
Comput Mech (2008) 43:61–72
DOI 10.1007/s00466-008-0255-5

ORIGINAL PAPER

Fixed-point fluid–structure interaction solvers with dynamic relaxation

Ulrich Küttler · Wolfgang A. Wall

Received: 31 October 2007 / Accepted: 20 January 2008 / Published online: 22 February 2008
© Springer-Verlag 2008

Abstract A fixed-point fluid–structure interaction (FSI)
solver with dynamic relaxation is revisited. New develop-
ments and insights gained in recent years motivated us to
present an FSI solver with simplicity and robustness in a wide
range of applications. Particular emphasis is placed on the
calculation of the relaxation parameter by both Aitken’s ∆2

method and the method of steepest descent. These methods
have shown to be crucial ingredients for efficient FSI simu-
lations.

Keywords Fluid–structure interaction · Fixed-point
solver · Dirichlet–Neumman partitioning · Strong coupling

1 Introduction

The development of numerical solvers for fluid–structure
interaction (FSI) problems has been an active area of research
in the last decade. Reliable FSI solvers are demanded in areas
as diverse as aeroelasticity [8,21], civil engineering [41] or
hemodynamics [2,16]. And as wide as the possible field of
application are the requirements the solvers are confronted
with: aerodynamics applications can couple a light compress-
ible fluid to a stiff structure (e.g. aircraft wing) or a light
incompressible fluid to a very light structure (e.g. parachute
or sail), whereas hemodynamics simulations couple incom-
pressible fluids and flexible structures with very comparable
density. Thus there cannot be one FSI solver that fits all needs.
Instead a variety of solution procedures is needed.

A particular interesting class of FSI problems, that is the
appropriate model in many areas, is the interaction of
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incompressible fluids with structures that undergo large
deformations. In that case both fields, the fluid and the struc-
ture, present computational challenges on their own. And
still the coupling is a nontrivial task, as the large structural
deformations have a huge impact on the fluid field’s size and
the coupled solution. Oftentimes there are sophisticated field
solvers available that should be reused. This presents a fur-
ther constraint to a possible coupling scheme. There are, of
course, monolithic solvers that treat the nonlinear coupled
problem in one go [2,18,19,36], however these approaches
require access to the field solver internals and cannot be pur-
sued with black box solvers. The same goes for partitioned
approaches that mimic the behavior of monolithic solvers [7].

One possible partitioning strategy that enables the reuse
of existing field solvers is the Dirichlet–Neumann partition-
ing, the predominant partition approach for FSI solvers. The
most popular coupling methods are fixed-point methods [27,
30,40] and interface Newton Krylov methods [10,15,16].
Other solvers suggested include a block-Newton solver with
finite differenced off-diagonal blocks [25] and solvers based
on vector extrapolation methods [26,37]. See also [33,34]
for a FSI solver framework that includes partitioned block-
iterative and quasi-direct coupling solvers as well as mono-
lithic solvers.

The most basic and yet highly efficient approach among
this variety of methods is the fixed-point method with
dynamic relaxation as suggested in [27,40]. It is extremely
easy to implement and surprisingly efficient and robust.
Hence, in many cases this is the method of choice and it is an
especially preferred method to use if a new attempt at FSI or
other coupled problems is pursued. Unfortunately, however,
the method has never been published in a journal but only in
two hardly available conference proceedings [27,40] so far.
This paper finally provides the detailed treatment of both the
Aitken relaxation method and the relaxation via the method
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of steepest descent in the context of fixed-point iteration FSI
solvers. We attempt to give as easy an introduction as possi-
ble. Yet this is not meant to be a mere reiteration of the orig-
inal work [27]. The continuous work on FSI problems and
the ever growing number of FSI solvers stimulated a subtle
change of perception that is reflected in the present contri-
bution. Nowadays there is much more emphasize on the for-
mulation of the nonlinear interface problem that is amenable
to many nonlinear solution approaches. The nonlinear field
solvers are placed behind the opaque interface equation to
keep them separated from the coupling algorithm.

The remainder of this paper is organized as follows: In
Sect. 2 the field equations and coupling conditions of the
FSI problem are presented. The introduction of the fixed-
point solver with Dirichlet–Neumann partitioning follows
in Sect. 3 and details on the available relaxation methods
are presented in Sect. 4. Finally two examples are shown in
Sect. 5.

2 Field equations

The FSI problem domain consists of the nonoverlapping fluid
and structural domains Ω F and Ω S . Both share a common
interface Γ . In case of an incompressible fluid interacting
with an elastic body the velocity u and the pressure p are
chosen for the unknowns of the fluid field, whereas the struc-
tural field unknown is the displacement d.

