 22
links.

As it was difficult to emulate a large number of actual
nodes with different IP addresses, we modified the network
module to accept multiple connections from the same IP
address and distinguished between them using the client port
number. To differentiate between connections from different
clients using the same IP address, we appended the internal
session identifier used in our PCE implementation with the
remote [P address port which can uniquely identify a client.
Note that this session identifier is only used for inter-module
communication inside the PCE and is not the same as the
PCEP session identifier.

For the test, a small launcher was used to instantiate multiple
clients on each compute node in the cluster. Each client gen-
erates connection requests to the PCE for path computation,
with the inter-arrival time between subsequent requests from

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

Load Nw. read Session Req. Wait Comp. Resp.
1500 |—2ve 19329 46535 20254 56021 122379
std 319281 499101 55901 369039 | 817393

2500 |28 20575 49515 21256 58345 123462
std 330465 217162 60618 | 528935 | 587564

4500 |28 20796 41147 21714 60344 123919
std 261759 180293 407260 | 332964 90200

TABLE I

TIME MEASUREMENTS (IN NANOSECONDS) FOR DIFFERENT PROCESSES
INSIDE MODULES IN THE PCE SERVER (SHOWN IN FIG. 10). LOAD IS
REPRESENTED AS NUMBER OF CLIENTS WITH AVERAGE REQUEST
INTER-ARRIVAL TIME PER CLIENT = 1SEC.

a given client given by a Gaussian distribution. In the tests,
each client has the same average inter-arrival time (1 sec) and
we varied the total number of clients active in order to vary
request rate on the PCE server. The resulting processing times
for different server loading conditions are shown in Table I.
It can be seen that even with a very high load (4500 path
computation requests per second), the average processing time
was insignificant (< 1 ms) indicating that the modules in the
server can scale extensively for basic path computations.

In order to measure the performance of the different mod-
ules in the network, timestamps in nanoseconds were taken
at specific points inside the PCE server and were used to
calculate the processing times for operations inside different
modules in the PCE server. For a typical path computation
request-response operation, we measured five different pro-
cessing times as shown in Fig. 10. These measurements help
us to evaluate the performance of the PCE under different
request rate conditions and they include network read, session
processing, computation request queuing, computation pro-
cessing and response sending. It can be seen that the individual
module processing times (Network, Session, Computation)
are very low, and do not vary significantly with increase in
network load. The large variation observed in the measurement
of individual module processing times is caused largely due
to scheduling of processing across multiple threads in the
operating system. However, high values for multiple processes
for the same session are very infrequent and as a result total
processing times for a request are fairly consistent.

2) Effect of Topology Size and Path Computation Algorithm
Complexity: While the network and session management
modules are not affected by varying network topology or path
computation complexity, the processing times and, in cases of
high request rate, queuing times in the computation module
are significantly affected by this increase in complexity. In the
study presented in Table I, the time taken for path computation
was comparable to the times taken by other operations in the
PCE. However, as shown in Fig. 11, increasing the size of the
topology significantly increases the computation time making
it the dominant contributor in determining the capacity of the
PCE in terms of the rate of path computation requests served.
In this study, we used two known transport topologies: Atlanta
(15 node, 22 links) and TA2 (65 nodes, 108 links) from [25]
and generated two Internet-like topologies with (120 nodes,
237 links) and (200 nodes, 397 links) respectively using the

Thread Pool Size Queuing Computation Total
| Thread Ve | 5184762 50269354 | 55454116
std | 15121718 32560269 | 35479705
S Threads |_&ve | 226103 53045413 | 53271516
A0S 5d | 1907186 35562804 | 35639152
avg 63466 54473004 | 51946471
10 Threads —5 5 ——7730975 32581812 | 32605523

TABLE 1I

QUEUING TIMES AND COMPUTATION TIMES (IN NANOSECONDS) IN THE
COMPUTATION MODULE WHEN VARYING THREAD POOL SIZE.

