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This paper reviews the currently available computational contact formulations within the
framework of isogeometric analysis (IGA). As opposed to conventional Lagrange discretiza-
tions, IGA basis functions feature higher and tailorable inter-element continuity, which trans-
lates into evident advantages for the description of interacting surfaces, especially in pres-
ence of large displacements and large sliding. This has recently motivated the proposal of
several isogeometric contact treatments, based on different ways to incorporate the contact
contribution into the variational form of a continuum mechanics problem and to formulate its
discretized version. After a brief overview of conventional and isogeometric basis functions
as well as conventional contact mechanics approaches, the available isogeometric contact for-
mulations are examined. Attention is paid to the favorable and unfavorable features they share
with their finite element counterparts, as well as to the consequences stemming from the use
of IGA basis functions. The main needs for future research emerging from the current state
of the art are outlined.

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Isogeometric analysis (IGA) was recently introduced by Hughes and coworkers (Hughes et
al., 2005, Cottrell et al. 2009) with the primary original purpose to enable a tighter connection
between computer aided geometric design (CAGD) and finite element analysis (FEA). By
simplifying the cost-intensive computational model generation process, involving geometry
clean-up, feature removal and mesh generation required for standard FEA, and leading to a
seamless integration of CAGD and FEA tools, IGA meant to reduce or eliminate the major
bottleneck in engineering analysis procedures. Within the IGA framework, the same smooth
and higher order basis functions, e.g., non-uniform rational B-splines (NURBS) or T-splines,
are used for the representation of the exact CAD geometry and for the approximation of the
FEA solution fields.

∗ Corresponding author E-mail: l.delorenzis@tu-braunschweig.de, Phone: +49 531 391 94350, Fax:
+49 531 391 94399

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



86 L. De Lorenzis, P. Wriggers, and T.J.R. Hughes: Isogeometric contact: a review

Independently from the achievement of the original goal, IGA turned out to exhibit in-
creased accuracy and robustness on a per-degree-of-freedom basis in comparison to standard
finite element methods (FEM) (Evans et al. 2009, Grossmann et al. 2012) and to deliver
a number of additional advantages in several areas of computational mechanics. Contact
mechanics, which is the focus of the present paper, is one of these areas. Here the higher
order and higher and tailorable continuity of IGA basis functions lead to evident potential ad-
vantages in the description of interacting surfaces undergoing large displacements and large
sliding, as recognized already in the first IGA paper (Hughes et al. 2005). Thus, several
computational contact formulations within the IGA framework have been developed in the
past few years. Clearly, the majority of these formulations directly originate from the contact
treatments currently available in the realm of FEM. As a result, they share the favorable and
unfavorable sides of their FEM counterparts, while taking advantage of the specific properties
of IGA basis functions.

The purpose of this paper is to summarize the main documented contributions in the field
of isogeometric contact and thus derive a systematic classification of the tested isogeometric
formulations, along with their FEM counterparts. Such a classification goes hand in hand with
the exploration of the desirable and undesirable features of the various formulations, which in
turn naturally leads to the definition of future research needs in the framework of isogeometric
contact. Throughout the paper, the focus is on large deformation contact in quasi-static con-
ditions using implicit methods, unless otherwise specified. The paper is organized as follows:
Section 2 comparatively reviews the main properties of the basis functions used in IGA and
FEM, with special emphasis on the properties relevant for contact computations. Section 3
reviews the main contact treatments within the FEM framework, devoting special attention to
the FEM counterparts of available IGA contact formulations. The main drawbacks stemming
from non-smooth discretizations are highlighted and the remedies proposed before the advent
of IGA are briefly reviewed. Section 4 presents the currently available isogeometric contact
formulations and points out their similarities and differences with respect to their FEM coun-
terparts. The well-known Hertz example is revisited to exemplify the influence of each single
property of IGA basis functions on results. A rotating ironing example is also briefly illus-
trated. In Section 5, isogeometric domain decomposition approaches as well as extensions
and applications of isogeometric contact formulations are reviewed. Finally, suggestions for
research needs emerging from the previous review are set forth in Section 6 which concludes
the paper.

2 Basis functions and parameterizations in FEM and IGA: main

properties and differences

In this section we overview the main properties of the most common basis functions used in
FEM and IGA and of the corresponding parameterizations applied for the discretization of the
continuum geometry. In both FEM and IGA, uni- and bi-variate parameterizations represent
contact curves/surfaces respectively in 2D and 3D settings, and these are inherited respectively
from the bi- and tri-variate parameterizations of the continuum in a straightforward fashion.
In the following, ds and dp denote the dimensions of the physical and of the parametric space,
respectively. Within an isoparametric approach, the same parameterizations are adopted for
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the field of the unknowns. In the large deformation framework, this leads to a significant
impact of the properties of the basis on the quality of the results.

For FEM, classical and hierarchical Lagrange basis functions are touched upon. Further
details can be found e.g. in Szabó and Babus̆ka 1991, Szabó et al. 2004. The IGA overview
includes Bernstein, B-spline and NURBS basis functions with the corresponding Bézier, B-
spline and NURBS parameterizations. Although IGA is based on NURBS, examination of
their antecedents serves to elucidate the role of single properties of the basis functions on
the results of contact analyses (see Section 4.5). Further details and extensive references
can be found in Piegl and Tiller (1996) and Rogers (2001). For the sake of completeness,
isogeometric parameterizations enabling local refinement are mentioned along with relevant
references.

2.1 Lagrange, Bernstein/Bézier, B-spline and NURBS basis functions and pa-

rameterizations

2.1.1 Lagrange basis functions and parameterizations

The classical univariate Lagrange basis functions on the parametric domain −1 ≤ ξ ≤ 1 are
given by

Li,p (ξ) =

p+1∏
j=1,j �=i

ξ − ξj
ξi − ξj

(1)

with i = {1, 2, ..., p+ 1} and p as the polynomial degree. The points ξj where

Li,p (ξj) = δij (2)

with δij as the Kronecker’s delta, are called nodes. These are polynomial functions which

constitute a partition of unity, i.e.
∑p+1

i=1
Li,p (ξ) = 1 for all −1 ≤ ξ ≤ 1. They assume both

positive and negative values within the domain. Due to eq. (2), the basis is interpolatory at
the nodes.

Every function that can be represented as a linear combination of the standard Lagrange
basis can also be represented by a set of hierarchical basis functions, whereby all lower-
order functions are contained in the higher order basis (Szabó and Babus̆ka 1991). Hierarchic
approximation spaces are created by using the tensor product space of integrated Legendre
polynomials. Thus, different polynomial degrees can be used in each spatial direction to ob-
tain anisotropic approximation spaces. Compared to Lagrange polynomials, these hierarchic
shape functions lead to better conditioned system matrices.

Contrary to the classical h-version of the FEM, the p-version (Szabó and Babus̆ka 1991,
Szabó et al. 2004) reduces the error of the approximation by increasing the polynomial degree
of the shape functions locally or globally, and not by refining the mesh. Enlarging the element
dimensions requires special attention to the representation of curved boundaries. These can
be described exactly using the blending function method (Gordon and Hall 1973, Szabó and
Babus̆ka 1991, Düster et al. 2001), which introduces a non-isoparametric mapping.

Both classical and hierarchical Lagrange parameterizations achieve C0 continuity at the
inter-element boundary, which in an isoparametric context applies to both the geometry and
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the unknown displacement field. With the blending function method, geometric continuity at
the boundary of the domain depends on that of the exact geometry, whereas the displacement
approximation is still C0 continuous.

2.1.2 Bernstein basis functions and Bézier parameterizations

A Bernstein polynomial basis of degree p is defined as

Bi,p (ξ) =
p!

(i − 1)! (p− i+ 1)!
ξi−1 (1− ξ)

p−i+1 (3)

with i = {1, 2, ..., p+ 1}, on the parametric domain 0 ≤ ξ ≤ 1. These are polynomial
functions which constitute a partition of unity, i.e.

∑p+1

i=1
Bi,p (ξ) = 1 for all 0 ≤ ξ ≤ 1.

They are point-wise non-negative, i.e. Bi,p (ξ) ≥ 0 for all i, p and 0 ≤ ξ ≤ 1. It is B1,p (0) =
Bp+1,p (1) = 1, i.e., the basis is interpolatory at the ends of the domain.

Multivariate Bernstein basis functions are generated through the tensor product of the uni-
variate ones. Denoting the univariate basis functions in each parametric direction d = 1...dp
as Bd

id,pd
, the multivariate basis functions Bi,p (ξ) are obtained from

Bi,p (ξ) =

dp∏
d=1

Bd
id,pd

(
ξd
)

(4)

where the multi-index i =
{
i1, ..., idp

}
denotes the position in the tensor product structure,

p = {p1, ..., pd} indicates the polynomial degree, and ξ =
{
ξ1, ..., ξdp

}
is the vector of

the parametric coordinates in each parametric direction d. Tensor product multivariate basis
functions inherit all the key features of their univariate progenitors. Once the Bernstein basis
functions are available, a Bézier curve can be constructed as their linear combination

C (ξ) =

p+1∑
i=1

PiBi,p (5)

where Pi ∈ R
ds are the so-called control points. Bézier surfaces and solids are obtained for

dp = 2 and dp = 3, respectively, from a linear combination of multivariate Bernstein basis
functions and control points as follows

S (ξ) =
∑
i

PiBi,p (ξ) (6)

where the summation is extended to all combinations of the multi-index i. Bézier curves
(surfaces, solids) are a special case of B-spline curves (surfaces, solids) described in the next
sub-section.

The combination of some of the basis function properties leads to interesting additional
properties, namely:
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• the convex hull property. A Bézier curve is completely contained within the convex hull
defined by its control points. For a curve of degree p, the convex hull is defined as the
union of all of the convex hulls formed by p + 1 successive control points. The same
property is also possessed by Bézier surfaces;

• the variation diminishing property. No plane has more intersections with a Bézier curve
than it has with its control polygon. Interestingly, there is no known variation diminishing
property for surfaces.