2.1 Coupling conditions

Essential for the interaction of both fields is the coupling
of the field variables at the interface. Both kinematic and
dynamic continuity need to be fulfilled at all times. In the
usual case of non-slip conditions at the interface this amounts
to

uΓ = ddΓ

dt
and σ S

Γ · n = σ F
Γ · n (1)

where of course the interface displacement dΓ does change
the interface position xΓ = x0,Γ + dΓ relative to the start-
ing position x0,Γ . Therefore kinematic continuity states that
along with the interface velocity uΓ of the fluid field the
whole fluid domain Ω F changes in time. The dynamic con-
tinuity states that the stresses equal at the deformed interface
where n constitutes the time dependent interface normal.

2.2 Structural domain

The structural displacements d are governed by the geomet-
rically nonlinear elastodynamics equations

ρS d2d
dt2 = ∇ · (F · S) + ρSbS in Ω S × (0, T ), (2)

where ρS and bS represent the structural density and specific
body force, respectively. The second Piola-Kirchhoff stress
tensor S is related to the Green-Lagrangian strains via

S = C : E with E = 1

2

(
FT · F − I

)
, (3)

where C denotes the material tensor and F = ∇d represents
the deformation gradient. The time dependent problem (2) is
subject to the initial and boundary conditions

d = d0 and
dd
dt

= dd0

dt
in Ω S at t = 0

d = d̄ on Γ S
D, S · n = h̄S on Γ S

N ,

where Γ S
D and Γ S

N denote the Dirichlet and Neumann parti-
tion of the structural boundary, respectively.

2.3 Fluid domain

Fluid velocity u and pressure p are governed by the incom-
pressible Navier-Stokes equations

∂u
∂t

+ u · ∇u − 1

ρF
∇ · σ F = bF in Ω F × (0, T ), (4)

∇ · u = 0 in Ω F × (0, T ). (5)

The vector field bF denotes the specific body force and ρF

the density of the fluid. In case of FSI simulations the fluid
domain Ω F varies in time due to the moving interface Γ .
One way to account for the domain changes is to consider
the whole fluid domain to deform continuously, starting with
interface displacement dΓ . That is to prescribe a unique map-
ping

x = ϕ(dΓ , x0, t) (6)

of the fluid domain which matches the interface displace-
ments. This mandates an arbitrary Lagrangian-Eulerian
(ALE) formulation [9,12] of the Navier-Stokes equations
and (4) changes to

∂u
∂t

∣∣∣∣
x0

+ c · ∇u − 1

ρF
∇ · σ F = bF in Ω F × (0, T ). (7)

The ALE-convective velocity is given as c = u − uG , with
the domain velocity uG = ∂ϕ/∂t . The stress tensor of a
Newtonian fluid is given by

σ F = −pI + 2µε(u) where ε(u) = 1

2

(
∇u + ∇uT

)

(8)

denotes the strain rate tensor and µ the viscosity. The kine-
matic viscosity is given by ν = µ/ρF .

The partial differential equation (7) is subject to the initial
and boundary conditions

u = u0 in Ω F at t = 0

u = ū on Γ F
D , σ F · n = h̄F on Γ F

N . (9)
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2.4 Coupled FSI system

A proper discretization in space and time of equations (2),
(5) and (7) and a particular version of the fluid domain map-
ping (6) together with discrete versions of the coupling con-
ditions (1) lead the following nonlinear system of algebraic
equations

F
(
un+1, pn+1, dG,n+1

)
= fF (10)

S
(
dn+1

)
= fS (11)

M
(
dG,n+1

)
= 0 (12)

CSF

(
dn+1

Γ , un+1
Γ , pn+1

)
= 0 (13)

CSM

(
dn+1

Γ , dG,n+1
Γ

)
= 0 (14)

where dG,n+1 constitutes the fluid mesh movement and the
coupling CSF between structure and fluid and the coupling
CSM between structure and mesh describe conditions to be
met at the interface.

It is understood that all operators depend on the current
time step n +1. The spatial discretization of all fields is done
using finite elements. In detail these operators are:

– Fluid F
(
un+1, pn+1, dG,n+1

)
= fF :

With one-step-θ time discretization, for simplicity of pre-
sentation, the discrete version of Navier-Stokes is

[ 1
∆t MF + θ

(
NF (un+1) + KF

)
θG

θGT 0

] [
un+1

pn+1

]

=
[

bF + (1 − θ) MF u̇n + 1
∆t MF un

0

]
(15)

where the integration has to be performed on a time vary-
ing domain Ω F (t), that is all terms depend on the mesh
deformation dG,n+1.

Remark 1 Additional stabilization terms are required in
equation (15). For brevity these terms are not considered
here. See [14] for a throughout discussion of stabilized
finite elements for flow calculations.

– Structure S
(
dn+1

)
= fS :

Discretized in time using the generalized-α method [4]
the structural equations read

1 − αm

β∆t2 MSdn+1 + (1 − α f )fint (dn+1)

= (1 − α f )fn+1
ext + α f fn

ext

+ MS
(

1 − αm

β∆t2 dn + 1 − αm

β∆t
ḋn + 1−αm −2β

2β
d̈n

)

−α f fint (dn). (16)

– Mesh M(dG,n+1) = 0:
A simple linear mesh equation might look like this

KM dG,n+1 = f M
(

dn+1
Γ

)
(17)

where f M (dn+1
Γ ) stems only from the prescribed inter-

face displacement dn+1
Γ and KM is an arbitrary operator

that extends the interface displacement to the interior of
the fluid domain.

