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Quantitation and Validation in Electrophoresis: Definitions 
and Fundamentals 
 
Hermann Wätzig 
 
Abstract 
 
Definitions based on the ICH guidelines have been compiled in order to properly describe 
validation and performance characteristics of capillary electrophoretic methods for quantitation. 
The fundamentals of the underlying statistics have been outlined. Further, recent reference works 
about quantitation and validation in CE have been reviewed. 
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1 DEFINITIONS 
 
In order to ensure harmonization and comparability within the paper symposiums, this general 
review presents a collection of terms and their definitions. These are based on the International 
Conference on Harmonization (ICH) Guideline for Industry, mainly in the guideline ICH-Q2A: 
Text on Validation of Analytical Procedures. Details on the ICH can be found at 
http://www.fda.gov/cder/guidance/anproc.htm [1]. Moreover, the respective recently updated 
guidelines are available here. 
 
VALIDATION OF ANALYTICAL PROCEDURES 
The objective of validation of an analytical procedure is to demonstrate that it is suitable for its 
intended purpose. A tabular summation of the characteristics applicable to identification, control 
of impurities and assay procedures is included.  
 
TYPES OF ANALYTICAL PROCEDURES TO BE VALIDATED 
The discussion of the validation of analytical procedures is directed to three most common types 
of quantitative procedures in the context of electrophoresis. Type 1 are assays, which represent 
quantitative measurements of the major component(s). Typical assays include the measuring of 
the yield of a biotechnical production, the test for drug content uniformity or stability, or test for 
major nutritients in food analysis. Type 2 are tests for compounds of minor concentration, e.g. 
investigations of changes in protein expression in a certain cell or tissue (proteomics), or the test 
for impurities in a pharmaceutical preparation. Finally type 3 is the limit test for minor 
compounds, again for the control of impurities in food und drugs or in environmental analysis. In 
the type 3 case the concentration need not be known precisely, it must just be guaranteed that its 
amount is below a certain limit, e.g. due to toxicity.  
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The objective of the analytical procedure should be clearly understood since this will govern the 
validation characteristics which need to be evaluated. Typical validation characteristics which 
should be considered are listed below: 

• Accuracy 
• Precision 
• Repeatability 
• Intermediate Precision 
• Specificity 
• Detection Limit 
• Quantitation Limit 
• Linearity 
• Range 
• Sensitivity 
• Robustness/Ruggedness 

 
The classification of these parameters and their relation to each other is depicted in Figure 1. All 
parameters have to be considered for the quantitation of minor compounds (type 2). All 
parameters but the limits of detection and quantitation are required for assays (type 1). For the 
limit tests, just specificity and the detection limit must be determined. 
 
 
SPECIFICITY AND ACCURACY 
 
Specificity is the ability to assess unequivocally the analyte in the presence of components which 
may be expected to be present.  
The accuracy of an analytical procedure expresses the closeness of agreement between the value 
which is accepted either as a conventional true value or an accepted reference value and the value 
found. This is sometimes termed trueness. 
These two characteristics are strongly related. Lack of specificity can lead to coevaluation of two 
or more analytes. This causes a systematic error and in consequence a bias, or a biased result. 
 
Specificity means to measure accurately in the presence of all potential sample components. 
Depending on the analytical problem, these components can be matrix compounds, excipients, 
synthesis intermediates, process impurities or degradation products. If there is no reference 
material for degradation products, the analyte should be exposed to stress conditions such as 
light, heat (50 °C), acid and base (0.1 M HCl and NaOH) and oxidant (3% H2O2) [2, 3].  
The ideal of specificity is rarely fulfilled; usually high selectivity can be achieved at best. A 
scenario where another compound would lead to the same results cannot be excluded most of the 
times. Lack of specificity of an individual analytical procedure may be compensated by (an) other 
supporting analytical procedure(s). 
Specificity is an important validation parameter that should be established as early as possible. 
Purity of all relevant signals (e.g. peaks or spots) should be checked if possible, for example by 
using mass detection. In some cases the signal is still influenced by the sample matrix despite of 
peak purity, for instance due to sample pre-treatment operations. In order to check influences 
caused by the matrix, analytes in different concentrations (at least at the upper and lower end of 
the range) are spiked into the expected matrix. This should be blank, that means contain 
everything of the real sample (such as excipients, body fluids...), but the analyte. The obtained 
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signals are compared to signals from samples without matrix (recovery). If these signals do not 
significantly differ, this also gives strong evidence for accuracy. 
If the matrix just causes an additional signal which is the same for all analyte concentrations, the 
calibration results are not negatively affected. However, a change in sensitivity caused by the 
matrix is occasionally observed, e.g. in UV/Vis spectroscopy and derived techniques (e.g. 
HPLC/UV), if the formation of complexes is hindered or favoured by the matrix [4].  
Working with blank matrix, the calibration standards are spiked into the matrix to avoid false 
estimations. It should be checked if the same sensitivity is obtained using different batches of 
blank matrix. 
 