2.1.3 B-spline basis functions and parameterizations

A B-spline basis of degree p is generated based on a sequence of real numbers called a knot
vector

Ξ = {ξ1, ..., ξm+p+1} (7)

where ξ1 ≤ ξ2 ≤ ... ≤ ξm+p+1, each ξj ∈ R is a knot, and m is the number of basis functions.
Moreover m − p is the number of inner knot spans, some of which may possibly have zero
length if they are bounded by repeated inner knot vector entries. In the so-called open knot
vectors, the first p + 1 knots are equal and the last p + 1 terms are equal. Very often ξ1 = 0
and ξm+p+1 = 1.

Based on the knot vector Ξ and order p, the univariate B-spline basis functions Bi,p (ξ)
with i = {1, 2, ...,m} are obtained from the so-called Cox-de Boor recursion formula (Piegl
and Tiller 1996). Starting from p = 0 where

Bi,0 (ξ) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise
(8)

the basis functions for p > 0 are obtained from

Bi,p (ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1

Bi+1,p−1 (ξ) (9)

introducing the convention 0/0 = 0. These functions are piecewise polynomials and some
of their important properties are summarized below. They constitute a partition of unity, i.e.∑m

i=1
Bi,p (ξ) = 1 for all ξ1 ≤ ξ ≤ ξm+p+1. They are point-wise non-negative over the entire

domain, i.e. Bi,p (ξ) ≥ 0 for all i, p, and ξ1 ≤ ξ ≤ ξm+p+1. Their continuity depends on Ξ
only. If Ξ has no repeated interior knot, then the order-p basis functions Bi have continuity
Cp1 at the knots. If a knot has multiplicity k, the smoothness of the B-spline basis is Cp−k

at that knot. When the multiplicity of a knot is exactly p, the continuity of the basis function
becomes C0 and the basis becomes interpolatory at that knot. In particular, open knot vectors
lead to a basis that is interpolatory at the ends of the domain. Finally, they have local support,
meaning that the support of an order-p basis function is always p+ 1 knot spans.

Multivariate B-splines are generated through the tensor product of univariate B-splines. In
a dp-dimensional parametric space, dp univariate knot vectors are needed

www.gamm-mitteilungen.org c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



90 L. De Lorenzis, P. Wriggers, and T.J.R. Hughes: Isogeometric contact: a review

Ξd =
{
ξd1 , ..., ξ

d
md+pd+1

}
(10)

where pd is the polynomial degree in the parametric direction d, andmd is the associated num-
ber of basis functions. Denoting the univariate basis functions in each parametric direction d
as Bd

id,pd
, the multivariate basis functions Bi,p (ξ) are obtained from

Bi,p (ξ) =

dp∏
d=1

Bd
id,pd

(
ξd
)

(11)

Once again tensor product multivariate basis functions inherit all the key features of their
univariate progenitors.

Note that, within IGA, in the univariate case one knot span plays the role of an element in
standard FEM. Therefore, unlike Lagrange and Bézier basis functions which have support on
one element, the B-spline basis is defined globally on a patch (i.e. the collection of a number
of elements m−p equal to the number of knot spans in the knot vector) and each function has
support on p+1 elements. Elements may have zero size if they are bounded by repeated knots.

In the multivariate case, the quantity
∏dp

d=1
(md − pd) is the number of elements defined by

the parameterization, some of which may possibly have zero area if they are bounded by
repeated inner knot vector entries in at least one parametric direction. These elements are

referred to as Bézier elements. Each basis function has support on
∏dp

d=1
(pd + 1) elements.

Once the B-spline basis functions are available, a B-spline curve can be constructed as their
linear combination

C (ξ) =
m∑
i=1

PiBi,p (12)

B-spline surfaces and solids are obtained for dp = 2 and dp = 3, respectively, from a linear
combination of multivariate B-spline basis functions and control points

S (ξ) =
∑
i

PiBi,p (ξ) (13)

where the summation is extended to all combinations of the multi-index i. From the properties
of the B-spline basis functions follow analogous properties of B-spline curves and surfaces.
In general, in all these entities there will be at least as many continuous partial derivatives
in parametric direction d across an element boundary as the basis functions have across the
corresponding knot value in Ξd. Another property inherited from the basis is that of locality:
due to the compact support of the basis functions, moving a single control point will affect

the geometry of no more than
∏dp

d=1
(pd + 1) elements. Also, B-spline curves and surfaces

possess the convex hull property such as Bézier curves and surfaces, and B-spline curves
possess the variation diminishing property such as Bézier curves.
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2.1.4 NURBS basis functions and parameterizations

The main reason why NURBS are introduced is that, unlike B-splines, they allow for an
exact construction of conic sections such as circles and ellipses. NURBS basis functions are
obtained from a projective transformation of their B-spline progenitors in R

ds+1. Univariate
NURBS basis functions Ni,p (ξ) are given by

Ni,p (ξ) =
wiBi,p (ξ)∑m

j=1
wjBj,p (ξ)

(14)

where Bi,p are B-spline basis functions and wi > 0 are the corresponding weights. NURBS
basis functions inherit the key features of their B-splines progenitors, namely, partition of
unity, point-wise non-negativity, and local support over p + 1 knot spans. Also, their conti-
nuity in each parametric direction follows from the knot vectors Ξi exactly as illustrated for
univariate B-spline basis functions. Multivariate NURBS basis functions are also obtained in
tensor product form as

Ni,p (ξ) =
wiBi,p (ξ)∑
j wjBj,p (ξ)

(15)

Also in this case, tensor product multivariate basis functions inherit all the key features of

their univariate progenitors. The parameterization defines
∏dp

d=1
(md − pd) Bézier elements,

with each basis function having support on
∏dp

d=1
(pd + 1) elements.

Once the NURBS basis functions are available, a NURBS curve can be constructed as their
linear combination

C (ξ) =

m∑
i=1

PiNi,p (16)

NURBS surfaces and solids are obtained for dp = 2 and dp = 3, respectively, as follows

S (ξ) =
∑
i

PiNi,p (ξ) (17)

Finally, NURBS curves and surfaces possess the same continuity, locality, and convex hull
properties illustrated earlier for Bézier and B-spline curves and surfaces. Also, NURBS curves
possess the variation diminishing property such as Bézier and B-spline curves.

2.1.5 Summary

Table 1 summarizes the main properties of the basis functions overviewed in this section,
whereas Figure 1 illustrates an example of basis functions with p = 2 corresponding to
a parametric domain [0, 1] subdivided into two equal elements. Using the Lagrange and
Bernstein bases, p + 1 functions are defined on each element, whereas in the B-spline and
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NURBS parameterizations the two elements constitute a patch defined by the knot vector
Ξ = {0 0 0 0.5 1 1 1}, on which m = 4 basis functions are defined. The properties of the
basis functions indicated in Table 1 are clearly observable in the figure, and the comparison
between Figures 1b and 1c demonstrates the role of the weights chosen for the NURBS basis
functions.

Partition Sign Inter-el. Interpolatory Convex hull/
of unity continuity at the Var. dim.

Lagrange yes any C0 nodes no
Bernstein yes ≥ 0 C0 inter-el. boundary yes
B-splines yes ≥ 0 Cp−1 (∗) patch boundary yes
NURBS yes ≥ 0 Cp−1 (∗) patch boundary yes

Table 1 Main properties of the basis functions illustrated in Section 2. (∗) At unique knots.

a) b)

c) d)

Fig. 1 (online colour at: www.gamm-mitteilungen.org) Lagrange (a), Bernstein (b), B-Spline (c) and
NURBS (d) basis functions of degree p = 2 on a two-element parametric space (ξ = 0.5 corresponds
to the element boundary). For B-splines and NURBS, the knot vector is Ξ = {0 0 0 0.5 1 1 1}. The
NURBS basis functions have been assigned weights w1 = 1, w2 = 0.3, w3 = 0.5, w4 = 1.

2.2 Isogeometric parameterizations with local refinement capabilities

Due to their tensor product nature, NURBS parameterizations are not amenable to local re-
finement. In order to overcome this limitation, several alternative technologies have been pro-
posed. While a detailed examination of the available options is outside the scope of this con-
tribution, the most developed techniques at the current state of research are analysis-suitable
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T-splines (Bazilevs et al 2010, Scott et al. 2012), hierarchical B-splines (Vuong et al. 2011,
Schillinger et al. 2012) and the recently proposed isogeometric spline forests (Scott et al.
2014). T-splines have already been tested for contact computations, as will be illustrated later.

Implementationally convenient NURBS and T-spline finite element data structures are de-
rived from the Bézier extraction concept (Borden et al. 2011, Scott et al. 2011). As in tra-
ditional finite element analysis, the extracted Bézier elements are defined in terms of a fixed
set of polynomial basis functions, the so-called Bernstein basis. The Bézier elements may be
processed in the same way as in a standard finite element computer program, utilizing exactly
the same data processing arrays. In fact, only the shape function subroutine needs to be mod-
ified, all other aspects of a finite element program remaining the same. A byproduct of the
extraction process is the element extraction operator. This operator localizes the topological
and global smoothness information to the element level, and represents a canonical treatment
of T-junctions, referred to as “hanging nodes” in finite element analysis and a fundamental
feature of T-splines.

3 Before IGA: contact formulations for C0 discretizations and

smoothing techniques

Despite the progress made in the implementation of contact algorithms in commercial codes,
the efficient numerical solution of large deformation, large slip multi-body contact problems
is still a significant challenge and thus intense research is still going on in the area of compu-
tational contact mechanics (Wriggers and Zavarise 2011). The main difficulties are related to
high non-linearity and non-smoothness, potential ill-conditioning, and heavy computational
costs associated with contact detection.

