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s.t. ‖Ax− b‖∞ ≤ δ†

Homotopy path:

P := {x∗(δ) | δ ∈ [δmin,∞)}
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min
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‖x‖1

s.t. ‖Ax− b‖∞ ≤ δ†

x∗ is an optimal solution

m

∃y∗ ∈ Rm : −A>y∗ ∈ Sign(x∗)
Ax∗ − b ∈ δ Sign(y∗)
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Introduction

min
x∈Rn

‖x‖1

s.t. ‖Ax− b‖∞ ≤ δ†

x∗ is an optimal solution

m

∃y∗ ∈ Rm : −A>y∗ ∈ Sign(x∗)
Ax∗ − b ∈ δ Sign(y∗)

Sign(x) =
{
g ∈ Rn : gsupp(x) = sign

(
xsupp(x)

)
∧ ‖g‖∞ ≤ 1

}
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Basic idea

Solve a sequence of problems with

δ0 > δ1 > · · · > δK−1 > δK = δ

and optimal pairs

(x0, y0), (x1, y1), . . . , (xK−1, yK−1), (xK, yK) = (x∗, y∗).

Motivation:

1. Transitions (xk, yk)→ (xk+1, yk+1) are easy.
2. (x0, y0) = (0, 0) is optimal for δ0 ≥ ‖b‖∞.
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Transitions

1. Dual update:
yk+1 ∈ argmin

y∈Rm
ψ>y

s.t. −A>y ∈ Sign(xk)

Axk − b ∈ δk Sign(y)

2. Primal update:
(xk+1, tk+1) ∈ argmax

(x,t)∈Rn×R
t

s.t. −A>yk+1 ∈ Sign(x)

Ax− b ∈ (δk − t) Sign(yk+1)

3. Parameter update:
δk+1 := δk − tk+1
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Support and active set

S := {j : xj 6= 0}
(primal support)
W := {i : |a>i x− bi| = δ}
(primal active set)
Σ := {j : |A>j y| = 1}
(dual active set)
Ω := {i : yi 6= 0}
(dual support)
Sign(x) = {g ∈ [−1, 1]n : gS = sign (xS)}
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Dual update

LP with |W| variables and 2n− |S| constraints:

yk+1 ∈ argmin
y∈Rm

ψ>y

s.t. −A>S y = sign(xkS)

−1 ≤ −A>Sc y ≤ 1

−sign(AWxk − bW)� yW ≤ 0
yWc = 0

Question: How must we choose ψ?

Not good: Many constraints!
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Primal update

LP with |Σ| variables and 2m− |Ω|+ 1 constraints:

xk+1 ∈ argmax
(x,t)∈Rn×R

t

s.t. AΩx− bΩ = (δk − t)sign(yk+1
Ω )

−(δk − t)1 ≤ AΩcx− bΩc ≤ (δk − t)1

A>Σ yk+1 � xΣ ≤ 0
xΣc = 0

t ≤ δk − δ

Not good: Many constraints!
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Theorem of the alternative

yk is optimal in the dual update
with xk−1 and δk−1 fixed~w�
there exists no feasible descent
direction w.r.t. ψ at yk

(xk−1, 0) is not optimal in the primal update
with yk fixed ~w�
there exists a feasible ascent
direction w.r.t. t at (xk−1, 0)

Farkas’ Lemma
with ψ = −sign(Axk−1 − b)
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Theorem of the alternative

yk is optimal in the dual update
with xk−1 and δk−1 fixed~w�
there exists no feasible descent
direction w.r.t. ψ at yk

⇐⇒

x

(xk−1, 0) is not optimal in the primal update
with yk fixed ~w�
there exists a feasible ascent
direction w.r.t. t at (xk−1, 0)

Farkas’ Lemma
with ψ = −sign(Axk−1 − b)

We find xk 6= xk−1 and tk > 0 in the primal update.
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Theorem of the alternative (2)

yk is not optimal in the dual update
with xk and δk fixed~w�
there exists a feasible descent
direction w.r.t. ψ at yk

(xk, 0) is optimal in the primal update
with yk fixed ~w�
there exists no feasible ascent
direction w.r.t. t at (xk, 0)

Farkas’ Lemma
with ψ = −sign(Axk − b)
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Theorem of the alternative (2)

yk is not optimal in the dual update
with xk and δk fixed~w�
there exists a feasible descent
direction w.r.t. ψ at yk ⇐⇒

x

(xk, 0) is optimal in the primal update
with yk fixed ~w�
there exists no feasible ascent
direction w.r.t. t at (xk, 0)

Farkas’ Lemma
with ψ = −sign(Axk − b)

We find yk+1 6= yk in the dual update.
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`1-Houdini HOmotopy UnDer Infinity Norm constraInts

Input: A ∈ Rm×n , b ∈ Rm , 0 ≤ δ < ‖b‖∞
δ0 ← ‖b‖∞
x0 ← 0
S0 ← ∅
W0 ←

{
i : |bi | = δ0

}
k← 0
repeat

yk+1 ← dual_lp(xk , Sk ,Wk)

Ωk+1 ← {i : yk+1
i 6= 0}

Σk+1 ← {j : |A>j yk+1 | = 1}

[xk+1 , tk+1 ]← primal_lp(yk+1 ,Σk+1 ,Ωk+1)

δk+1 ← δk − tk+1

Sk+1 ← {j : xk+1
j 6= 0}

Wk+1 ← {i : |a>i xk+1 − bi | = δk+1}

k← k+ 1
until δk = δ or tk = 0

return {x0 , . . . , xk} and {δ0 , . . . , δk}
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Finite termination

Theorem (B., Lorenz and Tillmann 2018)
`1-Houdini returns an optimal solution after finitely many iterations.

