

Prof. Dr. U. Motschmann Dipl.-Phys. H. Kriegel

ELEKTRODYNAMIK

SS 2013

9. Übungsblatt

Abgabe: Mo., 3. Juni 2013 bis 17 Uhr im Kasten vor A317

Fragen zu den Aufgaben: H. Kriegel, Raum A317, Tel.: 391-5187, h.kriegel@tu-bs.de

16. Fresnelsche Formeln

(20 Punkte)

Eine ebene elektromagnetische Welle

$$\underline{E} = \underline{E}_0 e^{i(\underline{k} \cdot \underline{r} - \omega t)} \quad ; \quad \underline{B} = \frac{1}{\omega} \underline{k} \times \underline{E}$$

treffe bei $x_3=0$ auf die ebene Grenzfläche zwischen zwei homogenen Dielektrika mit den Dielektrizitätskonstanten $\epsilon_1\neq 1$ und $\epsilon_2\neq 1$ sowie den Permeabilitäten $\mu_1=\mu_2=1$. Der Normalenvektor der Grenzfläche sei \underline{e}_3 . Die einfallende Welle komme aus dem Medium 1.

- (a) Welche Randbedingungen müssen die Felder $\underline{E}, \underline{D}, \underline{H}, \underline{B}$ bei $x_3 = 0$ erfüllen?
- (b) Verwenden Sie für die reflektierte und die transmittierte Welle den Ansatz

$$\underline{E}^{R,T} = \underline{E}_0^{R,T} e^{i(\underline{k}^{R,T} \cdot \underline{r} - \omega^{R,T} t)}$$

Geben Sie die Dispersionsbeziehung $\omega(k)$ in beiden Medien an. Zeigen Sie die folgenden Relationen:

$$\omega = \omega^R = \omega^T \tag{1}$$

$$|\underline{k}^R| = |\underline{k}| ; \qquad |\underline{k}^T| = \sqrt{\frac{\epsilon_2}{\epsilon_1}} |\underline{k}|$$
 (2)

$$k_2 = k_2^T = k_2^R = 0 \quad ; \qquad k_1 = k_1^T = k_1^R \quad .$$
 (3)

Nutzen Sie diese Beziehungen aus, um das Reflexionsgesetz $(k_3^R=-k_3)$ und das Snelliussche Brechungsgesetz herzuleiten.

(c) Folgern Sie aus den Maxwellschen Gleichungen, dass es zwei unabhängige Sätze von Lösungen gibt:

$$TE - Welle : \{E_2, B_1, B_3\}$$
; $TM - Welle : \{B_2, E_1, E_3\}$

(TE: transversal-elektrische Welle, TM: transversal-magnetische Welle).

(d) Formulieren Sie alle Randbedingungen aus Aufgabenteil (a) so um, dass sich Bestimmungsgleichungen für die Amplituden \underline{E}_0^R und \underline{E}_0^T der reflektierten und der transmittierten Welle ergeben. Ermitteln Sie für die TM-Welle die Verhältnisse $t = |\underline{E}_0^T|/|\underline{E}_0|$ und $r = |\underline{E}_0^R|/|\underline{E}_0|$ und stellen Sie diese als Funktion von α (Einfallswinkel) und von ϵ_1 bzw. ϵ_2 dar. Plotten Sie $R = r^2$ und T = 1 - R als Funktion des Einfallswinkels für $\epsilon_1 = 2, \epsilon_2 = 4$ und $\epsilon_1 = 2, \epsilon_2 = 1.5$. Diskutieren Sie den Verlauf.

Bitte wenden \longrightarrow

(e) In Teilaufgabe (c) sollte sich für die reflektierte Welle

$$\frac{E_0^R}{E_0} = \frac{\epsilon_2 \cos \alpha - \sqrt{\epsilon_1} \sqrt{\epsilon_2 - \epsilon_1 \sin^2 \alpha}}{\epsilon_2 \cos \alpha + \sqrt{\epsilon_1} \sqrt{\epsilon_2 - \epsilon_1 \sin^2 \alpha}}$$
(4)

ergeben, wobei α den Einfallswinkel der Welle bezeichnet. Bestimmen Sie aus dieser Beziehung den Brewster-Winkel α_B . Das ist derjenige Einfallswinkel, bei dem die reflektierte Welle verschwindet.

- (f) Nehmen Sie an, eine beliebig polarisierte Welle falle unter dem Brewster-Winkel α_B auf die Grenzfläche ein. Welche Polarisation beobachtet man dann im reflektierten Strahl und in welche Richtung zeigt \underline{E}^R ?
- (g) Betrachten Sie den Fall, dass das Licht vom optisch dichteren auf das optisch dünnere Medium einfällt ($\epsilon_2 < \epsilon_1$). Bestimmen Sie denjenigen Winkel α_{total} , ab dem Totalreflexion eintritt. Zeigen Sie, dass k_z^T für $\alpha > \alpha_{total}$ imaginär wird und dass die reflektierte Welle und die transmittierte Welle im Fall der Totalreflexion jeweils eine Phasenverschiebung δ^R , δ^T bezogen auf die einfallende Welle aufweisen. Ermitteln Sie δ^R und δ^T als Funktion von $\epsilon_1, \epsilon_2, \alpha$. Geben Sie reelle Lösungen für $\underline{E}^T(\underline{r}, t)$ und $\underline{B}^T(\underline{r}, t)$ für $\alpha > \alpha_{total}$ an. Berechnen Sie im Bereich der Totalreflexion den Poynting-Vektor $\underline{\Pi}^T$ im Medium 2 sowie den zeitlichen Mittelwert von Π_z^T .

Hinweis: bei der Mittelwertbildung können Sie sich auf die Stelle $x_1 = 0$ beschränken.