Treatment of contact constraints within either FEM or IGA entails two main aspects. The
first aspect is the choice of the method to be used for the enforcement of the contact con-
straints, the most popular options being the Lagrange multiplier method, the penalty method
and combinations of these two such as augmented Lagrange methods. Well-known draw-
backs of penalty-based formulations are unphysical penetrations and bad conditioning of the
system of equations. On the other hand, the Lagrange multiplier method and the augmented
Lagrange multiplier approach in the form proposed by Alart and Curnier (1991) introduce
additional unknowns, whereas the augmented Lagrange multiplier method based on Uzawa’s
algorithm requires an additional augmentation loop. Many more details can be found in the
classical textbooks by Laursen (2002) and Wriggers (2006). Any of the aforementioned meth-
ods can be used in combination with any of the formulations presented in the next sections,
regardless of whether FEM or IGA discretizations are used. Therefore this aspect will not be
further explored in this paper.

The second aspect is the choice of the way the contact surfaces are parameterized, incor-
porated into the variational formulation of the problem and discretized. The importance of
this topic is driven by the need to cope with non-conforming discretizations across contact-
ing boundaries and/or large deformation and large sliding cases. This paper focuses on this
second aspect. This section outlines the main discretized formulations developed to date in
the FEM framework, with special attention to those for which isogeometric counterparts have
been developed. The latter will then be the subject of Section 4.
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3.1 A brief overview of FEM contact formulations

In the following, a brief overview of the main available FEM contact formulations is pre-
sented, paying attention to two important features, namely, the contact patch test performance
and the stability. Fulfillement of the contact patch test, first introduced by Taylor and Pa-
padopoulos (1991), ensures the decrease of the discretization error at the contacting surfaces
upon mesh refinement. Satisfaction of the so-called inf-sup or Ladyzenskaja-Babus̆ka-Brezzi
(LBB) stability condition is an important requirement for mixed formulations, such as those
stemming from the contact constraint enforcement with the Lagrange multiplier method. Al-
gorithms that do not fulfil this condition can be solvable if a penalty formulation is used,
however may suffer from lack of robustness and significant numerical errors especially for
large values of the penalty parameter.

One of the first discretization techniques for large deformation contact problems with non-
matching meshes is the node-to-surface (NTS) algorithm (also called node-to-segment in 2D),
which is still of pervasive use in commercial finite element codes. Here the contact constraints
are enforced between a node of one contact surface (denoted as “slave”) and the corresponding
surface or edge on the counterpart contact surface (the so-called “master”), which effectively
corresponds to collocating the contact integrals at the slave nodes. Early implementations are
reported in Hughes et al. (1976, 1977) and Hallquist (1979), and have been extended to more
general cases in Bathe and Chaudhary (1985), Hallquist et al. (1985), Wriggers and Simo
(1985), Benson and Hallquist (1990), Wriggers et al. (1990), and Papadopoulos and Taylor
(1992); see also the review in Zavarise and De Lorenzis (2009a). Obviously, an active set
strategy is needed so that only the contributions of slave nodes with a closed gap (i.e. active
contact) are included.

While simple and computationally inexpensive, the NTS formulation is unable to satisfy
the contact patch test. As shown by Zavarise and De Lorenzis (2009b), this stems from the fact
that within this collocated approach the contact pressures are transferred from the slave to the
master surface in the form of concentrated forces at the slave nodes, which leads to violation
of the balance of moments at the element level. Attempts to restore local equilibrium (such as
in El-Abbasi and Bathe 2001 and Zavarise and De Lorenzis 2009b in a 2D setting) effectively
go in the direction of transforming the NTS into a segment-to-segment approach. Note that
this local moment imbalance is also one reason why the NTS approach is generally used in
conjunction with linear elements (Crisfield 2000). Because of the non-uniform distribution of
nodal forces associated with higher order shape functions in presence of a uniform stress field,
fulfilment of the patch test is even more difficult with higher order discretizations, which may
lead to unnatural distortion of the mesh close to the contacting surfaces.

The NTS algorithm can be proved to be LBB stable (El-Abbasi and Bathe 2001), regardless
of whether the finer or the coarser of the two contacting meshes is treated as slave. Its two-
pass version, whereby the contact contribution to the weak form is evaluated and incorporated
twice while switching the roles of slave and master surfaces, passes the contact patch test but
is overconstrained and therefore LBB-unstable. The two-pass version has been developed to
alleviate a further drawback of the NTS formulation, i.e. the strong dependency of results on
the discretization and on the choice of the slave body due to the biased role of the slave and
master surfaces.
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Finally, it is worth noting that, in nodal constraint approaches, recovery of the contact
traction is not trivial, since this traction is not included explicitly in the formulation but re-
constructed after the analysis. This is done e.g. with the so-called tributary area approach,
whereby a contact force generated by a constraint is divided by a tributary area to provide a
contact traction at that node. The accuracy of the resulting contact pressures is however open
to question.

Due to the drawbacks of NTS formulations, several other methods have been developed,
where the contact integral is no longer collocated at the slave nodes and the contact con-
straints are enforced in an integral manner. Early methods of this type are often referred to as
surface-to-surface (STS) approaches (or segment-to-segment in 2D). A perturbed Lagrangian
formulation first introducing integration over contact segments in 2D was proposed by Simo
et al. (1985). Here a piecewise constant approximation of the contact pressure, discontinu-
ous across contact segments, leads to the enforcement of the contact constraints in an average
sense on each contact segment. Further segment-to-segment approaches were proposed by
Papadopoulos and Taylor (1992) using quadratic elements in 2D, Papadopoulos and Taylor
(1993) using bilinear elements in 3D, and Zavarise and Wriggers (1998) and El Abbasi and
Bathe (2001) using 2D linear elements. These approaches typically employ the so-called in-
termediate contact surfaces, over which contact quantities can be defined and discretized, and
adopt mixed methods with the contact pressure as the second field variable, so that a well-
defined traction distribution is obtained with no need for ad-hoc post-processing schemes.

STS formulations pass the contact patch test thanks to the appropriate definition of in-
termediate surface segments. However, most of them do not fulfil the LBB stability condi-
tion (El-Abbasi and Bathe 2001). Very similar characteristics are exhibited by more recently
developed formulations based on the enforcement of the contact constraints at an arbitrary
number of contact quadrature points located along the contact surface (Fischer and Wriggers
2005, 2006). In other words, the contact contribution to the weak form is here integrated
in a straightforward fashion by locating a predetermined number of Gauss-Legendre quadra-
ture points on each element of the slave contact surface. Obviously, only the contributions of
quadrature points with a closed gap (i.e. active contact) are included. In the following, this
approach will be denoted as Gauss-point-to-surface (GPTS). Note that in this case the patch
test is satisfied only up to within the integration error, as no intermediate surface is introduced
and therefore no segmentation for the evaluation of the contact integral is performed. This
makes the approach particularly simple to implement. Another advantage of this formulation
is that the contact surface is qualitatively well captured even with a low number of elements,
unlike in the alternative formulations. This formulation was first proposed for 2D linear and
quadratic elements. Later, Franke et al. (2010, 2011) adopted a similar approach using higher
order hierarchical shape functions (see Section 2.1.1) and describing the (undeformed) circu-
lar geometry of the Hertz contact example exactly with the blending functions method. Their
focus was on the use of adaptive mesh refinement and node relocation so as to accurately
capture the boundary between contact and no-contact regions and thus avoid spurious oscil-
lations of the contact pressures at this boundary. Further considerations on this aspect will be
reported in Section 4.5.

Papadopoulos et al. (1995) proposed an alternative GPTS formulation, whereby two loops
are performed treating each surface alternatively as slave and master. The same formula-
tion was recovered from a very general framework based on surface potentials by Sauer
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and De Lorenzis (2013), who denoted the approach as “two half-pass formulation” (here-
after GPTS-2hp), as opposed to the classical GPTS procedure termed “full-pass”. In each
loop (“half-pass”), the contact tractions are computed only on the surface currently treated
as slave. Therefore, no transfer of tractions to the master side is needed. Local equilibrium
at the surfaces is not enforced a priori but was shown to be recovered with high accuracy.
The advantages of the two-half pass approach are the unbiased treatment of both surfaces, as
well as an increased degree of robustness observed in the numerical computations (Sauer and
De Lorenzis 2013). The GPTS-2hp passes the contact patch test to machine precision but is
clearly LBB-unstable.

A further improvement has been more recently introduced with the advent of the so-called
mortar methods, originally developed as an abstract approach for domain decomposition
(Bernardi et al. 1993, 1994). Contact discretizations falling within this framework are charac-
terized by the enforcement of the contact constraints in a weak sense. With this respect, they
are similar to STS approaches, however their strength lies in the rigorous mathematical back-
ground, which allows a variationally consistent treatment of non-penetration and frictional
sliding conditions, and which guarantees optimal convergence rates. In a sense, mortar meth-
ods deliver a form of intrinsic algorithmic smoothing through their non-local enforcement of
the contact constraints. Early applications of mortar finite element methods for contact me-
chanics can be found in Belgacem et al. (1998), Belgacem (2000), Hild (2000), McDewitt
and Laursen (2000), and Wohlmuth and Krause (2003) among others. Extensions and further
developments for large deformation problems can be found e.g. in Yang et al. (2005), Puso
and Laursen (2004), Hesch and Betsch (2009), and Tur et al. (2012).

Within Lagrange multiplier formulations, the so-called dual shape functions (Wohlmuth
2000, 2001) have been proposed to discretise the Lagrange multiplier space, which enables
the condensation of the multipliers without compromising the optimality of the method. The
resulting algorithm, presented in Hüeber and Wohlmuth (2005) for small deformation contact,
fulfills the non-penetration condition exactly but, in contrast to standard Lagrange multiplier
formulations, does not increase the size of the global problem. In Hartmann et al. (2007)
and Hartmann and Ramm (2008) this approach was extended to the kinematically non-linear
setting. The consistent linearisation of the contact terms was first given in Popp et al. (2009),
whereas a correction for the consistent treatment of boundaries was presented in Cichosz and
Bischoff (2011).