BRITE random topology generator [26]. We also study the
computation times for two more complex path computation
algorithms inside the PCE. Our computation implementation
uses a custom graph API which provides interfaces for incor-
porating new path computation algorithms. We implemented
the Widest-Shortest-Path First [27] as well as the Optimal
Link Disjoint multi-path [28] algorithms in our computation
module. The worst case computation complexity in our imple-
mentations of the shortest path computation, the link disjoint
path computation and the widest-shortest path computation are
O(V - In(E)), O2V - In(E)) and O(V?) respectively. The
measured processing times for these algorithms is presented
in Fig. 11 and it can be seen that the increase in topology size
led to significant increase in the computation times especially
for the widest shortest path first algorithm whose search
space is significantly larger than the other algorithms. Ass the
computation complexity of the algorithm increases, we can
also observe an increase in the variance when processing path
computation requests.

In such scenarios, sporadic bursts of path computation
requests can lead to large queuing delays of requests before
being processed (measured time (3) in Fig. 10). A possible
solution to this scenario could be to implement algorithms
to dynamically manage the size of the thread pool used in
the computation module. We performed a test using the 200
node topology and the Widest-Shortest-Path First algorithm
to compute incoming requests with an average request inter-
arrival rate of 400 milliseconds (Gaussian distribution). We
then varied the size of the thread pool to determine the
computation times as well as the queuing times for each
request and the results are presented in Table II. It can be seen
that while there is a small increase in the processing times per
thread, there is also a decrease in the queuing times and as
a result we see a difference of almost 0.2 milliseconds per
request in the total time taken by the computation module.
Therefore, carefully designed policies may be used to deal
with temporary overloading of the computation module by
dynamically increasing the size of the thread pool used. It
is however clear that increasing the thread-pool infinitely will
not solve problems with permanent overloading and in such
scenarios, it is necessary to have a distributed implementation
of the computation module for load balancing across servers.

3) Managing TED updates: In our implementation, we pro-
vide mechanisms to facilitate TED update in the computation
module and ensure that a computed path is processed using up
to date topology. In case a TED update arrives when a path

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

computation request is being computed, the computation is
interrupted and the request is re-computed using the updated
topology information to ensure that the optimal path is used in
the network. However, such a mechanism can also potentially
lead to large number of re-computations of requests which in
turn affects performance. The frequency of the TED update is
therefore a critical parameter, the affect of which on the PCE
performance needs to be evaluated.

We performed a test where we varied the TED update
frequency and monitored the variation in the computation
times for different traffic loading conditions. We used the 200
node network topology and used the Optimal Link Disjoint
multi-path algorithm to compute incoming requests with an
average request inter-arrival rate of 400 milliseconds (Gaussian
distribution). The topology update time interval was assumed
to be fixed and was varied between 500 ms to 2 seconds. The
results of this test are shown in Fig. 12.

In cases of high topology update frequency, requests
that were being processed were interrupted, leading to re-
computation of these request and as a consequence the average
total time for processing a request in the computation module
increases. This is a critical factor, as in cases of networks with
high load on the PCE (as demonstrated here) TED updates can
lead to overloading inside the PCE server. Another important
parameter in this study was the number of worker thread in
the thread pool used for path computation. In case a large
number of worker threads were used, at high topology update
frequencies it was likely that more path computation requests
were interrupted and we saw that the average computation
times increase with increase in thread-pool size. However, the
computation time taken for a request decreased significantly in
cases of large thread pools with decrease in update frequency
indicating that there exists a trade-off between the thread-pool
size optimization when taking TED updates into consideration.

4) Affect of Network Latency: The communication delay
between the PCE and PCC is an important factor in network
design as it directly affects the time required by a PCC to
obtain a computed path. Our results do not show a detailed
presentation about the dependence of the total session time
on the round-trip time, primarily as we did not have ef-
ficient mechanisms to reliably tune the network latency in
our experimental setup. It should also be noted that while
the network latency does not overtly affect the PCE server
architecture itself, special conditions on network latency pose
several implementation challenges which can be critical to the
performance in the PCE. We now present a discussion on the
same.