 
PRECISION 
 
The precision of an analytical procedure expresses the closeness of agreement (degree of scatter) 
between a series of measurements obtained from multiple sampling of the same homogeneous 
sample under the prescribed conditions. 
Precision should be investigated using homogeneous, authentic samples. However, if it is not 
possible to obtain a homogeneous sample it may be investigated using artificially prepared 
samples or a sample solution. The precision of an analytical procedure is usually expressed as the 
variance, standard deviation or coefficient of variation of a series of measurements (see Eqs. 4-6). 
The numbers of measurements n should always be given with the number of e.g. the RSD. It is 
rewarding to use high numbers; the quality of statements about precision is noticeably improved 
from multiple measurements. Putting it another way, the confidence intervals of variability are 
very much improved increasing the data number. Statements about variability with n<5 are often 
meaningless (see Eq. 12, Table 1). Even a number of n = 20 just provides a confidence interval of 
about ± 30% around the measured value, that means measured 1.0% RSD can well mean a true 
value of 1.3% RSD. We often use n = 60 or more, in order to precisely measure precision. 
Precision may be considered at four levels: system precision, repeatability, intermediate precision 
and reproducibility. In order to avoid misunderstandings and misinterpretations, it must be clearly 
defined what precision level is meant and under what conditions it was obtained.  

 
a. System precision 
The system precision represents the variability of the measurement process. It is obtained by 
repeatedly analysing the same sample. 
 
b. Repeatability 
Repeatability expresses the precision under the same operating conditions (including 
measurement and sample preparation) over a short interval of time. Repeatability is also termed 
intra-assay precision. 
 
c. Intermediate precision 
Intermediate precision expresses within laboratories variations: different days, different analysts, 
different equipment, etc. 
 
d. Reproducibility 
Reproducibility expresses the precision between laboratories (collaborative studies usually 
applied to standardization of methodology). 
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The two last-mentioned precision levels include, additionally to the random variability of the 
measurement, the influence of the reference standard and especially the changes by external 
factors (e.g. temperature, humidity, quality of reagents, operators´ qualification etc.). The 
intermediate precision is characterized by variation factors within the same laboratory. However, 
within longer terms this precision level is approaching the reproducibility, because the a.m. 
factors change as well. Therefore, it is often sensible to use reproducibility as the general term, 
including intermediate precision. 

 
 
DETECTION LIMIT 
 
The detection limit of an individual analytical procedure is the lowest amount of analyte in a 
sample which can be detected but not necessarily quantitated as an exact value. Usually the 
detection limit (or limit of detection, LOD) is defined using the signal-to-noise ratio (Eq. 1), e.g. 
in European Pharmacopoeia Ph. Eur. (methods 2.2.28 und .29; [5]): 
 

S N H
hn

/ =
2  (1) 

 
Here H is the height of the measured signal, related to the average base signal (baseline). The 
value hn describes the maximum spread of the baseline signal within 20 signal(peak)-widths at 
half height (e.g. ± 10, if there are no additional peaks neighbouring the reference peak) at both 
edges of the peak (see Fig. 2). The detection limit can now be defined as the concentration which 
guarantees a several-fold, e.g. a 2-, 3- or 5-fold, of the signal-to-noise ratio. 
Unfortunately, the term detection limit is not unambiguously used in the scientific literature. 
Limits of detection of the same method can vary by more than the factor of 3, just from different 
definitions and calculations [6]. Therefore it is very important to discuss the LOD and the 
determination of the S/N ratio carefully. 
 