Mortar methods simultaneously satisfy patch test and LBB stability requirements (Puso et
al. 2008, Hesch and Betsch 2009, Hüeber and Wohlmuth 2009). Their only drawback with
respect to the previously reviewed formulations is the higher computational cost, mainly stem-
ming from the computation of the so-called mortar integrals. Since some of these integrals
contain the product of shape functions defined on slave and master bodies, the need arises for
the introduction of an intermediate contact surface (such as in STS algorithms) and for seg-
mentation techniques, which however enable exact integration only for linear shape functions
in 2D. Segmentation is computationally expensive and leads to a very complicated consistent
linearization within Newton-Raphson iterative procedures (see e.g. Puso et al. 2008). The
alternative of a simplified integration with no segmentation has been pursued by e.g. Tur et
al. (2012). For an extensive review of mortar methods for contact problems in FEM see the
paper by Popp and Wall in this special issue.
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3.2 Issues stemming from C0 continuity and contact smoothing techniques

In this section we summarize the main issues raised by C0 continuity within the contact for-
mulations reviewed in the previous section. These are of interest for the purpose of the present
review, as they are naturally solved by the isogeometric parameterizations. We also review
the main techniques adopted in the conventional FEM setting to alleviate the issue of non-
smoothness; see also Laursen (2002) and Wriggers (2006) for a more detailed overview.

3.2.1 Issues stemming from C0 continuity

Within the NTS approach, the identification of the master surface or edge associated to a
given slave node is performed through closest-point (i.e., normal) projection and thus requires
the definition of the normal to the master surface. Undefined or non-uniquely defined nor-
mals at the inter-element boundaries as a result of the C0 continuity of the discretization lead
to pathological cases which require special treatments even in a 2D setting (Heegaard and
Curnier 1993, Zavarise and De Lorenzis 2009a). In the simplest case, averaging normals
between adjacent elements is carried out (Papadopoulos and Taylor 1992, Wang and Naka-
machi 1999). More refined treatments introduce a continuous change of the normal vector,
or weighted projections of a slave node onto more than one master segment (Liu et al. 1999,
Zavarise and De Lorenzis 2009a). In 3D, the need arises for special algorithmic treatments
tackling the node-to-edge and the node-to-node subcases beside the standard, well-defined
NTS projection cases (Bandeira et al. 2004). Even with incorporation of these special treat-
ments, numerical instabilities may occur, especially for applications involving large sliding,
due the non-smooth variation of the contact kinematic and kinetic variables as a slave node
slides over subsequent master facets. The resulting abrupt change in the direction of the
contact forces may generate unphysical oscillations in the results as well as serious iterative
convergence problems and even failure of the analysis.

Pathological projection cases can obviously also occur within GPTS and GPTS-2hp algo-
rithms, where the slave contact quadrature points rather than the slave nodes are projected.
The issues are the same as for the NTS approach and can be addressed with the same tech-
niques. Within mortar methods, the “non-local” normal gap evaluated at each slave node is
expressed in terms of a nodal normal, whose definition is a crucial ingredient of the formula-
tion as it also influences the way the segmentation procedure is conducted. Here most authors
(see e.g. Puso and Laursen 2004, Yang et al. 2005, Puso et al. 2008, Popp et al. 2009)
introduce a continuous normal field, which interpolates unique normals at each slave node
computed from the average or the weighted average of the normals to the surfaces surround-
ing the node. Accordingly, also unique unit tangential vectors are defined. Normal averaging
obviously also enters the linearization of the algorithm, and contributes significantly to its
complication.

Finally, the C0 continuity of the parameterization also affects the way frictional evolution
equations should be integrated as a node (or a contact quadrature point) slides across element
boundaries. The general definition of the tangential slip increment based on the increments of
the parametric projections only holds for globally C1 continuous parameterizations, so that
alternative choices must be performed when only C0 continuity is available (Lengiewicz et
al. 2010).
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3.2.2 Contact smoothing techniques

In order to alleviate the issues stemming from the C0 continuity of the discretized contact sur-
faces, various surface smoothing techniques for 2D and 3D deformable solids in contact have
been proposed. These techniques include Hermite (Pietrzak and Curnier 1999, Taylor and
Wriggers 1999, Padmanabhan and Laursen 2001), Bézier (Wriggers et al. 2001, Krstulovic-
Opara et al. 2002, Lengiewicz et al. 2010), and B-spline interpolations (Padmanabhan and
Laursen 2001), Gregory patches (Puso and Laursen 2002, Lengiewicz et al. 2010), subdivi-
sion surfaces (Stadler et al. 2003), and NURBS (Landon et al. 2009). For the special case
of the contact of a body with a rigid obstacle, various C1 continuous surfaces can be defined
directly from CAGD models of the rigid obstacle, such as in Hansson and Klarbring (1990)
and Heege and Alart (1996).

Smoothing procedures generally improve the performance of the contact algorithms by
enhancing the continuity of the contact master surface, in order to enable a unique definition
of the normal and tangent vector fields, whereas they leave the geometrical smoothness of
the slave surface unaltered. This leads to a C1 or even C2 continuous representation of the
master surface. C2 continuity is not needed for a smooth normal field but is important in the
dynamic setting, where accelerations are discontinuous at the inter-element boundaries if the
interpolation is only C1 continuous (Wriggers 2006).

These procedures lead in general to a more robust behavior of the iterative solution al-
gorithms for contact, since the normal and tangent fields are continuous and thus the issues
highlighted in Section 3.2.1 are solved. However, the design of a smoothed master surface
in addition to the existing finite element mesh, especially in 3D cases, is far from trivial.
Moreover the relationship between real and smoothed geometry needs to be linearized for im-
plicit calculations. Thus smoothing leads to additional complications in the implementation
and data management, and can in some cases even compromise the banded structure of the
stiffness matrix (Padmanabhan and Laursen 2001).

Obviously, smoothing procedures do not increase the order of spatial convergence since the
higher order approximations involve only the surface but not the bulk behavior of the solids.
In addition, due to the interaction of the bulk and surface discretizations in determining the
smoothness of the traction history curves for large deformation and large sliding problems,
the observed improvement in the quality of the contact response may be limited by the fact
that the higher order approximation does not involve the bulk behavior of the solid.

The approach by Konyukhov and Schweizerhof (2009) can be considered as a smoothing
technique as well. Therein, a single layer of higher order finite elements on the contact surface
is combined with a mesh with linear shape functions in the interior of the contacting bodies.
In the contact layer, the covariant contact description is used in combination with higher order
finite elements with a hierarchical enrichment of the shape functions space, which leads to
the exact representation of the contact boundaries by the blending function method (see also
Section 2.1.1). Computation of the classical Hertz contact problem showed that oscillations
can occur if the contact zone is located inside the master contact segment, as also obtained by
Franke et al. (2010, 2011) (see Section 3.1). In such cases, the reduction of the polynomial
order together with under-integration was found to improve the results, while not representing
a general method. The oscillations stem from the inability of the shape functions to approx-
imate contact pressures featuring non-smoothness within an element (a master segment), see
also Section 4.5.
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Also in Corbett and Sauer (accepted) contact smoothing is performed by a superficial layer
of elements with increased degree and smoothness combined with linear elements in the bulk
domain. Unlike in previous surface enriching techniques by the same group using Hermite or
Lagrange interpolations (Sauer 2013), here the formulation of the surface enriched elements
is based on IGA. Compared with full IGA formulations, the approach has the advantage of
a lower computational cost. However, the low-degree interpolation of the bulk obviously
prevents a higher order spatial convergence rate. Due to the use of an isoparametric approach,
this method can be considered intermediate between geometry enrichment of the surface layer
and fully isogeometric implementations.

Finally, an approach for time integration of frictional evolution equations capable of solv-
ing non-smoothness issues without introducing a geometry smoothing was proposed by Agelet
de Saracibar (1995). Time integration of frictional tractions is performed by introducing a new
assumed slip path parameterization, which is defined independently of the local surface finite
element parametrization. The assumed slip path can be viewed as an approximation to the
geodesic passing through the initial and final points of each incremental slip path. This elim-
inates the problems associated with large slip motions, whereby a full incremental slip path
does not lie within a single surface element.

4 Isogeometric contact formulations

In this section, we first analyze the main aspects shared by all isogeometric contact formu-
lations that differentiate them from their finite element counterparts. Clearly, these aspects
are linked to the properties of the basis functions and to the specific features of the isogeo-
metric setting. Subsequently, we review the isogeometric contact formulations available thus
far. Here it is observed that some aspects inherent to the contact formulations themselves,
such as patch test performance, stability and computational efficiency, do not change when
passing from the FEM to the IGA setting. A summary of FEM and IGA contact formulations
is reported in Table 2.

FEM IGA
NTS Hughes et al. (1976, 1977), Hallquist (1979), Matzen et al. (2013)

Benson and Hallquist (1990), etc.
Reviewed in Zavarise and De Lorenzis (2009a)

GPTS Fischer and Wriggers (2005, 2006) Temizer et al. (2011)
De Lorenzis et al. (2011)

Dimitri et al. (2014)
GPTS Papadopoulos et al. (1995) Lu (2011)
2hp Sauer and De Lorenzis (2013, submitted)

Mortar Belgacem et al. (1998), Hild (2000), Temizer et al. (2011, 2012)
Wohlmuth and Krause (2003), De Lorenzis et al. (2011, 2012)
Puso and Laursen (2004), etc.

Reviewed in Popp and Wall (this special issue) Kim and Youn (2012)

Table 2 Summary of contact formulations in the discretized setting.

www.gamm-mitteilungen.org c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



100 L. De Lorenzis, P. Wriggers, and T.J.R. Hughes: Isogeometric contact: a review

4.1 Aspects common to all isogeometric contact formulations

Geometry and displacement smoothness. A natural way of retaining the advantages of
surface smoothing while avoiding the drawbacks mentioned in Section 3.2 is to adopt a pa-
rameterization of both the geometry and the displacement field based on NURBS rather than
on Lagrange polynomials. Note that, within a large deformation contact setting, smoothness
of the geometry alone is not sufficient as the contact forces are computed in the deformed
configuration. For this reason, p-FEM approaches with blending functions representing the
geometry exactly do not perform as well as IGA (see also Section 4.5). With higher-order
IGA basis functions (of at least second order), controllable smoothness is naturally achieved.
This straightfowardly eliminates all pathological cases mentioned in Section 3.2 and thus also
the need for the corresponding special treatments.