In cases of high network latency between the PCC and the
PCE, the average session time of a PCEP session is very high
even though the total processing time required inside the PCE
is low. In such a scenario, it is likely that the number of
simultaneously active sessions is very high in the network. In
such a scenario, even though the processing overhead on the
PCE is low, memory demands to support read/write buffers
for all active sockets can lead to increased system resource
usage, restricting the performance of the PCE.

On the other hand, very low network latencies (< 1ms)
required addressing synchronization issues inside the PCE.
A representative example was found when establishing the
StateMachine for a new connection in the PCE: in this sce-
nario, after a connection is established, a StateMachine object
is created and its constructor is initialized. The constructor
is responsible for sending the Open message to the remote
peer and setting the State Machine into the Open Wait state.
However, we observed that in cases of low network latencies,
the StateMachine object received an Open message from a
remote peer before the constructor execution was completed,
requiring implementation of synchronization mechanisms to
ensure that StateMachine object constructors finish execution
before the corresponding sockets are registered for receiving
data in the network module.

B. Adaptation of the PCE Implementation to WDM networks

In the previous section, we presented how network design
parameters affect the performance of the PCE and show that
our implementation is scalable for implementation in real
networks. In this section, we attempt to use a representa-
tive adaptation of our PCE in a WDM network scenario to
demonstrate the features of flexible TED definition and module
integration to demonstrate how our PCE implementation can
be useful when applied in specialized network scenarios.

As a basic representative WDM network scenario, we used
the Atlanta network topology [25] as the base network topol-
ogy and each link was assumed to consist of two unidirectional
fibers with each fiber supporting 8 wavelengths. We assumed
a network scenario where network operators could provision
individual lightpath requests for dynamic network connections
as well as large batch requests, which would be used to
provision multiple lightpaths simultaneously. Batch processing
of lightpaths is envisioned as a scenario where the network
operator provisions complex Layer-1 Virtual Private Network
(VPN) topologies.

Note that the demonstration is targeted towards demon-
strating flexibility of the PCE architecture and therefore we
do not incorporate physical layer constraints in the lightpath
computation and only use 8 wavelengths (unlike 40 - 80
typical to DWDM networks). However, for deployment in real
networks, these parameters can be easily incorporated into the
same.

In order to compute lightpath requests we used two sample
computation modules. In the first computation module exam-
ple, we used the shortest path first algorithm with random
wavelength selection and hop count restrictions which limited
the hop-count to 4 nodes. In the second computational module,
and for a demonstration of a typical on-line optimization tool,
we implemented a basic Integer Linear Programming (ILP)
based formulation to compute optimal the lightpath requests.
The formulation of the same is given in the appendix. We
implemented that computational model with a model of an
ILP in the Gurobi Optimizer [29] and limited the run time to
2 minutes at which point the optimizer provides a heuristic
result.

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

The PCE implementation was configured to use 10 worker
threads and when a batch of lightpath requests was received,
the individual requests inside the batch were served by differ-
ent worker threads. At first, we tested the PCE while using
only one of the two optimizers defined for the computation
of individual as well as batch computation requests and
limited the number of demands in a single batch request to
a random number between 3 and 10. In this scenario, when
using the ILP based computation module, we experienced
very high computation times with the average times of up
to 5 seconds in order to compute single lightpath requests
and up to 45 seconds in order to compute batch lightpath
requests. While the computed results were optimal the times
taken for computation were very high, limiting its capability
for dynamic provisioning of individual lightpath requests.

On the other hand, when using the shortest path first
algorithm with random wavelength selection we observed that
the computation times were in the order of 1 - 2 milliseconds
for individual requests. As the batch size was always less than
or equal to the total thread-pool size, computation of batch
requests also took the same approximate time. As compared to
the ILP based computation module, this module had excellent
scalability in terms of provisioning a large number of requests.
However, as lightpaths were processed by individual threads
each with its own copy of the network topology, we observed
collisions wherein demands processed for the same batch
used the same wavelength and fiber combination in order to
provision a connection.