 
QUANTITATION LIMIT 
 
The quantitation limit of an individual analytical procedure is the lowest amount of analyte in a 
sample which can be quantitatively determined with suitable precision and accuracy. The 
quantitation limit is a parameter of quantitative assays for low levels of compounds in sample 
matrices, and is used particularly for the determination of impurities and/or degradation products. 
In order to determine the limit of quantitation (LOQ), it is necessary to agree on acceptable limits 
for precision and accuracy. Commonly precision is given as a maximal acceptable relative 
standard deviation of the analytical result, CV%max (β  is the slope of the regression function 
used, see Eqs. 14-18; σ  stands for the standard deviation of the measured values). Then the LOQ 
can be calculated using Eq. 2: 

$
1

$

 

LOQ
CV

= ⋅
100%

1%
$

$
max

σ
β

  (2) 

 



 5

This is also the ICH proposal. They suggest CV%max as 10%. 
 
 
LINEARITY 
 
The linearity of an analytical procedure is its ability (within a given range) to obtain test results 
which are directly proportional to the concentration (amount) of analyte in the sample. 
Unfortunately, a linearity test as such does not exist. Nevertheless, significant lack-of-fit can be 
detected by various sensible methods. However, the sample correlation coefficient r (or $ρ ) does 
not belong to the pool of these methods to assess linearity. The sample correlation coefficient 
may be misleading and is, despite its widespread use, to be discouraged for two reasons: First, r 
depends on the slope. That is, for lines with the same scatter of the points about the line, r 
increases with the slope. Second, the numerical value of the correlation coefficient cannot be 
interpreted in terms of degree of deviation from linearity. Put differently, a correlation coefficient 
of 0.99 may be due to random error of a strictly linear relationship or due to systematic deviations 
from the regression line [12]. 
Systematic deviations from the assumed model yield systematic patterns in the residuals and can, 
therefore, be detected by checking independence of the residuals (see below). Residuals plots, 
particularly the ei versus $y i plot is also well suited to detect nonlinearities, since the plot will 
show curved patterns instead of randomness. Formal tests are also available, e.g. the ANOVA 
lack-of-fit test [12]. 
 
 
SENSITIVITY 
 
The sensitivity of an analytical method is the slope of the calibration function which is used for 
the evaluation. 
 
 
RANGE 
 
The range of an analytical procedure is the interval between the highest and lowest concentration 
(amounts) of analyte in the sample (including these concentrations) for which it has been 
demonstrated that the analytical procedure has a suitable level of precision, accuracy and 
linearity. 
 
ROBUSTNESS 
 
The robustness of an analytical procedure is a measure of its capacity to remain unaffected by 
small, but deliberate variations in method parameters and provides an indication of its reliability 
during normal usage. 
 
RUGGEDNESS 
 
A method is rugged, if it is not or only slightly affected when used in different laboratories. The 
ruggedness is determined in interlaboratory trials. If the interlaboratory standard deviation (see 
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reproducibility) is only slightly elevated compared to the repeatability, the method is rugged. 
Usually robust methods are rugged, and vice versa.  
 
 

2 SYMBOLS AND FUNDAMENTAL EQUATIONS 
 

2.1 Measures of central tendency and variability of data, prediction and confidence 
intervals [7] 
 
A random sample, e.g. a series of measurements, can be described by measures of central 
tendency and measures of variability. The most popular measure of central tendency is the 
(arithmetic) mean  (3), the sum of all values of the sample divided by their number.  
 

n

x
x

n

i
i∑

== 1  (3) 

 

In the following sums with index i=1 to n are written in the simple form ∑. ∑
=

n

i 1

Another important measure is the median x~ . In order to obtain this parameter, all values of a 
random sample are ordered by size. The median is the value in the middle of this ordered list, or 
the mean of the two values in the middle, if the number of data is even.  
As measures of variation, variance  (4) and standard deviation 2σ̂ σ̂  (5) are most popular. The 
„roofing“ of a variable indicates, that it is just an estimation from a random sample and not a true 
value. This allows for the clear distinction between the standard deviation of an entire population 
σ and the standard deviation of a random sample σ̂ . The standard deviation is descriptively 
given in the same unit as the measured parameter. However, the variance is the preferred 
measure, if total variations shall be estimated from error components, or if the contribution of 
error sources is considered, because variances, but not standard deviations, behave simply 
additive. 
The percental relative standard deviation RSD% (6) is very well suited to compare the variation 
between different methods and techniques. This popular parameter is also often called coefficient 
of variation (CV). Other important measures of spread include the mean deviation d (7) and the 
range R (8), which is the difference between the highest and lowest value. 
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Using these measures, statements about other, also future, members of the population are 
available. The value of e.g. a future measurement can be predicted with a certain error 
probability, using prediction intervals (9). These intervals also generally provide, in which value 
ranges a certain amount of the population can be expected. 
 