Obviously, only the pathologies induced by the discretization are eliminated, whereas C0

features such as edges and corners embedded in the exact geometry still need to be dealt
with. One option to deal with such features is the use of ad-hoc techniques similar to those
used in FEM. An alternative option was proposed by Lu (2011). The premise is that NURBS
admit sharp corners through repeated knots, in particular, a degree-k NURBS will feature a
cusp at one location if the corresponding interior knot has a multiplicity of k. Thus, a sharp
corner can be smoothened by slightly perturbing the repeated knot. Since the control points
are unchanged and due to the convex hull property (Section 2), the perturbed curve remains
inside the convex polygon defined by the control points. The smoothened curve is at least C1

continuous, thus closest-point projection algorithms can be used everywhere.

Another situation where C0 continuity is obtained within IGA is at junctions between dif-
ferent patches. Cases where these junctions form edges and corners may be dealt with exactly
as C0 features in the real geometry. On the other hand, in cases where the real geometry is
smooth and C0 continuity is an artifact of the discretization, C1 continuity can be explicitly
enforced through suitable relationships between the displacements of adjacent control points
(Kiendl et al. 2009). The conversion of the NURBS multi-patch model to a single T-spline
model is perhaps a more compelling option (Sederberg et al. 2003).

In the frictional setting, the higher global continuity of the parameterization also permits a
straightforward integration of the frictional evolution equations, eliminating the need to keep
track of the sliding of a point across element boundaries as well as the need for complicated
assumed-path procedures such as the one mentioned in Section 3.2.2.

Patch-wise contact search. In the FEM setting, the contact detection (or local contact
search) is conducted essentially element-wise. Each point (node or contact quadrature point)
on the slave surface is associated with nearby elements of the master surface with which the
point is likely to come into contact and the closest-point projection is limited to these ele-
ments. In the large deformation setting, the relative positions of the two surfaces may change
significantly and thus the neighbour list needs to be updated as the solution proceeds. As
described in Section 2, in the IGA multi-patch framework the parameterization is global for
each patch and thus contact detection is carried out on the patch level. In most academic exam-
ples, but even for many practical applications, a contact surface can be described by a single
patch, hence the bookkeeping task is greatly reduced or even eliminated. Typically, the closest
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point projection is solved using Newton’s method. For a contact surface consisting of multi-
ple patches, this iterative search may land on a patch edge, in which case a patch-switching
mechanism needs to be implemented.

Note that the performance of Newton’s method is quite sensitive to the initial guess of
the projection point, especially for cases in which the second derivative is not continuous. If
the initial guess is far from the actual solution, indefinite oscillation between two results may
spoil the projection. In such cases, alternative methods such as the bisection method may be
used successfully. A possible strategy to start from a sensible initial guess would be to find
the closest physical location among the maps of the knot vector entries, and use this as initial
guess for the Newton-Raphson iterative procedure. Within a patch, C2 continuity, which can
be attained by cubic NURBS, may prove beneficial.

4.2 Point collocation approaches: the isogeometric NTS

In the isogeometric counterpart of the NTS approach, the contact contribution to the weak
form needs to be collocated at appropriate physical points. However, the question where to
collocate the contact integrals is not as trivial as in FEM, as the counterparts of the nodes, i.e.
the control points, are not necessarily part of the geometry due to the non-interpolatory nature
of the basis functions. The most natural option would be to collocate the contact integrals at
the physical points associated with the unique knot entries of the NURBS parameterization,
i.e. at the vertices of the Bézier elements on the slave surface. However, as unique knot entries
are generally fewer than the number of control points, this choice would lead to the number of
contact constraints being less than the number of degrees of freedom associated with the slave
surface, hence the contact formulation would be underconstrained. A better option, pursued
by Matzen et al. (2013) in the 2D frictionless setting, is collocation of the contact integrals
at a set of physical points in one-to-one correspondence with the control points associated to
the surface. Such sets are e.g. the Greville, Demko or Botella abscissae. Matzen et al. (2013)
focused on Botella and Greville abscissae whose locations are obtained straigthforwardly,
whereas Demko abscissae have to be computed by a complex iterative algorithm. A conver-
gence study of the Hertzian problem showed that for a contact area near the patch boundary
Greville points yield slightly better results.

A different approach was adopted by Benson et al. (2010a,b) within the commercial code
LS-DYNA (Hallquist 2006). Here the geometry of the contacting NURBS surfaces is approx-
imated using bilinear quadrilateral interpolation elements so that the existing FEM contact
formulations in LS-DYNA are immediately accessible. Each Bézier element may be approx-
imated by one or more interpolation elements, depending on the desired accuracy in the solu-
tion of the contact problem. While the slave surface is always approximated with interpolation
elements, the master surface may either be approximated or taken as the actual NURBS sur-
face. In the latter case a nonlinear closest-point projection procedure is needed, and a coarse
search on the interpolated elements is used to generate a reasonable initial guess. The contact
formulation is based on the single-surface algorithm by Benson and Hallquist (1990), which
corresponds to a two-pass NTS formulation combined with an efficient contact search scheme.

The isogeometric NTS formulation preserves the simplicity, but also the main typical dis-
advantages of an NTS algorithm. Perhaps the most notable of these is the inability to pass
the contact patch test. Moreover, the single-pass algorithm (such as in Matzen et al. 2013)
suffers from a strong dependency of results on the discretization and on the choice of slave
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and master surfaces, whereas the double-pass version (such as in Benson et al. 2010a,b) is
overconstrained. However, all disadvantages emanating from the non-smooth discretization
are naturally avoided, so that the robustness and the overall performance appear far superior
to those of NTS models in conventional FEM.

As mentioned in Section 3.1, recovery of contact pressures from an NTS approach is not
trivial, and especially so when higher order basis functions are used, therefore Matzen et al.
(2013) examined two different methods for obtaining stress distributions from the discrete
values of the Lagrange multipliers. In the first approach the contact stress is computed by
dividing the contact force at each control point by a tributary length. The second approach is
based on the inversion of the standard concept to compute discrete (consistent) nodal forces
from distributed loads. Both methods are based on the same input values, namely discrete
contact forces at the control points of the basis functions along the contact zone. Hence the
Lagrange multipliers need to be first distributed from the collocation points (where they are
computed) to the control points. The contribution of the Lagrange multiplier at one collocation
point to the contact force at a given control point is computed from its value multiplied by the
value of the basis function corresponding to the control point evaluated at the collocation
point. The discrete force at the control point is thus the sum of those contributions. Both
methods converge with increasing number of degrees of freedom to the analytical solution
(for the Hertz example). However, the first method provides a piece-wise constant stress
approximation which is rather crude considering that a higher order displacement solution is
available. In the second method, independently of the mesh, the numerical solution displays
an oscillating behavior with non-physical tensile contact stresses. The oscillations become
more localized at the end of the active contact region as the mesh is refined. The authors
attributed this behavior to the inability of high-continuity basis functions to capture the C0

continuity of the exact contact pressure distribution at the boundary between contact and no-
contact regions, similar to what observed by Konyukhov and Schweizerhof (2009) and Franke
et al. (2010, 2011) (Section 3.1). They thus successfully evaluated a knot relocation and
repetition procedure, similar to the node-relocation strategy used by Franke et al. (2010,
2011) (see also Section 3.1), to lower the continuity at the desired location and eliminate the
oscillations. However, a different recovery procedure for the contact pressures used in other
IGA contact formulations (see Section 4.5) will be shown to eliminate oscillatory behavior
completely in the same Hertz contact example.

Finally, the results of a classical ironing problem show that the NTS approach with NURBS
basis functions is able to produce nearly the same results, in terms of magnitude of the oscil-
lations in the traction histories, of a significantly more complex mortar approach with linear
basis functions, whereas for the same example with Lagrange basis functions no convergence
is achieved. In other words, the higher smoothness of the basis functions combined with the
simplest contact algorithm is able to attain the same quality of the global response obtained
through the algorithmic smoothing of the more sophisticated mortar method.

4.3 The isogeometric GPTS and GPTS-2hp

The isogeometric counterpart of the GPTS formulation, such as its parent version, is based on
the direct integration of the contact contribution to the weak form. Contact Gauss-Legendre
quadrature points are situated at predetermined locations along the slave contact surface and
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the constraints are enforced at all these locations. This approach was termed the “knot-to-
surface” algorithm in Temizer et al. (2011), however the contact constraints enforcement does
not take place at the physical location of the knot vector entries, which is the reason for the
alternate terminology adopted herein. This formulation was demonstrated in combination with
the penalty method in Lu (2011) and Temizer et al. (2011) for 2D and 3D frictionless contact
and was extended to the 2D frictional setting in De Lorenzis et al. (2012), where the approach
was denoted as “non-mortar.” Temizer et al. (2011) formulated and tested the extension to
thermomechanical contact. Lu (2011) also evaluated the GPTS-2hp formulation, as well as
a two-pass version (denoted subsequently as GPTS-2p), whereby the contact integral was
computed twice, switching the role of slave and master surfaces, but multiplied each time
by 0.5. More recently, the GPTS algorithm was adopted in a 2D and 3D frictionless setting
by Dimitri et al. (2014) in combination with T-spline basis functions to demonstrate the
advantages of local refinement.

