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Homotopy path:
P = {x*(0) | 6 € [6min, )}
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x* is an optimal solution g §%<i
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x* is an optimal solution g iwi

Sign(x) = {g €ER™: 8supp(x) = sign (Xsupp(x)) Algllee < 1}
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Solve a sequence of problems with

> > >k k=5
and optimal pairs

(x°,°), (< ¢0), -y ), (5 ¥ = (3. y).

Motivation:

1. Transitions (xX,y¥) — (x¥*, y¥1) are easy.
2. (x°,y°) = (o, 0) is optimal for 6° > ||b||co-
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1. Dual update:

2. Primal update:

3. Parameter update:
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» S:={j:x; # o}
(primal support)

W= {i:[ax—b| =}
(primal active set)

f T i ATy = 1)
(dual active set)

s Q= {i:y £ o}
(dual support)

- Sign(x) = {g € [~1,1]" : g5 = sign (xs))
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LP with |W| variables and 2n — |S| constraints:

Question: How must we choose ¢?

Not good: Many constraints!
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LP with || variables and 2m — |Q)| + 1 constraints:

Not good: Many constraints!
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Introduction  Homotopy method  Theoretical results ~ Practical aspects

Theorem of the alternative

y¥ is optimal in the dual update (x*1, 0) is not optimal in the primal update
with x¥~* and 6% fixed with y fixed

I I

there exists no feasible descent

161€ ¢ . — there exists a feasible ascent
direction w.r.t. i aty

direction w.r.t. t at (x**, 0)

Farkas’ Lemma
with ¢ = —sign(Ax*~* —b)

We find x¥ # x¥~* and t* > o in the primal update.
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Introduction  Homotopy method  Theoretical results ~ Practical aspects

Theorem of the alternative (2)

yX is not optimal in the dual update (x¥, 0) is optimal in the primal update
with x¥ and 6* fixed with y fixed

there exists a feasible descent — there exists no feasible ascent
direction w.r.t.  at y* direction w.r.t. t at (x5, 0)

I

Farkas’ Lemma
with ¢ = —sign(Ax* — b)

We find y¥** # y¥ in the dual update.
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Input: A € R™M>XD, b e R™M, 0 < 6 < ||bfeo

3 « ||bl|o

x© o

So + @

Wo (i: [bs| = 60}

k<o

repeat
YR e dual_1p(eK, 5, W)
Oy, iy 20}
S, ¢ e |AjTyk+1\ =1}
[xk+1,tk+1] — primal_lp(yk+1,2k+l,0k+l)
skt gk ikt
Skﬂe{j::{}""l#—o}
Wiy, e {is [ xKHE—by| = gk}
ke k+1

until 6K = 5 or tk = o

return {x°,.,.,xk} and {6°,...,45k}
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£,-HoupiNi returns an optimal solution after finitely many iterations.

Use the above Theorem of the alternatives to show that each combination of support S,
active set W and associated sign patterns sign(xs) and sign(A%Wx — by ) can only occur
once among all iterates of ¢;-HoubinI. O
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The number of iterations in ¢,-HoubiNI is bounded above by (3™ +1) /2.

Show that the same combination of support S and active set W cannot occur in
combination with opposing sign patterns sign(x§) = —sign(x§) and
sign(AWxK — by) = —sign(A¥x! — by). O
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Introduction  Homotopy method ~ Theoretical results  Practical aspects

Worst case

Theorem (B. 2018)

In the worst case, £,-HOUDINI has to perform at least (3™ + 1) /2 iterations.

Proof idea (similar to Mairal 2012).

For arbitrary n € IN, construct A(®) € R™*™ and b(® € R™ recursively:

A®) = {A(n:) w;bg‘“)], b = (b(ﬁ_l))' AW =y € Ry, b =by € Ry .
nvn n

Under appropriate conditions on a, and by, it holds that K@ = 3K(“_1) — 1 for the
respective numbers of iterations.

n—1i
m)_,. 3 *1
3 2 1

If the statement is true for dimension n — 1, then K
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Introduction  Homotopy method ~ Theoretical results ~ Practical aspects

Practical aspects

» Linear programs for primal and dual updates can be warm-started with x* and y*,
and solved efficiently using a dedicated active-set strategy.

Need |W| equations in |S| variables for an ascent direction in the primal update, and
|Z| equations in | Q)| variables to compute a descent direction in the dual update.

= Box constraints & < Ax — b < B can be handled as well.
= Modification for problems with arbitrary linear constraints is possible.

= Solution path can be used for the purpose of cross-validation.
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Introduction  Homotopy method ~ Theoretical results ~ Practical aspects

Chebyshew estimation

S = {(bs a)}iZ, € R x R™ samples
b = Ax+ 7 € R™ linear model
i ~ U([—6%,61]) iid. noise

» 5t > o unknown

Goal: Find a sparse linear predictor &.

If 7 was known a priori,

%" € argmin ||x||; s.t. [|Ax —b|le <4
xeR®

would be a standard approach. We need to do something else!

C. Brauer | A primal-dual homotopy algorithm for sparse recovery with infinity norm constraints | Page 15 of 19




= S=5U---USk

I = {i| (bi,a) € S}
x(6) homotopy path for

= cross-validation parameter
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= cross-validation error
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Introduction  Homotopy method ~ Theoretical results ~ Practical aspects

Cross-validation vs. true parameter

Final predictor:

Rey € argmin  ||x]|y sor
xeR®

st [Ax = blles < dev

Distances to ground truth: A
N o N
[[%ev — X' |1 &~ 0.5983
5" — x|, ~ 0.7480 N
Smallest distance to ground truth: B \ﬂj’

%" —x"[|, ~ 0.5728
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min llall,

st [[Ya—qlle < %

= Sparse dequantization
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gﬁl%h

st |E8—(X—Y)[le <A

= Sparse dequantization

= Sparse linear discriminant analysis
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min 11l

st |IZB—eillo <A

= Sparse dequantization
= Sparse linear discriminant analysis

= Sparse precision matrix estimation

Technische

Universitat C. Brauer | A primal-dual homotopy algorithm for sparse recovery with infinity norm constraints | Page 18 of 19
Braunschweig




min 181l

st IXT(XB=Y)[leo <A

= Sparse dequantization
= Sparse linear discriminant analysis
= Sparse precision matrix estimation

= Dantzig selector
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Introduction  Homotopy method ~ Theoretical results ~ Practical aspects

Thank you!

Christoph Brauer, Dirk Lorenz and Andreas Tillmann. A Primal-Dual Homotopy Algorithm for ¢,-Minimization
with {.,-Constraints. Computational Optimization and Applications, February 2018.

Christoph Brauer. Homotopy Methods for Linear Optimization Problems with Sparsity Penalty and Applications.
PhD thesis, TU Braunschweig, March 2018.

https://github.com/chrbraue/11Houdini
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