Introduction to Scientific Computing LINEAR ALGEBRA

Exercise 1: Basis of vector space

(a) Can vectors $(1,1,0,0),(0,1,1,0),(0,0,1,1)$ and $(1,0,0,1)$ be a basis in vector space defined by tuples $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ taking real values? Prove.
(b) Can vectors $(2,1)$ and $(1,-4)$ be a basis in \mathbb{R}^{2} ? If yes, then represent the vector $(0,9)$ in specified basis. Compare the last representation with the one given in basis $(1,0)$ and $(0,1)$. What is the difference between them? Which one is more suitable for numerical practice?

Exercise 2: Subspace

(8 points)
(a) Prove that the span of vectors $(1,-1,0),(0,1,-1)$ coincides with the subspace of \mathbb{R}^{3} consisting of all vectors (a, b, c) with $a+b+c=0$.

Exercise 3: Vector norm
(6 points)
Take functions $f(t)=t^{2}-1$ and $g(t)=t+1$ in real argument t. Compute absolute error $\varepsilon_{a}^{I}(t)$ between them for each value of $t \in[-1,1]$. Plot both of functions on this interval, as well as error. Now compute absolute error $\varepsilon_{a}^{I I}$ on whole interval by taking norms $\|\cdot\|_{1,2, \infty}$. Can you explain relation between $\varepsilon_{a}^{I}(t)$ and $\varepsilon_{a}^{I I}$?
Exercise 4: Matrix norm
(12 points)
a) Prove

$$
\|x\|_{\infty} \leq\|x\|_{2} \leq\|x\|_{1} \leq \sqrt{n}\|x\|_{2} \leq n\|x\|_{\infty}
$$

b) Prove

$$
\frac{1}{d}\|A\|_{\infty} \leq \frac{1}{\sqrt{d}}\|A\|_{2} \leq\|A\|_{1} \leq \sqrt{d}\|A\|_{2} \leq d\|A\|_{\infty}
$$

with $A \in \mathbb{R}^{d, d}$