Two-sided prediction interval: 

mn
txxprd n

11ˆ)( 2/,1 +⋅⋅±= − σα  (9) 

 
 
One-sided prediction intervals: 
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Here m is the number of measurements that will be used to determine the predicted value. This 
number m can (be) equal 1, if just one value is predicted. If a mean from e.g. 3 measurements is 
predicted, m is equal (?) 3. The t-value scales the standard deviation to the desired error 
probability α. This t-value is also strongly dependent from the number of data: the higher this 
number, the better the derivable conclusions, the smaller the prediction interval. 
Two-sided problems are more common. In this case deviations to both sides of the mean can be 
expected (9).  
If deviations to one side can be certainly excluded, then one-sided prediction intervals should be 
used. One-sided prediction intervals cover the whole range on one side, to +∞ or -∞ (Eqs. 10, 
11). 
 
Confidence intervals for the true standard deviation σ are also available (Eq. 12). These intervals 
are especially sensitive to the number of data (Table 1, compare PRECISION). 
 



 8

21,1,
21,,1

ˆˆ1
α

α

σσσ −−∞
−∞−

⋅≤≤⋅ n
n

F
F       (12) 

 
 

2.2 Linear regression 
 
Often there is a known relationship between mass or concentration of standard samples and the 
measured value of an analytical method. Frequently this relationship is linear, e.g. because 
UV/Vis-absorbance measurements or techniques based on UV/Vis detectors (like in CE) are 
common in quantitative analytical chemistry. If BEER´s law is valid, linearity is guaranteed (Eq. 
13): 
 
A c d= ⋅ ⋅α   (13) 
 
A typical calibration experiment is performed by making up a series of standards, e.g. solutions, 
containing known amounts of analyte xi, mostly given as concentrations. Each standard 
separately passes the analytical procedure. One signal yi is generated corresponding to each xi. 
The data pairs (xi/yi) can be plotted in a two-dimensional graph with x- and y-axes. A model 
function, that fits the data (e.g. a straight line), can be estimated. Now the mass or concentration 
of an analyte with unknown amount x0 can be estimated by measuring the corresponding signal 
y0, using the inverse function of the model function. 
Consider a linear relationship (Eq. 14). The data will never exactly be matched by a line, since 
the deterministic linear relationship is always superimposed by measurement error εi. This error 
must be considered when a model for a linear relationship is created (Eq. 15): 
 
y x= +β β0 1   (14) 
 
y xi = + +β β0 1 i ε

x

i   (15) 
 
Eq. 14 is a model for the true relationship. In case of an analytical calibration, the true 
relationship always remains unknown. Only random samples are measured. Their number is very 
small compared to the number of possible measurements, which is almost infinite. Moreover, the 
error εi included in the i-th single measurement yi remains unknown. However, we can estimate 
the coefficients β0 and β1 by a limited number n of samples. This leads to the regression line 
(Eq. 16): 
 
yi = +$ $β β0 1 i   (16) 
 
Note that β  and β  are only estimators of β$

0
$

1 0 and β1. There are many different methods to obtain 
these estimators. They usually lead to different results. The simplest method is called ordinary 
least squares (OLS). The regression line is calculated by minimizing the sums of the squares of 
the distances between the data pairs (xi/yi) and the line in y-direction. The slope β  is then 
estimated employing Eq. 17. Because the line is always passing through the centroid (

$
1

x y, ), the 
intercept β  can be estimated using Eq. 18. $

0
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$β0 = −y $β1x   (18) 
 
The values x  and y  are the means of all standard amounts xi and all signals yi, respectively. The 
advantage of this approach is its simplicity. However, a number of assumptions must be valid to 
sensibly estimate β  and β  using OLS (Table 2 [2]).  $

0
$

1

It has been shown that the assumptions „x is error-free“ and „error in y is homoscedastic“ are 
usually invalid [2]. Nevertheless numbers for β  and β1 are always obtained using OLS, but these 
may be inefficient and biased estimates of β

$
0

$

0 and β1. These deviations should always be kept in 
mind, even if in certain cases they can be kept tolerably small by using a suitable experimental 
design. 
If significant deviations are expected or found after checking the assumptions, the use of more 
advanced models is mandatory. Even if the deviations are not significant when the wrong model 
is used, time is always lost considering these errors and their importance. Thus the regular use of 
generalizing advanced statistical software is advised. 
After estimates for β  and β1 have been computed, it is elementary to estimate the mass or 
concentration of an analyte x