The coupling Eqs. (13) and (14) are couplings that apply at the
FSI interface only. There are sophisticated mortar methods
available to couple various sorts of meshes, see e.g. [28].
The simplest coupling possible, however, is the coupling of
matching meshes where all coupling operators C simplify to
diagonal matrices at the FSI interface. For simplicity only
matching meshes are considered here.

– Structure to fluid coupling CSF (dn+1
Γ , un+1

Γ ) = 0:

un+1
Γ = dn+1

Γ − dn
Γ

∆t
(18)

– Structure to mesh coupling CSM (dn+1
Γ , dG,n+1

Γ ) = 0:

dG,n+1
Γ = dn+1

Γ (19)

Remark 2 The mesh deformation equation (12) is coupled
to the structural equation (11), but not vice versa. So the
structural deformation is (of course) not retained by the mesh
equation, but the structure drags the mesh along.

3 Dirichlet–Neumann coupling scheme

The system (10)–(14) constitutes a coupled set of nonlinear
algebraic equations to be solved once for each time step. A
Dirichlet–Neumann partitioning can be applied to solve this
system, where the fluid field becomes the Dirichlet partition
with prescribed interface velocities un+1

Γ and the structural
field becomes the Neumann partition loaded with interface
forces fF,n+1

Γ . This way the field solvers remain independent
of each other and black box solvers can be used.

The particular advantage of a Dirichlet–Neumann cou-
pling for FSI problems comes from the deformation of the
fluid domain Ω F . The unknown interface displacements
dn+1

Γ determine shape and size of the fluid domain Ω F , thus
the Navier-Stokes equation (15) has to be solved on a domain
the size of which depends on the unknown solution. This dif-
ficulty of a free boundary value problem arises independent
of the particular mesh moving scheme (17), even independent
of how the changing fluid domain is described numerically,
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e.g. via moving or fixed grids [31,32,35,39]. Many fluid
solvers are unable to solve such free boundary value prob-
lems. The Dirichlet–Neumann partitioning, however, cures
this problem by prescribing definite interface displacements
dn+1

Γ to the fluid solver. So the Navier-Stokes equation (15)
needs to be solved on a domain with prescribed motion.
The remaining fluid field unknowns are velocity un+1 and
pressure pn+1.

3.1 Solver coupling

A detailed discussion of the solver coupling in a Dirichlet–
Neumann partitioning requires to distinguish between inte-
rior degrees of freedom I and degrees of freedom at the
coupling interface Γ . With this distinction the structural

equation S
(
dn+1

)
= fS reads

[
SI I SIΓ

SΓ I SΓ Γ

] [
dI

dΓ

]
=

[
fS

I

fS
Γ

]
. (20)

The same applies to the mesh and the fluid equation as well.
However, in case of the fluid equations all pressure degrees
of freedom belong to the domain’s interior and are subsumed
in the variable uI in the further notation. Furthermore due
to the Dirichlet–Neumann coupling the fluid mesh displace-
ment dG,n+1 is known during the fluid solver execution. So
the fluid operator turns into

[
FI I FIΓ

FΓ I FΓ Γ

] [
uI

uΓ

]
=

[
fF

I

fF
Γ

]
. (21)

With these definitions details of the solver coupling can be
given:

1. Start with a suitably predicted interface displacement
dn+1

Γ .
2. Solve mesh equation

MI I dG,n+1
I = −MIΓ dG,n+1

Γ (22)

with interface condition dG,n+1
Γ = dn+1

Γ and calculate
resulting grid and interface velocity (see [11,12]).

uG,n+1 = dG,n+1 − dG,n

∆t
and un+1

Γ = dn+1
Γ − dn

Γ

∆t
(23)

3. Solve fluid equation with prescribed interface veloc-
ity un+1

Γ

FI I un+1
I = fF

I − FIΓ un+1
Γ (24)

for the interior velocity and pressure values un+1
I and

calculate coupling forces

fF,n+1
Γ = FΓ I un+1

I + FΓ Γ un+1
Γ (25)

4. Solve structural equation loaded with coupling forces
fF,n+1
Γ

[
SI I SIΓ

SΓ I SΓ Γ

][
dn+1

I

d̃
n+1
Γ

]

=
[

fS
I

fS
Γ − (1 − α f )f

F,n+1
Γ − α f fn

Γ

]
(26)

to obtain the structural displacements in the structural

fields interior dn+1
I as well as on the interface d̃

n+1
Γ .

To simplify the discussion further the above solution steps
are abbreviated with interface operators that map a given
interface displacement dn+1

Γ to interface forces as follows

fF,n+1
Γ = FΓ

(
dn+1

Γ

)
and fS,n+1

Γ = SΓ

(
dn+1

Γ

)
(27)

where the solution demands equilibrium at the interface.