As its FEM counterpart, the GPTS formulation in the isogeometric setting is characterized
by a remarkable simplicity of formulation and implementation, as well as by the possibility to
obtain qualitatively good results for very coarse meshes. Compared to the more sophisticated
mortar-based approaches, the algorithm is also computationally inexpensive as no quantities
such as mortar integrals are involved. The patch test behavior was demonstrated by Lu (2011).
As already noted for the FEM case, the GPTS-2hp was able to pass the contact patch test to
machine precision, whereas the GPTS and GPTS-2p accuracy was limited by the integration
error. Temizer et al. (2011) and De Lorenzis et al. (2011) showed that the overconstrained
nature of the GPTS formulation, as for standard Lagrange discretizations, typically leads to
oscillatory tractions for the Hertz problem, with oscillations of increasing magnitude as the
penalty parameter is increased. These oscillations were particularly significant for the fric-
tional Hertz example in De Lorenzis et al. (2011), due to the independent computations of
the slip increments and the associated contact tangential tractions at each contact quadrature
point. In Dimitri et al. (2014), the oscillations were alleviated through a smoothing post-
processing scheme (Sauer 2013). The issue of overconstraining for the GPTS-2hp, although
with NURBS-enriched contact elements rather than within a full IGA setting, was analyzed
more thoroughly by Sauer and De Lorenzis (submitted), where it was shown that the formu-
lation remained stable if the penalty parameter was increased along with the mesh density,
and once again smooth post-processed contact pressures in both the normal and the tangential
directions were obtained.

In the cited references, the direct comparisons between IGA and FEM results was quite lim-
ited, as the focus was placed on mortar methods, but the comparisons always favored the IGA
discretizations. In Dimitri et al. (2014) a convergence study conducted for T-splines showed
similar orders of convergence to uniform and non-uniform equal degree NURBS discretiza-
tions. Despite the absence of error estimation criteria to guide the local T-spline refinement,
the T-spline error curve was shown to lie below all the NURBS curves, thus demonstrating
the superior accuracy of T-splines for a given number of degrees of freedom. The authors
also reported a 3D example with a complex realistic geometry produced directly in a CAD
environment, without intermediate mesh generation, feature removal, or geometry clean-up
steps.
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4.4 The isogeometric mortar formulation

The isogeometric mortar contact formulation, such as its FEM counterpart, is not a colloca-
tion approach such as the NTS approach because the weak form of the contact constraints
is evaluated by numerical integration. On the other hand, the contact constraints are not en-
forced at each contact quadrature point on the slave surface such as in the GPTS approach, but
rather “projected” to the degrees of freedom of the slave surface, so that the right number of
constraints is obtained. For example in a frictionless setting, “mortar projected” normal gap
and normal pressure are computed at each control point of the slave surface and these have
to satisfy the contact constraints. Due to the non-interpolatory nature of the NURBS basis
functions, the slave control points in general do not lie on the physical slave surface, therefore
the mortar contact constraints do not have the immediate physical meaning that they possess
in the FEM setting. This however does not affect the consistency nor the performance of the
algorithm.

Mortar isogeometric contact formulations have been presented by Temizer et al. (2011)
and Kim and Youn (2012) in the 2D frictionless setting, by De Lorenzis et al. (2011) for 2D
friction, and extended to 3D by De Lorenzis et al. (2012) and Temizer et al. (2012) in the fric-
tionless and frictional settings, respectively. In these approaches the contact constraints were
enforced with the penalty (Temizer et al. 2011, De Lorenzis et al. 2011), Lagrange multiplier
(Kim and Youn 2012), and augmented Lagrangian methods either with Uzawa augmentations
(Temizer et al. 2012) or with the formulation proposed by Alart and Curnier (De Lorenzis et
al. 2012).

As in FEM, isogeometric mortar contact formulations satisfy both the patch test and the
LBB stability requirements. The patch test performance has been demonstrated by Kim and
Youn (2012), whereas the implications of stability have been discussed by Temizer et al.
(2011) and De Lorenzis et al. (2011). They showed the absence of oscillatory behavior in
the contact pressures as the penalty parameter was increased, in contrast to the results of the
GPTS formulation.

The mortar contact formulation was shown by Temizer et al. (2011, 2012) and De Lorenzis
et al. (2011, 2012) to deliver two categories of advantages over its FEM counterpart. First, the
quality of the local results, i.e. of the contact pressures (e.g. in the classical Hertz problem),
was found to be superior to that achieved with Lagrange discretization. The contact pressure
distributions stemming from the NURBS parameterizations were always non-negative, were
practically insensitive to changes in the interpolation order, and improved monotonically as
the mesh resolution increased. The respective distributions obtained from Lagrange param-
eterizations were highly sensitive to the interpolation order, displayed significant spurious
oscillations, and in some cases attained large non-physical negative values. It is important
to note that, in these contributions, the pressure distributions along the contact surface were
reconstructed by interpolation of the control point values using NURBS (or Lagrange) ba-
sis functions. Results obtained with this same reconstruction techniques will be presented in
Section 4.5. Second, the quality of the global results, i.e. of force-displacement or moment-
rotation histories was also found to improve. In large frictional sliding problems the time
histories of the tractions obtained from the NURBS discretizations were remarkably smooth
and improved in quality with increasing order of the parameterization. Conversely, the curves
obtained from Lagrange parameterizations displayed irregular oscillations whose magnitude
increased with the interpolation order and which in some cases even prevented convergence.
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The only negative side of mortar approaches, such as for FEM, is the significant compu-
tational cost connected to the computation and storage of the mortar integrals. In particular,
a crucial aspect is the integration of the “mixed” mortar integrals (i.e. those containing the
products of basis functions related to the slave and master discretized surfaces). In the above
cited contributions, integration was performed with the simplified technique mentioned in
Section 3.1 (used in the FEM setting by Tur et al. 2012 among others). With this method, no
segmentation of the contacting surfaces is performed. Rather, quadrature points are projected
from the slave to the master surface and the mixed mortar integrals are computed taking the
values at the slave quadrature points and those at their projection points for the basis func-
tions related to the slave and master surfaces, respectively. The simplicity of this approach
goes at the expenses of the robustness, especially for large sliding cases or for cases where
the slave surface is in intermittent or partial contact. A partial improvement was proposed
by Kim and Youn (2012) in the 2D setting. In their approach, each slave surface element
in partial contact is divided through knot insertion into its active and inactive portions, and
an iterative procedure based on the bisection method is used to identify the boundary of the
active region. The newly inserted knots are used only temporarily for integration purposes
and later eliminated. However, this method does not solve the aforementioned issue, as even
integration on slave segments in fully active contact would require segmentation due to the
non-matching discretizations of the two surfaces. To date, no isogeometric counterparts of the
mortar contact formulation including computation of the mortar integrals via segmentation is
available. As mentioned earlier, segmentation procedures for FEM lead to an exact evaluation
of the mortar integrals only in the 2D case with linear shape functions. Obviously, finding
efficient and accurate segmentation techniques for higher order and higher smoothness shape
functions would not be a trivial task. Also, linearization of the ensuing contact formulation
would introduce a remarkable degree of complication as well as computational cost. On the
other hand, probably an even more robust performance of the resulting algorithm would be
achieved, especially for cases with extreme deformations and very large sliding.

Finally, it is worth noting that an isogeometric counterpart of the dual mortar approach
(Wohlmuth 2000, 2001) has not yet been developed. While being certainly not trivial to
derive, such an approach has the potential to greatly enhance the computational efficiency of
mortar-based isogeometric methods for contact problems.

4.5 The Hertz contact problem revisited

Hereafter, the classical Hertz frictionless contact problem between a cylinder (slave) and a
rigid plane (master) is revisited in order to highlight the role played by the properties of the
basis functions on the results, and to put forth some observations on the reconstruction of
the contact pressures. The cylinder has radius R = 1 and its material is linearly elastic with
Young’s modulus E = 1 and Poisson’s ratio ν = 0.3. Only a quarter of the geometry is
considered, see Figure 2. The cylinder is loaded with a vertical force P = 0.002 applied as
distributed load on the upper surface. The analytical solution for this problem is well known
and yields p0 = 0.02645 and a = 0.048 for this value of applied force, p0 and a being,
respectively, the maximum normal pressure and the half-width of the contact area. Different
meshes are considered to evaluate the effect of mesh refinement. In all cases, the mesh is
refined close to the contact region using non-uniform knot vectors, and the chosen amount of
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redistribution of the knot vector entries is such that 80% of the elements are located within
10% of the total length of the knot vector in both parametric directions.

�

�

Fig. 2 Example 1.

Computations are performed with the mortar method in the implementation of De Lorenzis
et al. (2011, 2012). Since the master body is rigid, the use of the simplified integration scheme
with no segmentation does not play any role on results. The penalty method is used with a
penalty parameter fixed at 103.

The same computations are repeated with four categories of shape functions (see also Sec-
tion 2):

- conventional Lagrange shape functions (Lp), featuring C0 inter-element continuity and
describing the circular geometry approximately;

- hierarchical Lagrange shape functions using the blending function method (Lp
b ), featuring

C0 interelement continuity for the unknown displacement field and describing the circular
geometry exactly;

- Bernstein shape functions (Bp), featuring C0 inter-element continuity and describing
the circular geometry exactly, with the additional non-negativity and convex hull/variation
diminishing properties;

- NURBS shape functions (Np), featuring Cp−1 inter-element continuity and describing
the circular geometry exactly, with the additional non-negativity and convex hull/variation
diminishing properties.

The Bézier interpolation (based on Bernstein shape functions) was obtained from the
NURBS one by means of so-called Bézier extraction, which consists in repeatedly duplicating
all interior knots in the knot vectors until their multiplicity equals the order p. The resulting
interpolation is thus C0 continuous and interpolatory such as the Lagrange one, however pos-
sesses the additional non-negativity and convex hull/variation diminishing properties. Note
that, starting from the same knot vectors, discretizations obtained throught Bézier extraction
are obviously finer than the parent NURBS ones. Herein, discretizations with the same final
number of control points are considered for a more meaningful comparison.

www.gamm-mitteilungen.org c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



GAMM-Mitt. 37, No. 1 (2014) 107

Results are reported in Figures 3 to 10, where the dimensionless contact pressure p/p0 is
plotted versus the dimensionless coordinate x/a. As in Temizer et al. (2011, 2012) and De
Lorenzis et al. (2011, 2012), the pressure distributions along the contact surface are recon-
structed by interpolation of the control point values using the same basis functions adopted
for the displacement solution.
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Fig. 3 (online colour at: www.gamm-mitteilungen.org) Mesh with 24x24 elements, linear parameteri-
zations.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - L2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (L2)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - L3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (L3)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - L4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (L4)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - L2b

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (L2
b)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - L3b

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (L3
b)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - L4b

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (L4
b)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - B2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (B2)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - B3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (B3)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - B4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (B4)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - N2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (N2)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - N3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (N3)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - N4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (N4)

Fig. 4 (online colour at: www.gamm-mitteilungen.org) Mesh with 24x24 elements, higher order pa-
rameterizations.