$
0

$

0 from its corresponding signal y0 using the inverse function of 
Eq. 16, Eq. 19: 
 

x
y

0
0

1

=
− $
$
β

β
0   (19) 

 
However, just the value for x0 does not give the measurement error of this estimator. For 
example, if x0 was calculated as 10 mg/L, the sample concentration could range from 9.999 to 
10.001 mg/L as well as it could range from 2 to 18 mg/L. Information about random variations of 
x0 and thus information about its reliability is essential. Random variations in calibration 
experiments are described similar to standard deviations of a series of replicate measurements 
(Eq. 8): 
 

$
( $ )

σ=
−
−

∑ y y
n

i i
2

2
  (20) 

 
The differences y i  are called residuals and abbreviated eyi − $ i. i is called the expected mean 
response value. It represents the computed value obtained when a standard concentration x

$y
i is 

inserted into Eq. 16; yi is the really measured signal at that concentration. The residuals are the 
deviations of the standard measurements from the modelled function. Using σ  a prediction 
interval for new response values can be calculated (Eq. 21), which is very similar to the one-
dimensional case (see Eq. 9): 

$
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When new standards x0 are prepared and measured with the same procedure to obtain signals y0, 
additional signals are expected within the prediction interval. The probability 1-α denotes the 
percentage of signals that will be found inside the prediction interval. Some signals will be found 
outside due to the random error. The value m gives the number of replicate measurements for the 
signal y0 to be predicted, including m= 1 (no replicate). If m is greater than 1, the mean of all 
measured y0,j will be predicted. 
However, the analyst is typically not interested in predicting new signals yk. The principal issue, 
often called the „calibration problem“, is the estimation of a confidence interval of the analytical 
result (cnf(x0)), which is derived from the signals y0 of a sample with unknown concentration and 
the calibration line. The solution of this problem is not trivial for some theoretical reasons. All 
solutions depend on different assumptions, and it is still open to discussion which choice of 
assumptions is most appropriate. However, there is a generally accepted approach, which can be 
sensibly used in analytical chemistry [8-11]. A graphical explanation for this estimation of 
cnf(x0) is given in Figure 3. The corresponding theory is discussed more detailed in [12]. 
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The value m gives the number of replicate measurements of the signal y0 that is used to estimate 
x0(y). If m is greater than 1, the mean of all measured y0,j will be used to estimate x0(y).  
The slope β  plays an important role for the width of this interval. The greater β , the more 
precisely x

$
1

$
1

$

0 can be estimated assuming constant signal standard deviation. The slope of a 
calibration function is also called its sensitivity. Because the remaining terms of Eq. 22 often are 
identical or much the same for similar analytical methods, the simplified term σ /β  is called 
procedural standard deviation and is often used to compare the precision of different methods. 

$ 1

 
Using an onepoint design, that means just one reference sample, an apparent sensitivity β  is 
defined by 

$ *
1

x  and y  (Eq. 23). The analytical result x0 is then estimated by Eq. 24 or 25 using y0, 
the signal of the analyte or its mean. 
 
$ *β1 =

y
x

 (23) 
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If x0 significantly differs from x , the main assumption permitting the use of the onepoint design 
is not fulfilled. However, the systematic error may be small. If a „Three-times-eight“ design [2] 
has been used during method development and linearity was found, the systematic error Esys can 
be estimated using Eq. 26 [7]. Here β  and β  are the estimates from the method development, β  
is not used. 

$
0

$
1

$ *
1
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x x
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1

0

1
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β
β

  (26) 

 
The confidence interval for x0 is given by Eq. 27, which is a simplification of Eq. 22: 
 

{ }cnf x x t
m nn0 0 1

1 2
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Here σ  is the standard deviation of the signal. It is suggested to use the same number as for the 
endpoint design: n=6 measurements for the standards, m=3 for the analytes each. The system 
suitability can simply be tested by an F- and t-test comparing mean and standard deviation for the 
present and the previous series. 