FΓ

(
dn+1

Γ

)
= SΓ

(
dn+1

Γ

)
(28)

The fluid interface operator fn+1
Γ = FΓ (dn+1

Γ ) abbreviates
steps 2 and 3 of the above algorithm, whereas the inverse
structural interface operator dn+1

Γ =S−1
Γ (fn+1

Γ ) denotes step 4.
This way the solver coupling reduces to a single line

d̃
n+1
Γ = S−1

Γ (FΓ (dn+1
Γ )). (29)

It is understood that this line contains the execution of all
three field solvers, one after the other. Each field solver carries
its own state and depends on its own initial and boundary
conditions in addition to the condition given at the coupling
interface.

Remark 3 With the interface operators (27) defined, the cou-
pling can also be stated based on interface forces

f̃
n+1
Γ = FΓ (S−1

Γ (fn+1
Γ )). (30)

The resulting algorithm is equivalent to the one based on
interface displacements and will not be discussed further.
But see [24] for an application of force based couplings.

3.2 Fixed-point coupling algorithm

The Dirichlet–Neumann coupling in some sense assumes the
structural part to dominate the interaction. If the structure
resembles a rigid wall in comparison to the fluid (that is no
interaction occurs), the Dirichlet–Neumann assumption is
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obvious. If, on the other hand, the structure is very light and
flexible, fluid forces will have a huge impact on the structure
and the predictor’s guess at the interface displacement dn+1

Γ

will most probably not match the result.

d̃
n+1
Γ �= dn+1

Γ (31)

In these cases an iterative correction of the interface displace-
ment is required. In contrast to a weak coupling scheme that
solves the Eq. (29) just once for each time step, iterative or
strong coupling schemes iterate (29) until the coupled FSI
problem is solved. However, as has been shown in [3,13],
a weak coupling Dirichlet–Neumann scheme that couples a
flexible structure to an incompressible fluid without subitera-
tion will never be unconditionally stable. The pressure has to
be implicitly coupled at least. Thus a strong coupling scheme
with iterative correction is mandatory. In the present contri-
bution only fully coupled schemes are considered, however
see also [1,29] for iterative coupling methods based on pres-
sure segregation.

The interface operators (29) can be used to define one FSI
cycle inside the coupling iteration

d̃
n+1
Γ,i+1 = S−1

Γ (FΓ (dn+1
Γ,i )) (32)

where i indicates the iteration counter.

Remark 4 The FSI cycle (32) constitutes one pass in a block
Gauß-Seidel solver for the interface displacements. The
structural solver S−1

Γ works on the result of the fluid
solver FΓ .

In order to define an iterative solver a stopping criteria is
required. To this end the interface residual is introduced

rn+1
Γ,i+1 = d̃

n+1
Γ,i+1 − dn+1

Γ,i (33)

and as convergence criteria the length scaled square norm of
the residual is used.

1√
neq

∣∣∣rn+1
Γ,i+1

∣∣∣ < ε (34)

For further discussions of the applicable interface norms in
FSI calculations see [5].

In order to ensure and accelerate convergence of the iter-
ation a relaxation step is needed after each FSI cycle (32)

dn+1
Γ,i+1 = dn+1

Γ,i + ωi rn+1
Γ,i+1 (35)

= ωi d̃
n+1
Γ,i+1 + (1 − ωi )dn+1

Γ,i

with a variable relaxation parameter ωi . The fixed-point algo-
rithm to solve FSI problems consists of the relaxed FSI
cycle (35) with appropriate relaxation parameter and conver-
gence criteria (34). Calculation methods for the relaxation
parameter ωi will be presented in the next section.

Remark 5 Equation (35) can be reformulated

dn+1
Γ,i+1 = ωi S

−1
Γ (FΓ (dn+1

Γ,i )) + (1 − ωi )dn+1
Γ,i (36)

= dn+1
Γ,i + ωi S

−1
Γ

(
FΓ (dn+1

Γ,i ) − SΓ (dn+1
Γ,i )

)

The formulation (36) constitutes a nonstationary Richard-
son iteration with the operator FΓ − SΓ and the precondi-
tioner S−1

Γ . Thus it would be possible to approximate S−1
Γ (see

[6]), however this mandates to evaluate FΓ − SΓ exactly. In
particular the evaluation of the structural solver SΓ is still
required.

Remark 6 With the interface residual (33) it is possible to
define the interface Jacobian

JΓ = ∂rΓ

∂dΓ

(37)

and apply Newton’s method [22] to solve the interface sys-
tem (28). However, as the interface Jacobian (37) is not easily
available, a matrix free Krylov subspace solver [23] has to be
applied inside Newton’s method. In that case the relaxation
step (35) is replaced by the solution of

JΓ ∆dn+1
Γ,i+1 = −rn+1

Γ,i+1 (38)

and the update step

dn+1
Γ,i+1 = dn+1

Γ,i + ∆dn+1
Γ,i+1. (39)

For further discussion of Newton Krylov methods in the con-
text of FSI problems see for instance [10,16].