Path computation collision in optical networks has been
studied in other similar contexts: for example, [30] show how
low inter-arrival times between connection requests (equiva-
lent to batch arrivals in our scenario) significantly increase
connection blocking when wavelengths are assigned before
reservation to individual connections, but how wavelength
selection at intermediate nodes can reduce the collision rate,
even while disseminating less information. In our scenario,
assuming that wavelengths were selected by the PCE directly,
this scenario translates to the PCE processing all batch requests
simultaneously in order to avoid collisions. In our evaluation,
for the batch sizes varying between 3-10 demands per batch,
we observed a collision frequency of 0.8% measured over a
1000 requests and for larger batch sizes of 15 and 25 demands
per batch, the collision frequency increased to up to 4.8%.

In order to address this trade-off, we incorporated both
computation modules simultaneously in our PCE architecture
as shown in Fig. 4. In our implementation, the send () function
in the session module was modified to communicate with two
different computation modules, one running the shortest-path
heuristic and the other using the ILP formulation to serve
lightpath requests. We then updated the StateMachine in
the Session management module to identify if an incoming
PCEPRequestMessage contained a single lightpath request
or a batch request: in case of a single request, the session
management module forwarded the request to the heuristic-
based computation module while in case of a batch request,
we forwarded the request to the ILP based computation

module. Using this integration, we significantly improved the
performance of the PCE when serving individual lightpath
requests, while we ensured that collisions were eliminated
when serving batch requests.

This simple, but highly effective integration of multiple
computation modules demonstrates the advantages of flexible
integration of computation modules, allowing network design-
ers to use existing computation modules and optimize between
them to enhance performance in the network. Similar mech-
anisms can also be used for other specialized computation
scenarios such as integration of path computation functions
for different layers (MPLS, WDM) into a single PCE, while
preserving the differences in their topology representation and
computation mechanisms used.

VI. CONCLUSION

We presented the first open-source Path Computation El-
ement (PCE) emulator along with its key design and imple-
mentation features. The architecture incorporates all elements
of the standard PCE framework and is shown to easily evolve
to support extensions to the PCE protocol, path computation
algorithms, topology descriptions and the PCE state machines.
Furthermore, flexible inter-module messaging interfaces allow
for seamless integration of new modules. We presented a
simple example, where multiple computation modules are used
to perform path computation for different type of requests
and similar extensions can be used to require a single PCE
to support multiple network layers, each with a customized
computation algorithms and topology representation and up-
date mechanisms.

The scalability of the PCE implementation was tested
in terms of number of requests, size of topologies served,
path computation algorithm complexity and support for TED
update. We showed that for small topologies, the solution
can easily scale beyond multiple thousands of requests per
second on typical desktop hardware. An increase in the path
computation algorithm complexity and topology size increases
the computation processing times inside the PCE. We also
demonstrated how dynamic updates to the thread-pool size
could help eliminate temporary request bottlenecks. Finally,
we provided a simple example to demonstrate the trade-off
in using a large thread-pool in the case of TED updates, and
similar mechanisms can be applied to other specific network
scenarios to evaluate the optimal performance parameters
(thread-pool size).

Developers, network engineers and path computation algo-
rithm designers can access the open-source implementation
for download from [31]. We are currently testing the inter-
operability of our PCE with other implementations and in
real network environments under the purview of EU projects
ONE [32] and GEYSERS [33]. These are examples of wider
PCE deployments and innovations we expect in the near
future, as part of the ongoing evolution of network control
and management towards openness and programability.

