Quantifizierung mittels Gelelektrophorese-Hauptfehlerquellen und Verbesserung der Präzision

Simone Schröder, Universität Braunschweig Lothar Jänsch, HZI Braunschweig Hui Zhang, Edward S. Yeung, Iowa State Univ. Claus Zabel, Charité Berlin Aftab Ahmed, Univ. of Rhode Island

Hermann Wätzig Institut für Pharmazeutische Chemie Universität Braunschweig

h.waetzig@tu-bs.de

Gelelektrophorese

- Qualitätskontrolle von Proteinen
- Untersuchungen zur Proteinexpression

Vorteile der (2-D)-Gelelektrophorese:

 hervorragende Trennleistung und Selektivität

aber: Nachteile:

- lange Analysenzeiten

Standard-Gel

KISS - Algorithm

- 3D Gel-Darstellungen werden in ein 2D Elektropherogramm umgewandelt
- Grauwerten werden mit MATLAB Zahlen zugeordnet

Simone Schröder, Hui Zhang, Edward S. Yeung, Lothar Jänsch, Claus Zabel, Hermann Wätzig, submitted to J. Proteom Res.

Standard Gel

KISS - Algorithmus

KISS - Algorithmus

Visualisierung mittels nativer Fluoreszenz

H. Zhang, E. Yeung, Electrophoresis 2006

H. Zhang, E. Yeung, S. Schröder, H. Wätzig, in preparation

Kalibriergerade bei Verwendung nativer Fluoreszenz: Lysozym

RSD% ≈ 10%

Simone Schröder, Hui Zhang, Edward S. Yeung, Lothar Jänsch, Claus Zabel, