Given a function f(x). Derive a formula for the approximation of the definite integral

$$\int_{x_0}^{x_2} f(x) \, dx$$

Introduction to Scientific Computing ODEs

by interpolating f at the supporting points x_0 , $x_1 := (x_0 + x_2)/2$ and x_2 with a polynomial of second order. The polynomial can be easily integrated analytically instead of f. The resulting rule for integration is the so-called *Kepler's barrel rule*.

Exercise 2:

Exercise 1:

(a) Determine lower, upper and midpoint estimates of

$$\int_0^{\pi} \sin t dt$$

by splitting the interval $[0, \pi]$ into 10 uniform subintervals.

(b) Determine the absolute and relative errors of these estimates by comparing it to the exact analytical value. (4 points)

Exercise 3: Newton-Cotes

(a) Write a program with which you can determine the weights

$$w_k = \frac{1}{b-a} \int_a^b \prod_{\substack{i=0\\i\neq k}}^n \left(\frac{x-x_i}{x_k-x_i}\right) dx = \int_0^1 \prod_{\substack{i=0\\i\neq k}}^n \left(\frac{n\cdot t-i}{k-i}\right) dt.$$

of the Newton-Cotes formulae

$$Q_n = (b-a)\sum_{k=0}^n w_k f(x_k).$$

Give a table of these weights up to n = 8.

(b) Given $f(x) = e^{2x}$. Determine with the help of the Newton-Cotes formulae the definite integral $\int_{-1/2}^{+1/2} f(x) dx$. (4 points)

(c) What happens if you increase the degree of the Polynomial in item (b). (4 points)

Technische Universität Braunschweig Dr. Bojana Rosić MSc Ehsan Adeli

Institute of Scientific Computing

(10 points)

(12 points)

(6 points)

(14 points)