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

REFERENCES

—

[1] A. Farrel, J. P. Vasseur, J. Ash, “A Path Computation Element-Based
Architecture”, IETF RFC 4655, August 2006, http://tools.ietf.org/rfc/
rfc4655.txt

[2] JP. Vasseur, J.L. Le Roux,“Path Computation Element Communication

Protocol” JETF RFC 5440, March 2009, http://tools.ietf.org/rfc/rfc5440.

txt
[3] RAYControl, Scalable Optical Transport, Data
Sheet, http://www.advaoptical.com/en/resources/ /me-

dia/Resources/Data%20Sheets/RAY control.ashx

[4] Marben Inter Domain Routing, OIF DDRP based on OSPF / IETF PCE
Solutions, http://www.marben-products.com/osiam/DDRP-DSH.pdf

[S] Multi-Technology Operations System Interface (MTOSI) Release 2.0,
Tele MAnagement Forum Standard, Nov 2007, http://www.tmforum.org/
MTOSIRelease20/6076/home.html

[6] M. Chamania, M. Drogon, A. Jukan, “Lessons Learned From Imple-
menting a Path Computation Element (PCE) Emulator,” (Postdeadline
paper) Technical Digest of Optical Fiber Communication Conference
2011 (OSA/OFC 2011), Los Angeles, CA, March 2011

[71 E. Mannie, “Generalized Multi-Protocol Label Switching (GMPLS)
Architecture”, IETF RFC 3945, October 2004, http://tools.ietf.org/rfc/
rfc3945.txt

[8] R. Braden, et al., “Resource ReSerVation Protocol (RSVP)”, IETF RFC
2205, September 1997, http://tools.ietf.org/rfc/rfc2205.txt

[9] E. Oki, T. Takeda, JL. Le Roux, A. Farrel, “Framework for PCE-Based
Inter-Layer MPLS and GMPLS Traffic Engineering,” IETF RFC 5623,
Sept. 2009, http://tools.ietf.org/rfc/rfc5623.txt

[10] JP. Vasseur, et al., “A Backward-Recursive PCE-Based Computation
(BRPC) Procedure to Compute Shortest Constrained Inter-Domain Traf-
fic Engineering Label Switched Paths”, IETF RFC 5441, April 2009,
http://tools.ietf.org/rfc/rfc5441.txt

[11] IETF PCE Working Group, http://datatracker.ietf.org/wg/pce/charter/

[12] I. Bryskin, D. Papadimitriou, L. Berger, J. Ash, “Policy-Enabled Path
Computation Framework,” IETF RFC 5394, Dec. 2008, http://datatracker.
ietf.org/doc/rfc5394/

[13] JP. Vasseur, et al., “A Set of Monitoring Tools for Path Computation
Element (PCE)-Based Architecture”, IETF RFC 5886, June 2010, http:
/Mtools.ietf.org/rfc/rfc5886.txt

[14] Q. Zhao, et al., “Extensions to the Path Computation Element Com-
munication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering
Label Switched Paths”, IETF RFC 6006, September 2010, http://tools.
ietf.org/rfc/rfc6006.txt

[15] Q. Zhao, et al., “PCE-based Computation Procedure To Compute
Shortest Constrained P2MP Inter-domain Traffic Engineering Label
Switched Paths”, IETF Internet Draft, January 2011, http://tools.ietf.org/
id/draft-zhao-pce- pcep-inter-domain- p2mp- procedures- 07.txt/

[16] I. Nishioka, et al., “Use of the Synchronization VECtor (SVEC) List
for Synchronized Dependent Path Computations”, IETF RFC 6007,
September 2010, http://tools.ietf.org/rfc/rfc6007.txt

[17] Y. Lee, et al., “PCEP Requirements for WSON Routing and Wavelength
Assignment”, IETF Internet Draft, July 2011, http://datatracker.ietf.org/
doc/draft-ietf-pce- wson-routing- wavelength/

[18] A. Heffernan, “Protection of BGP Sessions via the TCP MDS5 Signature
Option”, IETF RFC 2385, August 1998, http://tools.ietf.org/rfc/rfc2385.
txt

[19] J. Touch, A. Mankin, R. Bonica, “The TCP Authentication Option”,
IETF RFC 5925, June 2010, http://tools.ietf.org/rfc/rfc5925.txt

[20] S. Greco Polito, S. Zaghloul, M. Chamania, A. Jukan, “Inter-Domain
Path Provisioning with Security Features: Architecture and Signaling
Performance,”accepted for publication in IEEE Transactions on Network
and Service Management, 2011