Proof idea.
Use the above Theorem of the alternatives to show that each combination of support S,
active set W and associated sign patterns sign(xS) and sign(AWx− bW) can only occur
once among all iterates of `1-Houdini.
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Upper Bound

Theorem (B. 2018)
The number of iterations in `1-Houdini is bounded above by (3m+n + 1)/2.

Proof idea.
Show that the same combination of support S and active set W cannot occur in
combination with opposing sign patterns sign(xkS) = −sign(x`S) and
sign(AWxk − bW) = −sign(AWx` − bW).
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Worst case

Theorem (B. 2018)
In the worst case, `1-Houdini has to perform at least (3n + 1)/2 iterations.

Proof idea (similar to Mairal 2012).

For arbitrary n ∈ N, construct A(n) ∈ Rn×n and b(n) ∈ Rn recursively :

A(n) :=
[
A(n−1) 2αnb(n−1)

0 αnbn

]
, b(n) :=

(
b(n−1)

bn

)
, A(1) := α1 ∈ R+ , b(1) := b1 ∈ R+ .

Under appropriate conditions on αn and bn, it holds that K(n) = 3K(n−1) − 1 for the
respective numbers of iterations.

If the statement is true for dimension n− 1, then K(n) = 3 · 3
n−1 + 1
2

− 1.
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Practical aspects

Linear programs for primal and dual updates can be warm-started with xk and yk,
and solved efficiently using a dedicated active-set strategy.
Need |W| equations in |S| variables for an ascent direction in the primal update, and
|Σ| equations in |Ω| variables to compute a descent direction in the dual update.
Box constraints α ≤ Ax− b ≤ β can be handled as well.
Modification for problems with arbitrary linear constraints is possible.
Solution path can be used for the purpose of cross-validation.
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Chebyshew estimation

S = {(bi, ai)}mi=1 ⊆ R×Rn samples
b = Ax+ η ∈ Rm linear model
ηi ∼ U ([−δ†, δ†]) i.i.d. noise
δ† > 0 unknown

Goal: Find a sparse linear predictor x̂.

If δ† was known a priori,

x̂† ∈ argmin
x∈Rn

‖x‖1 s.t. ‖Ax− b‖∞ ≤ δ†

would be a standard approach. We need to do something else!
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Cross-validation

S = S1 ∪ · · · ∪ SK
Ik = {i | (bi, ai) ∈ Sk}
xk(δ) homotopy path for

min
x∈Rn

‖x‖1 s.t. ‖AIckx− bIck‖∞ ≤ 0

cross-validation error

ε(δ) :=
1
K

K
∑
k=1
‖AIkxk(δ)− bIk‖∞

cross-validation parameter

δcv := argmin
δ∈[δmin,∞)

ε(δ)
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Cross-validation vs. true parameter

Final predictor:

x̂cv ∈ argmin
x∈Rn

‖x‖1

s.t. ‖Ax− b‖∞ ≤ δcv

Distances to ground truth:

‖x̂cv − x†‖1 ≈ 0.5983

‖x̂† − x†‖1 ≈ 0.7480

Smallest distance to ground truth:

‖x̂∗ − x†‖1 ≈ 0.5728
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More applications

min
x∈Rn

‖x‖1

s.t. ‖Ax− b‖∞ ≤ δ

Sparse dequantization
Sparse linear discriminant analysis
Sparse precision matrix estimation
Dantzig selector
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More applications

min
x∈Rn

‖x‖1

s.t. ‖Ax− b‖∞ ≤ δ

min
a∈Rn

‖a‖1

s.t. ‖Ψa− q‖∞ ≤ ∆
2

Sparse dequantization
Sparse linear discriminant analysis
Sparse precision matrix estimation
Dantzig selector
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More applications

min
x∈Rn

‖x‖1

s.t. ‖Ax− b‖∞ ≤ δ

min
β∈Rp

‖β‖1

s.t. ‖Σ̂β− (X̄− Ȳ)‖∞ ≤ λ

Sparse dequantization
Sparse linear discriminant analysis
Sparse precision matrix estimation
Dantzig selector
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More applications

min
x∈Rn

‖x‖1

s.t. ‖Ax− b‖∞ ≤ δ

min
β∈Rp

‖β‖1

s.t. ‖Σ̂β− ei‖∞ ≤ λ

Sparse dequantization
Sparse linear discriminant analysis
Sparse precision matrix estimation
Dantzig selector
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More applications

min
x∈Rn

‖x‖1

s.t. ‖Ax− b‖∞ ≤ δ

min
β∈Rp

‖β‖1

s.t. ‖X>(Xβ− Y)‖∞ ≤ λ

Sparse dequantization
Sparse linear discriminant analysis
Sparse precision matrix estimation
Dantzig selector

C. Brauer A primal-dual homotopy algorithm for sparse recovery with infinity norm constraints Page 18 of 19



Introduction Homotopy method Theoretical results Practical aspects

Thank you!

Christoph Brauer, Dirk Lorenz and Andreas Tillmann. A Primal-Dual Homotopy Algorithm for `1-Minimization
with `∞-Constraints. Computational Optimization and Applications, February 2018.

Christoph Brauer. Homotopy Methods for Linear Optimization Problems with Sparsity Penalty and Applications.
PhD thesis, TU Braunschweig, March 2018.

https://github.com/chrbraue/l1Houdini
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