Remark 7 Multiple evaluations of the FSI cycle (32) within
one time step require field solvers that can be reset to calcu-
late the same time step several times. Black box solvers that
cannot be reset are in general not suited for strong coupling
FSI calculations.

4 Relaxation methods

Relaxation of the interface displacements (35) is nothing but
the line search step of a nonlinear solver [17,22]. Conse-
quently the known solver techniques can be applied here as
well.

4.1 Fixed relaxation parameter

The simplest and most ineffective method is to choose a fixed
parameter ω for all time steps. The relaxation parameter has
to be small enough to keep the iteration from diverging, but
as large as possible in order to use as much of the new solu-
tion as possible and to avoid unnecessary FSI iterations. The
optimal ω value is problem specific and not known a priori.
Furthermore even the optimal fixed value will lead to more
iterations than a suitable dynamic relaxation parameter.
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4.2 Aitken relaxation

FSI problems have already been solved in [27,40] using a
Dirichlet–Neumann partitioned approach combined with a
fixed-point solver based on Aitken’s ∆2 method as given
by [20]. This method has proven to be astonishingly simple
and efficient.

The central idea of Aitken’s ∆2 method is to use values
from two previous iterations to improve the current solu-
tion. In the FSI case two pairs of interface displacements(
d̃Γ,i+1, dΓ,i

)
and

(
d̃Γ,i+2, dΓ,i+1

)
are required that fulfill

(29). In a scalar case the improved solution could immedi-
ately be given

dΓ,i+2 = dΓ,i d̃Γ,i+2 − d̃Γ,i+1dΓ,i+1

dΓ,i − d̃Γ,i+1 − dΓ,i+1 + d̃Γ,i+2
. (40)

This is nothing but one step of the secant method. And with

dΓ,i+2 = dΓ,i+1 + ωi+1

(
d̃Γ,i+2 − dΓ,i+1

)
the relaxation

factor becomes

ωi+1 = dΓ,i − dΓ,i+1

dΓ,i − d̃Γ,i+1 − dΓ,i+1 + d̃Γ,i+2
(41)

= ωi
dΓ,i − d̃Γ,i+1

dΓ,i − d̃Γ,i+1 − dΓ,i+1 + d̃Γ,i+2
(42)

= −ωi
rΓ,i+1

rΓ,i+2 − rΓ,i+1
(43)

For the vector case the division by rΓ,i+2−rΓ,i+1 is of course
impossible. Instead [20] suggest to multiply by the vector
inverse

(
rΓ,i+2 − rΓ,i+1

)
/
∣∣rΓ,i+2 − rΓ,i+1

∣∣2.

ωi+1 = −ωi

(
rΓ,i+1

)T (
rΓ,i+2 − rΓ,i+1

)
∣∣rΓ,i+2 − rΓ,i+1

∣∣2 (44)

This amounts to a projection of the participating vectors in
rΓ,i+2 − rΓ,i+1 direction and to do the scalar extrapolation
with the projected values.

Remark 8 The relaxation parameter calculation (44) is valid
in every iteration step. This version has already been used for
FSI problems in [27], however a lot of confusion has been
caused by citations of [27] that missed the recursion on ωi

in (44). The Aitken formula without recursion requires two
FSI cycles before one relaxation step (44) is possible. This
results in a coupling scheme that needs approximately twice
the number of iterations to converge.

Remark 9 The relaxation parameter (44) is exact in linear
scalar cases. For vector cases things are not that clear, how-
ever, the Aitken relaxation parameter works very well for
many FSI problems and is extremely cheap to calculate and
to implement.

Remark 10 Two previous steps are required in (44), thus
there is no way to calculate the relaxation parameter after the

first FSI cycle ωn+1
1 . In [20] it is suggested to use the last ωn

of the previous time step, however this can sometimes be too
large a step already. A better choice is to start with a (problem
specific) fixed or at least constrained parameter.

ωn+1
1 = max(ωn, ωmax) (45)

Remark 11 It is possible to use more than two history values
to improve the current solution. This idea leads to the known
vector extrapolation schemes and will be discussed in a future
contribution.