[21] CTTC PCE, http://wikiona.cttc.es/ona/index.php/Path_Computation_
Element_(PCE)

[22] OSCARS Inter-Domain Controller Application Programmer Interface,
http://code.google.com/p/oscars-idc/

[23] Java Network I/O (NIO), http://download.oracle.com/javase/1.4.2/docs/
api/java/nio/package-summary.html

[24] Rocks Cluster, Open Source Linux Cluster, http://www.rocksclusters.
org/wordpress/

[25] SNDLib: Survivable Fixed Telecommunication Network Design, http:
//sndlib.zib.de/home.action

[26] BRITE: Boston University Representative Internet Topology gEnerator,
http://www.cs.bu.edu/brite/

[27] R. Guerin, A. Orda, D. Williams, “QoS Routing mechanisms and OSPF
extensions,” 2nd Global Internet Miniconference (joint with Globecom
97), 1997.

[28] J. Suurballe, “Disjoint paths in a network”, Networks, vol. 14, pp.
125145, 1974.

[29] Gurobi Optimizer 3.0, http://www.gurobi.com/

[30] R. Muoz, R. Casellas, R. Martinez, M. Tornatore, A. Pattavina, “An
experimental study on the effects of outdated control information in
GMPLS-controlled WSON for Shared Path Protection,” Optical Network
Design and Modeling (ONDM), Feb. 2011

[31] Open Source Path Computation Element
ida-cns-group.net/

[32] EU Project ONE, http://www.ict-one.eu

[33] EU Project GEYSERS, http://www.geysers.eu

Emulator, http://pce.

APPENDIX A
ILP FORMULATION

In this appendix, we present the formulation used for
the ILP to serve batch lightpath requests. The graph was
represented as a directed graph G(V, E), with nodes v; € V
and edges e;; € I. The set of wavelengths was given by T
and the availability of a wavelength A\; on edge e;; was given
by a boolean indicator cﬁj. The batch of lightpath demands
was defined as a set D and each demand d, € D has a source
S(d,) and a destination D(d,) node, and was assumed to use
only one wavelength.

We defined an indicator variable L(d,) to indicate if a
request was provisioned, and defined a boolean routing vari-
able for demand d, as 7};(d,), indicating if the lightpath
used for demand d, used the wavelength A; on the link e;;.
Based on these parameters, the constraints for provisioning the
lightpaths are given as:

Vd, € D: L(d,) < 1 (1)

Vd, € D,e;j € E,;t €T :rj;(dy) < L(d,) 2)

Vd, € Dyve=S(da): Y Y rhi(de) = L(ds) (3)
teT jies; €ER

Vdy € Dyve =D(dy): Y Y 7hi(de) = L(ds) (4)
teT jiejs€EF

Vd, € D,t € T,j :v; # D(dy), S(dy) :

Do orhld) = Y0 rh(da)

ite;;€EE kiejr€E
(%)
Vd, € Dt €T,: Y rli(d,) < HopLimit (6)
ei; €EE
Veij € B,teT: > rli(ds) < (7)
d., €D

In these constraints, (1) is used to indicate if a demand is
provisioned or not, and (2) ensures that routing variables are
set to 0 if a demand is not provisioned. Constraints (3) and
(4) ensure that at max. one wavelength is selected to provision
a demand at the source and the destination of the demand in
case the demand is satisfied (L(d,) = 1), and (5) provides
routing continuity for each demand for each wavelength in the
network. (6) ensures that no demand exceeds the hop count
constraint on the lightpath, which is set to four hops. Finally,

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

PCEP Source Requests path
Request information from the PCE I
gl

PCE responds with computed,
Path Information

Topology Information
E= Updates stored in the
_______ TED

Computation Computation

Receive Send Register Close) | Receive Send Register Close

!

