Introduction to Scientific Computing
 Homework 11 Jordan normal form

Exercise 1: Jordan normal form in solving difference equations
Given a difference equations system

$$
\mathbf{x}_{n+1}=\mathbf{A} \mathbf{x}_{n}
$$

with

$$
\mathbf{A}=\left(\begin{array}{ccc}
-3 & -6 & 6 \\
1 & 0 & 6 \\
0 & -1 & 4
\end{array}\right)
$$

(a) Compute the eigenvalues and corresponding (generalized) eigenvectors of \mathbf{A}, state the algebraic multiplicity and geometric multiplicity(number of corresponding eigenvectors) of the eigenvalues.
(b) Write out the Jordan matrix \mathbf{J}, and the matrix \mathbf{M}, so that $\mathbf{A}=\mathbf{M} \mathbf{J M}^{-1}$.
(c) Write out the general solution of the difference equations system.

Exercise 2: Jordan normal form in solving ODE system
Given an ODE system

$$
\frac{d \mathbf{u}}{d t}=\mathbf{A} \mathbf{u}
$$

with

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & -1 \\
1 & 4
\end{array}\right)
$$

(a)

Compute the eigenvalues and corresponding (generalized) eigenvectors of \mathbf{A}.
(b) Write out the Jordan matrix \mathbf{J}, and the matrix \mathbf{M}, so that $\mathbf{A}=\mathbf{M} \mathbf{J} \mathbf{M}^{-1}$.
(c) Write out the general analytical solution of the ODE system (Hint: in case of deriving from an analogy of difference equations, take $\Delta t=0$ in this analytical solution).