4.3 Steepest descent relaxation

The best relaxation parameter possible in (35) is the one that
finds the optimal step length in rn+1

Γ,i+1 direction. To find it
the existence of a merit function φ(dΓ ) is assumed, that is
minimal at the solution dn+1

Γ and sufficiently smooth, such
that the relaxation parameter ωi is given by

ωi = arg min
ωi

φ(dn+1
Γ,i + ωi rn+1

Γ,i+1). (46)

And the condition to determine ωi follows

dφ

dωi
= ∂φ(dn+1

Γ,i + ωi rn+1
Γ,i+1)

∂dΓ

· rn+1
Γ,i+1

!= 0 (47)

which leads to

∂φ(dn+1
Γ,i + ωi rn+1

Γ,i+1)

∂dΓ

= φ′(dn+1
Γ,i + ωi rn+1

Γ,i+1)
!= 0. (48)

From a Taylor series expansion of φ(dΓ )

φ(dn+1
Γ,i + ωi rn+1

Γ,i+1) ≈ φ(dn+1
Γ,i ) + ωi

(
φ′(dn+1

Γ,i )
)T

rn+1
Γ,i+1

+ω2
i

2

(
rn+1
Γ,i+1

)T
φ′′(dn+1

Γ,i )rn+1
Γ,i+1

(49)

the expression for the optimal ωi is obtained.

ωi = −
(
φ′(dn+1

Γ,i )
)T

rn+1
Γ,i+1

(
rn+1
Γ,i+1

)T
φ′′(dn+1

Γ,i )rn+1
Γ,i+1

(50)

At this point a connection between the merit function φ(dΓ )

and the interface residual (33) is assumed

φ′(dn+1
Γ,i ) = rn+1

Γ,i+1, (51)

an assumption that constrains the admissible interface resid-
uals rn+1

Γ,i+1 to gradients of a scalar function. A rather severe
constraint, that leads to a symmetric interface Jacobian

JΓ = ∂rΓ (dn+1
Γ,i )

∂dΓ

= φ′′(dn+1
Γ,i ) (52)
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and the final expression

ωi = −
(
rn+1
Γ,i+1

)T
rn+1
Γ,i+1

(
rn+1
Γ,i+1

)T
JΓ rn+1

Γ,i+1

. (53)

Unfortunately the assumption (51) does not hold for the FSI
interface residual (33). This is due to the convective term of
the Navier-Stokes equation (7) that leads to an unsymmetrical
system matrix in the fluid field (15). However the relaxation
parameter (53) might still be a very good choice to accelerate
the convergence of (32).

Remark 12 It is perfectly fine to approximate the calculation
of the relaxation parameter ωi . As long as the FSI interface
iteration converges, the choice of ωi does not affect the solu-
tion of the coupled problem. It is just the number of iterations
required to reach the solution that depends on ωi .

The evaluation of (53) with the known residual rn+1
Γ,i+1

requires the evaluation of the matrix vector product
JΓ rn+1

Γ,i+1. The interface Jacobian JΓ , however, is not explic-
itly available. There are means to calculate the matrix vector
product exactly [10], but these require specially enhanced
fluid solvers. There are two methods, however, that approx-
imate the matrix vector product and can be performed with
black box solvers.

4.3.1 Calculation via finite difference

A very simple way to approximate the matrix vector product
in (53) is the use of a finite difference

JΓ y ≈ S−1
Γ (FΓ (dn+1

Γ,i + δy)) − dn+1
Γ,i − δy − rn+1

Γ,i+1

δ
(54)

with δ = λ
(
λ +

∣∣∣dn+1
Γ,i

∣∣∣ /
∣∣∣rn+1

Γ,i+1

∣∣∣
)

and a small enough λ.

Here a first order forward difference is reasonable, that builds
on the already available residual rn+1

Γ,i+1 and needs just one
more FSI cycle. Still the computational costs are rather high.
And the approximation turns out to be numerically sensitive
due to the finite difference.

Remark 13 The numerical cost of (54) can be reduced by
avoiding unnecessary accuracy within the nonlinear field
solvers. Oftentimes it is sufficient to do just a linear solve
for both the fluid and structural field without compromising
the accuracy of the approximation.

4.3.2 Calculation via approximated fluid derivatives

Starting from the interface residual (33) and (32) the interface
Jacobian applied to a vector is given by

JΓ y =
(

S−1
Γ

)′ (
FΓ (dn+1

Γ,i )
)

F′
Γ (dn+1

Γ,i ) y − y (55)

where the application of a vector to the derivative of the

structural interface operator
(

S−1
Γ

)′ (
FΓ (dn+1

Γ,i )
)

z is readily

available. This operator requires just one linear solver evalua-
tion of the latest structural field linearization. The derivative
of the fluid interface operator z = F′

Γ (dn+1
Γ,i ) y, however,

posses a problem. This derivative is given by

F′
Γ = dFΓ

ddΓ

= ∂FΓ

∂dΓ

+ ∂FΓ

∂uΓ

∂uΓ

∂dΓ

= ∂FΓ

∂dΓ

+ ∂FΓ

∂uΓ

1

∆t
(56)

according to (18). Unfortunately the derivative ∂FΓ /∂dΓ is
not easily available, so it is dropped. This way the influence
of the mesh movement on the coupling forces is neglected.

F′
Γ ≈ ∂FΓ

∂uΓ

1

∆t
(57)

The remaining derivative with respect to the fluid velocities
is easily available within the fluid solver. So the solution of
z = F′

Γ (dn+1
Γ,i ) y comes down to a linear solve of the fluid

field at the current configuration with prescribed interface
velocities y/∆t .