Enterprise Service Bus

Source starts reservation
in the control plane

U u
Send Receive Register Close

Fig. 1. Use of Path Computation Element (PCE) in transport networks .
Session Management

Send Receive Register Close

Start I :
Module Encapsulation [[

Stop

Network

Fig. 2. Module encapsulation to support inter-module messaging interfaces

inside the PCE
Fig. 4. Support for multiple computation modules using a web-services based

. load-balancing module
(7) provides the lightpath availability constraint ensuring that

only available lightpaths are used.
The objective function is given as:

Min: Y (1=L(d)+ 8-> 3 Y rhi(ds) (8)

D D teT e;;€E PCEPMessage

The first term maximizes the total number of demands pro-
visioned, while the second term minimizes the total capacity Header MessageFrame
used. We use a scaling factor 5 which is a small value to
ensure that the ILP first maximizes the total demands served,
and then minimizes the capacity used by these demands.

Header PCEPObject PCEPObject

Header Header Object Header Object

Fig. 5. The PCEP protocol represented as an object-oriented hierarchy

Client Server i l SessionUP I(

_Open
ig KeepWait I
‘E[OpenWait]T—

g™
Keepalive

PCE Server PCE Client

Start -

Client -
PCEP

Computation

Stop . "
Receive Send Register Close Receive Send Register Close ..
83_ 83_ Request ..
= = R T T T T » <E[TCPPending]
% Send Receive Register Close % Send Receive Register Close) e
0 Session Management B Session Management | 7 PCEP
os " peceive send Register Close 03 5% feceive send Regiter Close) Response
3 3 S I dle l
E >
Send Receive Register Close Send Receive Register Close . . 3
Network Network Protocol Signaling Exchange PCEP State Machine
S S
L top L) L top N)
I I Fig. 6. The PCEP state machine, and the typical message exchange between
a PCC (client) and a PCE (server)

Fig. 3. Module interactions inside the the PCE server and client

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in afuture issue of this journal, but has not been fully edited. Content may change prior to final publication.

i] -

SessioniD, Receive Send . Close Register
PCEPMessage SessionlD, PCEPMessage Redi
egister
PCE Protocol 8'055 . new
SessionlID| onnection| .
Sessi Connection
Byte(] essionID, Byte[]
v v v ;
<—G>[Map(SessionID, Socket)]4—[Selector] g* 10
et - -)
Socket via 1 Register 7L
A 4 SessionID new =
9 Connection | @ gl | # Shortest Path
Q o) 0 ——Max Bw Shortest Path
o = S 5t |~ E-Link Disjoint Multipath
g4
Fig. 7. Network module implementation g 4
£
-.‘ o 2r
£ -
H [-7
R, A— e . 1 - @, - %
[Worker Thread ; State Machines : o g 3
) SessionID Map(Address,Statemachine)
SessioniD PCEPMessage -1 - - . .
i PCEPMessage TargetLayer 15node 65Node 120 Node 200 Node
RemoteLayer Size of Topology Used
Receive Send Register Close .
() im! m m o
Fig. 11. Measurements for processing times in the computation module for
different path computation algorithms and topology sizes

Fig. 8. Session management module implementation

80800 . 5
< o
Thread Pool c|
= l v g| B
I
% Graph Library | LOZOI;)gy
Receive Send pdate

Fig. 9. Computation module implementation

— 88800
Thread Pool 1.9} &\\ & Thread Pool Size = 1
g \ Y J N ——Thread Pool Size =5
@{ N 5 ~. |~ B®-Thread Pool Size = 10
Receive @ c 1.85¢
— {1]
3]
%]
2 18
5]
)
L R (]
@_‘ Send Receive E 1.75t
Session Management »@ .
Re(.:_(‘eive
1650 5s Is 15s 2s
Time Interval Between TED Update
Sé-l"ld Receive . . .
®—< Network Fig. 12. Average total time taken by the computation module versus
increasing time interval between TED updates under different thread pool
t size

— —

Measured Times:

1) Network Read 2) Session Processing 3) Comp. Req. Queuing
4) Computation Processing 5) Response Sending

Fig. 10. Measurements for processing times in the PCE Server

Copyright (c) 2011 |EEE. Personal use is permitted. For any other purposes, permission must be obtained from the |EEE by emailing pubs-permissions@ieee.org.