$

 
 

3 REFERENCE WORKS 
 
3.1 Capillary electrophoresis 
 
More than 800 articles have been reviewed to collect detailed information about method 
development, quantitation and validation in CE [13]. Here e.g. a check list for all aspects that 
should be mentioned in an experimental part of a paper is provided, tables of useful reagents are 
found, validation requirements and important aspects to accomplish them are summarized, a 
general strategy for method development including quantitation is described and illustrated in 
several diagrams.  
This compilation is still ongoing in most aspects. This is confirmed in [14]. Here the repeatability 
in the industrial environment is estimated to be 0.7% RSD% on average, rarely above 1%. The 
importance of internal standards for precision in CE was again emphasized [15]. 
Dimethylbiguanide, diaminobenzoic acid and triaminopyrimidine have been reported to be 
generally suitable, in our works we often successfully used neostigmine (e.g. [16]). Using internal 
standards, the robustness is surprisingly little affected by the pH or the concentration of the chiral 
selector [17, 18]. Validation was recently discussed and reviewed in [18-20]. Meanwhile CE is 
included in all major pharmacopoeiae [15, 21, 22]. 
It should be emphasized that migration time precision, which influences peak area precision, is 
usually strongly related to EOF precision. Therefore the latter should be carefully investigated 
and reported [23]. Linearity was not seen as a real issue in CE so far; however, nonlinearities can 
cause underestimations of main peak areas and thus overestimations of area% for minor 
components. It was found that nonlinearities do not become notable below 300 mAU, usually not 
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critical before 1000 mAU [24]. The mentioned thresholds are instrument-dependent, some 
detectors even allow a higher absorbance. 
Validation in the presence of complex matrices is a challenge for each analytical approach. 
Especially stacking is known to be matrix-sensitive. Validation of pre-concentration techniques 
may be facilitated using effective mobilities as indicators of matrix effects [25]. Possibly on-line 
pre-concentrations in the presence of matrices are easier to validate using transient ITP with 
suitable terminating and leading electrolytes instead of simple stacking. 
 
 
3.2 Gel electrophoresis 
 
Although quantitation and precision are important topics for gel electrophoresis as well, these 
have not been intensively investigated during the last years. Quantitation usually is just a side 
topic in publications about GE. It seems like one has settled to accept GE as a semi-quantitative 
techniques, where no further miracles can be expected. 
There are certainly some very interesting exceptions of methodological works, either in this 
symposium volume, or in some recent publications which have been reviewed in the introduction 
of [26]. 
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Table 1: Confidence interval of the true standard deviation σ, dependent on the number of 
data n (Let σ̂  = 1, α = 0.1) 
 
n 3 4 5 6 7 
Cnflower 0.58 0.62 0.65 0.69 0.71 
Cnfupper 4.42 2.92 2.37 1.91 1.80 
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Table 2: Basic assumptions to properly use ordinary least squares (OLS) linear regression 
models [2]. 
 
Assumptions violated if e.g.: 
Linearity non-linear relationships, e.g. enzyme kinetics, TLC 

calibrations or other saturation effects 
x is error-free 
 

error in preparing standard solutions 

Error in y is normally distributed transformed raw data, counts data 
Homoscedastic1) error in y use of UV/Vis-detectors, volume dosage of 

standard solutions (e.g. HPLC injectors) 
 

Error terms have zero mean  
(no systematic errors) 

wrongly prepared standards 
 

Error is uncorrelated use of several dilutions from one stock solution to 
obtain calibration standards; memory effects; 
trends with time, e.g. varying UV lamp intensity, 
temperature-dependant drifts, instability of samples 
or chemicals 

1) compare glossary 
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Fig. 1: Description of analytical quality and classification of the major performance parameters. 
Error impairs precision, which is strongly related to the sensitivity and the LOQ, while bias 
degrades accuracy. The robustness of a method can be influenced by both random error and bias. 
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Fig. 2: Determination of the detection limit (LOD) using Eq. 1, according to Ph. Eur., 
V 2.2.28, 2.2.29 [5]. 
 
A) Chromatogram with peak signal 

 

peak  

H 

w0.5 

baseline 

H Peak height from top to baseline (best straight line through noise) 
w0.5 Peak width at half height 
 
B) Determination of noise from the chromatogram of a blank sample 

 

20 w0.5 

hn 

20 w0.5 Region corresponding to the 20fold of w0.5. This region can be symmetrical to the signal of interest (as shown 
here), or asymmetrical, if required due to matrix signals 

hn maximum amplitude of the baseline noise in the 20-fold-w0.5-region.  
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 Fig. 3. Graphical explanation for the estimation of cnf(x0) using Eq. 22 [2]; compare [12]. 
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