The comparison between results obtained with Lp and Lp
b functions isolates the role of an

exact description of the circular geometry. As the figures show, this factor plays virtually no
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Fig. 5 (online colour at: www.gamm-mitteilungen.org) Mesh with 48x24 elements, linear parameteri-
zations.
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Fig. 6 (online colour at: www.gamm-mitteilungen.org) Mesh with 48x24 elements, higher order pa-
rameterizations.

role in this case. It is perhaps worth recalling that the analytical solution by Hertz was found
under the assumption of a small contact area, so that the circular shape is in fact approximated
by a parabola. Under conditions where this assumption holds (such as in the present exam-
ple), the geometry is thus equivalently well approximated by second-order Lagrange and hi-
erarchical basis functions with the blending function method. For basis functions of different
orders, the hierarchical basis with blending functions maintains an exact description whereas
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Fig. 7 Mesh with 96x48 elements, linear parameterizations.
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Fig. 8 (online colour at: www.gamm-mitteilungen.org) Mesh with 96x48 elements, higher order pa-
rameterizations.

the Lagrange approximation introduces a geometry deviation from Hertz’s assumptions. Nev-
ertheless, there is virtually no difference between results from the two sets of basis functions,
probably due to the contact computations being carried out in the deformed configuration.

In both cases, the best results are obtained with linear discretizations, whereas significant
oscillations appear in the higher order curves. These stem from the Lagrange basis being
interpolatory, and thus oscillatory. Also, due to the possibility of these basis functions to take
negative values, the interpolation of the control point pressure values leads in some cases to
negative (i.e. tensile) pressures, which are obviously unphysical. This typically occurs at the
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Fig. 9 Mesh with 144x48 elements, linear parameterizations.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - L2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (L2)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - L3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (L3)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - L4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (L4)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - L2b

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (L2
b)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - L3b

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (L3
b)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - L4b

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (L4
b)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - B2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (B2)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - B3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (B3)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - B4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (B4)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - N2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (N2)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - N3

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (N3)
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

theoretical

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

numerical - N4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1  1.2

p/
p0

x/a (N4)

Fig. 10 (online colour at: www.gamm-mitteilungen.org) Mesh with 144x48 elements, higher order
parameterizations.

edge of the contact region whenever it happens to fall within an element. As mentioned earlier,
this phenomenon was addressed by Franke et al. (2010, 2011) using adaptive relocation of
nodes to let the edge of the contact region coincide with an element boundary.

A subsequent comparison can be carried out between Lp and Bp results. The difference
between the two sets of functions consists in the fact that the Bernstein basis functions are
non-negative and exhibit the convex hull/variation diminishing property. As a result of the first
property, no negative contact pressure values are obtained. Due to the second property, the
magnitude of the oscillations is greatly reduced, as the functions are only interpolatory at the
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element boundaries (where the C0 continuity is clearly visible) and their values are bounded
by the polygon of the control point values. The edge of the contact region is again the least
accurate location when the edge does not coincide with an element boundary, however the
inability to capture the exact solution does not lead to oscillatory behavior in contrast to what
observed in the Lp case.

Further, Bp results can be compared with Np results. Here the difference between the basis
functions consists only in the higher continuity of the Np basis, which is immediately visible
in the curves. The functions are now interpolatory only at the patch boundaries. Obviously,
the C0 exact solution at the edge of the contact region cannot be captured. Note that this would
be the case even if this edge happened to coincide with an element boundary. An option to
capture the edge accurately would be an adaptive knot relocation procedure (the isogeometric
counterpart of the node relocation advocated by Franke et al. 2010, 2011) combined with knot
repetition to achieve a local lowering of continuity.

Note that the previous results differ significantly from those presented by Matzen et al.
(2013), where for the Hertz problem solved with NURBS basis functions an oscillatory be-
havior was obtained at the edge of the contact region, such as seen here for Lagrange basis
functions. In our opinion, this is to be attributed to the different procedure used for the re-
construction of the contact pressures. Unlike those in Matzen et al. (2013), results presented
in this section are based on interpolation of control point values, and therefore take full ad-
vantage of the favorable interpolation properties of Bernstein and NURBS basis functions.
This aspect should be taken into account while selecting appropriate pressure reconstruction
procedures for general contact algorithms.

The key message of this example is that the higher inter-element continuity is not the
only advantage of isogeometric contact formulations. In frictionless cases with no or limited
sliding, other properties of the isogeometric basis functions, namely the non-negativity and
convex hull/variation diminishing properties, may be as important or even more important
than continuity. On the other hand, an exact description of the geometry may have a minor
importance in the large-deformation setting. For examples with large sliding and especially
in frictional cases, continuity is certainly the key to the better performance of isogeometric
contact formulations, for the reasons highlighted in earlier sections and as extensively demon-
strated by the cited references.

4.6 A rotating ironing example

As a further demonstration of the capabilities of IGA discretizations in the context of contact,
we briefly illustrate a challenging example where large deformations and large sliding take
place. The initial discretized geometry is shown in Figure 11a: a deformable indentor (in-
plane dimensions 1.0 x 1.0, total height approximately 1.0) is pressed onto a deformable slab
(dimensions 3 x 1.5 x 0.75) applying a vertical displacement of -0.75 (including an initial gap
between the bodies of approximately 0.05) in 15 time steps. Subsequently, the indentor is
simultaneously dragged 1.45 units across the slab and rotated 90 degrees along its centroidal
vertical axis in 50 additional time steps. Both materials feature a neo-Hooke elastic behavior
based on the strain energy function

Ψ =
μ

2
(trC− 3)− μlnJ +

λ

4

(
J2 − 1− 2lnJ

)
(18)
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(a)

(c)

(e)

(g)

(b)

(d)

(f)

(h)

Fig. 11 (online colour at: www.gamm-mitteilungen.org) Rotating ironing problem: snapshots of the
analysis. The orange dots represent the control points and the white lines are the boundaries of the
Bézier elements.

where the Lamé constants λ and μ correspond to E = 1 and ν = 0.2, C is the right
Cauchy-Green deformation tensor, and J = detF with F as the deformation gradient. For the
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discretization second-order NURBS are used in all parametric directions. Frictionless con-
tact is assumed between the bodies and the contact constraints are enforced with the penalty
method, using a normal penalty parameter fixed at 102. The example is run with the isogeo-
metric GPTS formulation with 8 x 8 Gauss surface quadrature points.

Figures 11b-h are snapshots of the analysis, including contour plots of the vertical Cauchy
stress component, σ33, on the centroidal longitudinal cross-section. The C1 continuity of
the second-order NURBS discretization is the key for the achievement of convergence in this
challenging problem, as well as for the remarkable smoothness of the vertical reaction history
reported in Figure 12.

Fig. 12 (online colour at: www.gamm-mitteilungen.org) Rotating ironing problem: vertical reaction
history.

4.7 Contact formulation for isogeometric collocation

All the approaches discussed thus far, within both the FEM and the IGA frameworks, are
based on the Galerkin method, i.e. on the solution of the weak form of the governing equa-
tions including a contact contribution. Recently, an alternative approach denoted as isoge-
ometric collocation is showing a significant potential to significantly enhance the efficiency
of isogeometric methods. As opposed to Galerkin formulations, isogeometric collocation is
based on the discretization of the strong form of the governing partial differential equations,
which is only possible with basis functions of sufficient smoothness such as those used in IGA
(Auricchio et al. 2012, Schillinger et al. 2013). As isogeometric collocation methods emerge,
contact formulations suitable for this framework are needed to tackle problems involving in-
teractions between multiple bodies with non-conforming discretizations. In De Lorenzis et al.
(submitted), such a contact formulation is developed and implemented.

In isogeometric collocation, the discretized governing equations of the elastostatic prob-
lem, as well as the Neumann boundary conditions, are enforced at the appropriate collocation
points, whereas the Dirichlet boundary conditions are built into the solution space. Note that
the collocation points are typically chosen as the Greville or Demko abscissae of the knot vec-
tors, already mentioned in Section 4.2. These are equal in number to the control points and
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some are always located on the boundary of the domain. In this setting, the most natural ap-
proach to enforce the contact constraints is to treat them as deformation-dependent Neumann
boundary conditions on the portion of the boundary in active contact, which may be identified
with classical active set strategies.

All the formulations reviewed in Section 3.1, as well as their isogeometric counterparts in
Section 4, enforce a priori the local pressure equilibrium between the contacting bodies, with
the exception of the GPTS-2hp. This is the main reason why these formulations do not fit well
into the collocation framework. Should one of the contacting surfaces be chosen as slave, the
gap would need to be evaluated and the contact constraints enforced at all collocation points
located on the slave surface. The contact traction t would thus be computed on the slave
surface, and due to the a priori enforcement of equilibrium the opposite traction −t would
need to be applied to the master surface. However, this transfer would not be obvious to realize
for meshes with non-matching location of the collocation points on the contacting surfaces,
whereas the same transfer is achieved naturally within a weak formulation in the Galerkin
setting.

Conversely, in the GPTS-2hp approach, two loops are performed treating each surface al-
ternatively as slave and master. In each half-pass, the contact tractions are computed only on
the surface currently treated as slave. Therefore, no transfer of tractions to the master side is
needed. For this reason, the GPTS-2hp formulation is adopted in De Lorenzis et al. (submit-
ted) to address the enforcement of contact constraints within the collocation framework and
the resulting formulation is tested using a penalty regularization.

