Institute of Scientific Computing
Technische Universität Braunschweig
Dr. Thilo Moshagen
January 26, 2018
Dr. Dishi Liu

Introduction to Scientific Computing: TEST EXAMPLE

Remarks:
Training exams is not a suitable preparation for the exam. Study everything.
This is a homework sheet, so it is counted as such - your points are added to your account. To achieve that this sheet has same weight as the other ones, its points are multiplied with $36 / 90=6 / 15=2 / 5$.
Exercise 1: Linear ODEs
Consider the ODE

$$
\ddot{x}=2 x-\dot{x}, \quad x(0)=2, \dot{x}(0)=-1 .
$$

(a) Write down the analytical solution of the ODE.
(b) How do you check stability for ordinary differential equations?
(c) Check whether the equilibrium points are stable or not.

Exercise 2: Difference equations

(a) Solve the linear difference

$$
x_{n}-2 x_{n-1}+2 x_{n-2}=0, \quad x_{0}=1, x_{1}=1
$$

and compute x_{2}.
Hint: The solution of the difference equation is of the form

$$
x_{n}=\left(c_{1}\right)^{n} \cos (n \varphi)+\left(c_{2}\right)^{n} \sin (n \varphi)
$$

(b) How do you check stability for difference equations?
(c) Consider the system of nonlinear difference equations given by

$$
\begin{aligned}
& x_{n+1}=2-x_{n}^{2}+y_{n}, \quad x_{0}=1 \\
& y_{n+1}=2 x_{n}, \quad y_{0}=1
\end{aligned}
$$

Compute the equilibrium points and show that the equilibrium points are unstable.

Consider the nonlinear equation

$$
0.1 y^{3}+y=2
$$

and determine the solution of this equation by the help of the fixedpoint iteration.
(a) The solution of the problem is in the interval [1.5, 1.7]. Check, if the conditions of Banach's fixedpoint theorem are satisfied.
(b) Let $y_{0}=1.55$ and compute y_{1} and y_{2}
(4 points)
(c) Let y^{*} be the solution of the problem. Write down an error estimate for $\left|y^{*}-y_{20}\right|$ by the help of y_{0} and y_{1}.
(d) How can this estimate be improved if you can use y_{2}, too?

Exercise 4: Nonlinear equations

(11 points)
Consider the nonlinear equations

$$
\begin{aligned}
x_{1}+x_{2} & =\exp \left(x_{1}^{2}\right) \\
x_{2}^{2} & =\exp \left(x_{2}\right)-2 .
\end{aligned}
$$

(a) Write down Newton's method for this system of equations (You need not to invert the matrix analytically).
(b) Calculate one step of Newton's method starting from $x_{0}=(0.9,1.3)^{\top}$.

Exercise 5: Runge-Kutta methods

Consider the ODE

$$
\begin{equation*}
\ddot{u}-u=t^{2}, \quad u(0)=1, \dot{u}(0)=0 \tag{1}
\end{equation*}
$$

and the Runge-Kutta method

$$
\begin{aligned}
k_{1} & =f\left(t_{m}, u_{m}\right), \\
k_{2} & =f\left(t_{m}+h, u_{m}+h k_{1}\right), \\
u_{m+1} & =u_{m}+\frac{h}{2}\left(k_{1}+\beta k_{2}\right)
\end{aligned}
$$

(a) Write down the corresponding Butcher array for this scheme.
(b) Choose β in such a way that the Runge-Kutta method is consistent.
(c) Does the scheme converges? Why?
(d) Apply the Runge-Kutta method on the ODE (1) and compute with the stepsize $h=0.1$ a numerical approximation for $u(0.1)$.

