Introduction to Scientific Computing DIFFERENCE EQUATIONS

Exercise 1:

Let be given the second order series RLC circuit which can be modelled by a difference equation:

$$
(L C+R C h) x_{n+1}+\left(h^{2}-R C h-2 L C\right) x_{n}+L C x_{n-1}=V h^{2}
$$

in which x denotes the current in circuit I. Here, V is the voltage of the power source, R is the resistance of the resistor, L is the inductance of the inductor and C is the capacitance of the capacitor.
(a) Solve the previous difference equation by direct algebraic method given $h=0.01, L=1$, $R=8, C=0.25, x_{0}=0, x_{1}=15$ and $V=20$.
(b) Transform the previous difference equation into the first order system.
(c) Compute stationary point and plot the homogeneous solution (so-called natural response: x as dependence $h \cdot(1: n)$, where $n=100 / h)$ when $R=8, R=1$ and $R=0$. Explain why you get different nature of responses?
(d) Check stability of the stationary point.

Exercise 2:

Given

$$
\begin{gather*}
x_{n+2}-2 x_{n+1}+2 x_{n}=3 \tag{1}\\
x_{n+3}-2.5 x_{n+2}+2 x_{n+1}-0.5 x_{n}=5 \tag{2}\\
x_{n+3}-4.3 x_{n+2}+5.45 x_{n}-1.275=0 \tag{3}
\end{gather*}
$$

(a) Solve the previous difference equations in general form.
(b) Compute stationary points and estimate their stability.

For the Lorenz system

$$
\begin{gathered}
x_{n+1}=x_{n}+a h\left(x_{n}-y_{n}\right) \\
y_{n+1}=y_{n}+\left(r x_{n}-x_{n} z_{n}-y_{n}\right) h \\
z_{n+1}=z_{n}+\left(x_{n} y_{n}-b z_{n}\right) h
\end{gathered}
$$

written in a matrix form as

$$
\mathbf{v}_{n+1}=F\left(\mathbf{v}_{n}\right)
$$

where $\mathbf{v}=(x, y, z)^{T}$ and

$$
F\left(\mathbf{v}_{n}\right)=\left(\begin{array}{c}
x_{n}+a h\left(x_{n}-y_{n}\right) \\
y_{n}+\left(r x_{n}-x_{n} z_{n}-y_{n}\right) h \\
z_{n}+\left(x_{n} y_{n}-b z_{n}\right) h
\end{array}\right)
$$

(a) find equilibrium points given $a=10, b=8 / 3, r=28$ and $h=0.1$.
(b) Check stability.
(c) Plot the response using iterative approach and Matlab starting from $x_{0}=1.2, y_{0}=1.3, z_{0}=$ 1.6 .