Interestingly, the contact collocation approach passes the contact patch test to machine
precision despite its local enforcement of the contact constraints at the collocation points.
The reason is that the contact-related equations, being obtained from the collocation of the
Neumann boundary conditions in strong form, directly involve contact pressures. Conversely,
in the NTS approach where the contact constraints are also enforced locally at the slave nodes
(in FEM, see Section 3.1) or at the same collocation points (see Section 4.2), the contact
residual contributions are computed in the form of concentrated forces, and recovery of the
contact pressure distribution from these forces does not lead to satisfaction of the patch test
due to the local moment imbalance pointed out in Zavarise and De Lorenzis (2009b).

The contact formulation in the isogeometric collocation setting yields results of very good
quality for regular solutions and uniform meshes. In situations with highly non-uniform
meshes, the original collocation approach leads to a loss of accuracy in the form of local
oscillations near the boundary, which is also observed for the enforcement of standard Neu-
mann boundary conditions. In the case of contact, the oscillations may even spoil the iterative
convergence behavior leading to failure of the analysis. The issue is solved by an enhanced
collocation scheme, whereby Neumann and contact conditions are written including not only
a boundary but also a weighted interior term. This remedy restores accuracy of the results and
robustness of the iterative procedure.
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4.8 Beam-to-beam contact formulation

Konyukhov and Schweizerhof (2012) presented a geometrically exact theory for contact in-
teractions of 1D manifolds in the 3D space, including edge-to-edge, beam-to-beam, cable-
to-edge contact cases. The geometrically exact curve-to-curve contact formulation was com-
bined with various types of approximations, including NURBS-based isogeometric beam el-
ements, and demonstrated through examples dealing with the simulation of knot tying. In
the knot tying example, convergence could only be achieved using isogeometric elements,
whereas the C0 continuity of higher order Lagrange elements led to divergence during the
first crossing of element boundaries.

5 Domain decomposition approaches, extensions and applica-

tions of IGA contact formulations

In this section we briefly review investigations not directly focused on the development of
new isogeometric contact formulations, but nevertheless relevant to the topic of contact or to
modeling of interfaces with non-matching discretizations in a broader sense.

5.1 Domain decomposition approaches

Hesch and Betsch (2012) presented a mortar method for the coupling of non-conforming dis-
cretized sub-domains in nonlinear elasticity, whereby mortar integrals were redefined for the
IGA framework. An important feature of the approach was the combined use of Lagrange and
NURBS shape functions. This makes it possible to apply IGA in a reasonable fashion and to
use Lagrange shape functions if necessary. The authors applied a specific coordinate augmen-
tation technique to achieve an energy–momentum consistent formulation of the constrained
mechanical system.

In Reuss et al. (2014), the weak enforcement of interface constraints with Nitsche’s method
was used as a coupling tool for non-matching trimmed NURBS patches, as well as for the
connection of spline discretizations with standard triangular finite element meshes. It was
shown that the combination of the Nitsche-based coupling methodology with the finite cell
method paves the way for a treatment of trimmed multi-patch NURBS geometries that com-
pletely eliminates the need for reparameterization procedures. Also, Nitsche-based coupling
was shown to lead to optimal rates of convergence under h-refinement and exponential rates
of convergence under p-refinement, and did not introduce error concentrations along the cou-
pling interfaces.

5.2 Extensions

The study of thermomechanical contact with IGA discretizations was initiated by Temizer
et al. (2011), where thermoelastic calculations of the contact of a Grosch wheel with a plane
rigid surface were first presented. In Temizer (2013), an isogeometric thermomechanical mor-
tar contact formulation was applied within a computational homogenization framework for
boundary layers with microscopically rough surfaces. A two-phase homogenization approach
combined with the mortar contact algorithm within IGA was shown to deliver a computational
framework of optimal efficiency that can accurately represent the geometry of smooth surface
textures.
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Dimitri et al. (in press) presented a NURBS- and T-spline-based isogeometric formula-
tion for 2D and 3D interface problems with non-matching meshes encompassing contact and
mode-I debonding, based on a generalized version of the GPTS contact algorithm endowed
with a cohesive zone model. In the examples, the performance of Lagrange, NURBS and
T-spline discretizations was evaluated. In contrast to Lagrange discretizations, the use of
NURBS led to very small oscillations whereas T-spline models with the same number of de-
grees of freedom delivered macroscopically smooth results due to their ability to be locally
refined, which led to a better resolution of the fracture process zone in the vicinity of the inter-
face and ahead of the cohesive crack. The proposed formulation, combined with T-spline iso-
geometric discretizations featuring high inter-element continuity and local refinement ability,
was thus shown to be a computationally accurate and efficient technology for the solution of
more general interface problems than the pure geometric enforcement of the non-penetration
constraints.

5.3 Applications

Due to the analyzed advantages, isogeometric contact formulations have been adopted in a
number of recent studies focusing on various applications. In De Lorenzis and Wriggers
(2013) computational contact homogenization was conducted to derive a macroscopic effec-
tive friction coefficient for rubber as a function of sliding velocity and applied pressure. A
central ingredient of the microscale boundary value problem was contact between the rub-
ber sample and a sinusoidally rough surface. The numerical model was developed within the
isogeometric framework with a mortar formulation, which was demonstrated to lead to faster
spatial convergence in comparison with the use of conventional linear elements.

Sauer (submitted) presented a liquid membrane formulation suitable to analyze liquid films
with special attention to their contact behavior. A comparison between Lagrange and NURBS
discretizations demonstrated the better accuracy of IGA. Sauer et al. (submitted) presented
a geometrically exact membrane formulation based on curvilinear coordinates and isogeo-
metric finite elements, suitable for both solid and liquid membranes including their contact
constraints. The new formulation was illustrated by several examples, considering linear and
quadratic Lagrange elements, as well as isogeometric elements based on quadratic NURBS
and cubic T-splines. The examples showed large accuracy gains between linear and quadratic
Lagrange, and between quadratic Lagrange and isogeometric finite elements. The formula-
tion was successfully applied to liquid droplets, including contact angles and rough surface
contact.

Lu and Zheng (2014) developed a NURBS-based continuum approach of cloth simulation,
including an explicit formulation for contact/impact. The adopted two step impulse-based
algorithm, taken from the available literature, was shown to deal robustly with complicated
contact conditions and to recover a constant quasi-static pressure field in a pressure patch test.
The contact detection scheme, based on the NTS approach, included self-contact. The Newton
iterations for contact detection were reported to suffer from numerical difficulties in the case
of complicated geometries, arising from the non-uniqueness of the solution. An accelerated
local search was thus introduced to improve the initial guess, based on an auxiliary tessellation
mesh obtained by splitting each NURBS element into two triangles. In the simulations, the
slave surface was alway parameterized with NURBS while the master surface could be either a
NURBS surface (cloth-cloth contact) or a polygon mesh (cloth-object contact where the object

www.gamm-mitteilungen.org c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



GAMM-Mitt. 37, No. 1 (2014) 117

is represented by a polygon mesh). Despite the limitations of the approach due to the accuracy
and step size issue intrinsic to explicit formulations, the proposed method proved promising
as an analysis tool in textile/garment engineering and possibly for computer graphics.

Morganti et al. (submitted) presented the application of NURBS-based IGA to the model
construction and simulation of aortic valve closure. A key ingredient of the model is the de-
scription of contact between the three aortic leaflets during closure of the aortic valve. The
mechanics of contact also dictates important measures of the physiological behavior such as
the coaptation length. The authors used the contact formulation by Benson et al. (2010a,b)
within LS-DYNA. IGA facilitated the development of analysis-suitable patient-specific mod-
els and, in the simulations, was capable of attaining the same accuracy as FEM with two
orders of magnitude fewer degrees of freedom.

6 Research needs and conclusions

We reviewed the currently available isogeometric contact formulations, placing them into the
global context of computational contact mechanics. The advantages of IGA for the solution
of challenging contact problems are quite evident, and stem from the favorable properties of
isogeometric basis functions, most notably, the higher and controllable continuity at the inter-
element boundary achieved for the geometry but also, within an isoparametric approach, for
the unknown displacement field, and the convex hull and variation diminishing properties.

These advantages have not yet been fully explored and exploited. A few open issues and
possible directions for further research, as directly emerging from the above review, are sum-
marized as follows:

• the efficiency and robustness of isogeometric mortar contact formulations is strongly
influenced by the strategy used for the computation and storage of the mortar integrals.
The development of accurate and yet efficient integration schemes would thus represent
a significant advancement, as would the development of dual mortar formulations for
the condensation of the additional degrees of freedom arising in a Lagrange multiplier
approach;

• the local refinement capability of T-spline interpolations and the ability to represent a
complex geometry of arbitrary topology as a single watertight parameterization have
recently been proved to provide significant advantages for contact modeling when com-
pared to NURBS interpolations. To fully exploit these advantages, error-controlled adap-
tive refinement procedures are needed. For the same purpose, alternative basis functions
such as hierarchical B-splines or isogeometric spline forests could also prove interesting.
Moreover, mortar-based contact formulations have never been applied to isogeometric
discretizations capable of local refinement;

• the higher smoothness of isogeometric basis functions leads to inaccuracies at the bound-
aries between contact and no-contact regions, i.e. where the exact contact pressure dis-
tribution features C0 continuity possibly within an element. While not leading to oscil-
latory behavior (differently from what is observed in FEM), these situations may com-
promise optimal convergence and could be tackled using ad-hoc strategies such as local
lowering of continuity, local knot relocation, and local partition of unity approaches.
This issue has not yet been addressed;
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• as isogeometric collocation emerges as a competitive technology in computational me-
chanics, further investigations should be conducted on contact within the collocation
framework, where the first steps have recently been taken and have shown very promis-
ing results.

Some of these directions are being currently pursued by the authors.
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