To clarify things further lets have a look at the limit of (54).

JΓ y = lim
δ→0

S−1
Γ (FΓ (dn+1

Γ,i + δy)) − dn+1
Γ,i − δy − rn+1

Γ,i+1

δ

≈ lim
δ→0

rn+1
Γ,i+1 + S−1

Γ,lin(FΓ,lin(δy)) − δy − rn+1
Γ,i+1

δ

≈ S−1
Γ,lin(FΓ,lin(y)) − y (58)

Here everything except the influence of the “small” pertur-
bation y vanishes, in particular the right hand sides of both
field solvers. The remaining field operators are exactly the
operator derivatives (55).

Remark 14 The assumption of a linear addition to the fluid
operator FΓ,lin(y) mandates to neglect the derivatives with
respect to the interface displacements as discussed above.

5 Numerical examples

5.1 Driven cavity with flexible bottom

The first example is a simple 2d driven cavity with flexible
bottom (Fig. 1) that has already been introduced in [38] and
since then has been used for a variety of numerical studies,
e.g. [13,27]. There is a unit square cavity with a flexible bot-
tom driven by a prescribed periodical velocity at the top. The
fluid domain is discretized with stabilized Q1Q1 elements in
an uniform 32×32 element mesh. At each side there are two
unconstrained nodes that allow free in- and outflow of fluid.
This way the structural displacements are not constraint by
the fluid’s incompressibility [24].

The point with this example is its very flexible structure.
The structural material is chosen such that the structure’s
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Fig. 1 Driven cavity with flexible bottom

Fig. 2 Driven cavity velocity and pressure solution at t = 7.5s

main resistance against the fluid pressure stems from its mass,
that is its density. This allows to compute a series of test cases
with different structural densities that present increasing dif-
ficulties to the coupling algorithm.

In all test cases the time step size is ∆t = 0.1s. The
tolerance criteria within the nonlinear fluid and structural
solvers has been set to the very low value εS = εF =
1·10−10 and a direct solver has been applied to the linear field
equations. With this precautions (that are only affordable for
really small examples) it is guaranteed that the convergence
rate of the FSI iteration is not limited by inexact field solvers.
The convergence tolerance at the FSI interface (34) is set to
ε = 1 · 10−7.

Figure 2 shows the fluid domain deformation, the fluid
velocity norm and isolines of the fluid pressure at time level
t = 7.5 s. The velocity vectors at the top of the cavity are the
prescribed boundary conditions.

Fig. 3 Number of FSI iterations and computational time per time step
for driven cavity with ρS = 5, 000 kg/m3

The problem has among others been solved with Aitken
relaxation, steepest descent relaxation and a fixed relaxation
parameter ω = 0.825. This value for the fixed ω has been
found by trial and error to be the best choice in the second set
of example calculations. The maximum allowed start relax-
ation for the Aitken method (45) has been set to ωmax = 0.1.
For the steepest descent relaxation calculation the evaluation
of the interface Jacobian (37) multiplied with the interface
residual is based on field solver derivatives (55) as suggested
in [27].

For comparison Newton’s method with a matrix free solver
has also been used on the nonlinear interface equation (33).
Both versions of the matrix vector product approximation,
the finite difference (54) with λ = 1 · 10−4 and the evalua-
tion based on field solver derivatives (55), have been applied.
These versions are labeled FD MFNK and MFNK, respec-
tively. In the second residual evaluation in the finite difference
approximation (54) the field solvers are restricted to just one
linear solve to save computation time. See [10,15,16] for
algorithmic details of the Newton Krylov method for FSI
problems.

The first set of runs, shown in Fig. 3, with a structural den-
sity of ρS = 5, 000 kg/m3 show an interesting coincidence
as most coupling methods require three FSI iterations.
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Fig. 4 Number of FSI iterations and computational time per time step
for driven cavity with ρS = 500 kg/m3

Exceptions are the coupling method with a fixed relaxation
parameter and the one with Aitken’s parameter. The time
required per iteration, however, is different for different meth-
ods. The very cheap Aitken method, that needs nothing more
than one FSI cycle per iteration, requires about the same com-
putational time as the method of steepest descent. The slowest
method here is the matrix free Newton Krylov method based
on finite differences, that needs a lot more interface residual
evaluations per FSI iteration.

These and all following timings have been done on a dual
head Opteron node with a MPI based code executed on both
processors. The time measured is the execution time of the
coupling solver. Of course these timings are to be taken with
a pinch of salt, the general picture is very well represented
but small variation that can occur in multiple runs of the same
problem are not accounted for.

Decreasing the structural density to ρS = 500 kg/m3

results in increased work for the coupling algorithms, see
Fig. 4. Now the Newton Krylov methods require less itera-
tions than the fixed point methods, however the neglection
of the fluid field’s dependence on the mesh movement in
the Newton Krylov method leads to a noticeable increase of
iterations. Timings show that the amount of work has indeed
increased for all coupling methods and there is no tremendous

Fig. 5 Number of FSI iterations and computational time per time step
for driven cavity with ρS = 50 kg/m3

difference in the computational time required between dif-
ferent methods. The fastest ones are now the Aitken method
and the finite difference based Newton Krylov method.

