

Prof. Dr. U. Motschmann Dipl.-Phys. H. Kriegel

Elektrodynamik

SS 2012

14. Übungsblatt

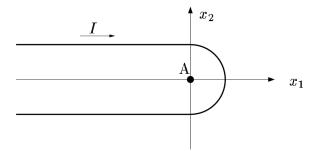
Abgabe: Do., 12. Juli 2012 bis 09.45 Uhr im Kasten vor A317

Fragen zu den Aufgaben: H. Kriegel, Raum A317, Tel.: 391-5187, h.kriegel@tu-bs.de

32. Statische Magnetfelder

(3 Punkte)

Betrachten Sie eine Kugelschale endlicher Dicke mit Innenradius R_1 und Außenradius R_2 , die eine konstante Magnetisierung in radialer Richtung aufweist:


$$\underline{M} = M\underline{e}_r \quad \text{für} \quad R_1 \le r \le R_2 \quad ; \quad M = \text{const} \quad .$$
 (1)

Bestimmen Sie für eine solche Anordnung die Felder B und H im ganzen Raum.

33. Biot-Savart-Gesetz

(8 Punkte)

Bestimmen Sie mit Hilfe des Biot-Savart-Gesetzes das Magnetfeld im Punkt A für den in der Skizze dargestellten, stromdurchflossenen Draht. A sei der Mittelpunkt des Halbkreises. Hinweis: zerlegen Sie die Integration geeignet und überlegen Sie sich Parametrisierungen für die Teilstücke.

34. Gesetz von Ampère

(9 Punkte)

In zwei einfachen Fällen soll das Magnetfeld mit Hilfe des Gesetzes von Ampère bestimmt werden.

(a) Koaxialkabel

Gegeben sei ein unendlich langer, gerader Draht mit dem Radius R_1 , der vom konstanten Strom I durchflossen wird. Der Strom sei gleichmäßig über den Querschnitt des Drahtes verteilt.

Bitte wenden \longrightarrow

Der Draht verläuft entlang der Achse eines Hohlzylinders mit Innenradius R_2 und Außenradius R_3 ($R_1 < R_2 < R_3$). Der Hohlzylinder wird (im Bereich $R_2 < r < R_3$, r in Zylinderkoordinaten) homogen von einem betragsmäßig gleichen Strom I durchflossen. Die Ströme in Draht und Hohlzylinder sollen jedoch in entgegengesetzte Richtungen fließen.

Berechnen Sie das Magnetfeld dieser Anordnung im gesamten Raum und skizzieren Sie $|\underline{B}|$ als Funktion des Abstandes von der Zylinderachse.

(b) Koaxiale, dicht gewickelte Spulen

Gegeben seien zwei unendlich lange und dicht gewickelte Spulen mit N_1 bzw N_2 Windungen pro Länge L und Radien $R_1 < R_2$. Die Spulen werden von den Strömen I_1 bzw. I_2 durchflossen. Die Spulenachse sei die x_3 -Achse. Bestimmen Sie die Gesamtenergie der Anordnung im Volumen $\{\underline{r} \mid 0 < x_3 < L, \sqrt{x_1^2 + x_2^2} \le R_2\}$ und lesen Sie die Induktionskoeffizienten ab.

Hinweis: Dies ist das letzte Übungsblatt, auf das es Punkte gibt und das korrigiert wird. Nächste Woche gibt es an dieser Stelle dann ein Klausurvorbereitungsblatt.