A final decrease to ρS = 50 kg/m3, Fig. 5, leads to a
diverging relaxation method with fixed parameter. This could
be cured, of course, by choosing a smaller ω, however as this
is not a recommended method anyway, it is dropped at this
point. Two further points to notice are that the Aitken method
gains a definite advantage over the method of steepest descent
and the approximated Newton Krylov method does not seem
to do very well after the first prescribed velocity period.

Timings confirm this picture and interesting enough the
Aitken method and the finite difference based Newton Krylov
method are again close up. A further decrease of the structural
density, however, would eventually lead to a problem that the
Newton Krylov method solves faster than the Aitken method.

For further insight into the behavior of the fixed-point
coupling algorithm a look at the behavior of the relaxation
parameter ωi during a particular time step might be of use. As
an example we choose step 31 in the ρS = 50 kg/m3 series.
In this step the number of iterations required is very similar
in the Aitken and steepest descent methods. See Fig. 6.

As a matter of fact the relaxation parameter varies a lot dur-
ing one FSI interaction. In particular the Aitken version does
not seem to follow a definite pattern. The steepest descent
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Fig. 6 Relaxation parameter ωi for time step 31 in the ρS = 50 kg/m3

case

Fig. 7 Residual r31
Γ,i for time step 31 in the ρS = 50 kg/m3 case

parameter, on the other hand, does show a curious behavior
as there seems to be a lower limit that is touched in every
other step.

A look at the interface residual norm in Fig. 7 reveals,
that the method of steepest descent seems to enjoy a residual
reduction only with its ωi peak values. Overall, however, both
methods perform comparable in this time step. In contrast
the run with fixed relaxation parameter ωi = 0.3 requires
substantially more iterations. With the fixed parameter ωi =
0.4, however, the simulation did break down before step 31.

5.2 Pressure wave in flexible tube

The second example is a 3d flow in a flexible tube as it has
been presented in [10,15]. The example is motivated by the
type of problem encountered in hemodynamics. The tube
has a length of l = 5 cm, a inner radius of ri = 0.5 cm
and an outer radius of ro = 0.6 cm. The structural density
is ρS = 1.2 g/cm3. A Saint Venant-Kirchhof material is used
with Young modulus E = 3 · 106 dynes/cm2 and Poisson
ratio νS = 0.3. The fluid has a viscosity µ = 0.03 Poise and
a density ρF = 1.0 g/cm3. The time step size used for the
simulations is ∆t = 0.0001 s.

Fig. 8 Flexible tube with 10 times enlarged deformations and veloci-
ties at t = 0.0055 s

The tube is fixed at both ends. The fluid is initially at
rest and loaded with a traction of 1.3332 · 104 dynes/cm2

for 3 · 10−3 s. As a result a pressure wave travels along the
tube.

The deformation of the tube at t = 0.0055 s, ten times
enlarged, is shown in Fig. 8 together with corresponding
velocity values.

For this example the steepest descent method performed
very badly. Acceptable results have been obtained from the
Aitken method and the two Newton Krylov methods (38)
explained above.

As can be seen in Fig. 9 the Newton Krylov method
based on finite differences is by far the fastest method in
this case. In comparison to [10], however, the Aitken method
requires only a moderate number of iterations and only needs
approximately 1.5 times the computational time of the fastest
Newton Krylov method. A possible reason is that in [10] a
less effective version of the Aitken method is used.

Remark 15 In order to gain meaningful comparisons all
example calculations employ the very simple interface pre-
dictor

dn+1
Γ,0 = dn

Γ . (59)

A more elaborated predictor can cause a tremendous speedup
of the FSI iteration.

6 Conclusion

The fixed-point FSI solver with relaxation introduced in [40]
has been revisited. This solver stood the test of time very
well. The main advantage of fixed-point FSI solvers based
on a Dirichlet–Neumann partitioning is the simple imple-
mentation with available field solvers. The calculation of a
specific relaxation parameter in each iteration step proved to
be crucial. This new presentation contains all details of the
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Fig. 9 Number of FSI iterations and computational time per time step
for pressure wave in flexible tube calculation

coupled FSI solver. Recent FSI developments are taken into
account. The relaxation based fixed-point solvers are shown
to be just one option in a general solver framework for inter-
face coupled problems. Comparisons with related Newton
based FSI solvers are make. The proposed relaxation meth-
ods compare very well, even with much more elaborated FSI
solvers based on Newton Krylov methods. In particular the
Aitken relaxation method as proposed by [20] shows very
good convergence properties at surprisingly low cost. This
method has often been underestimated in the last years due
to an unfortunate misinterpretation of the original propos-
als [27,40].
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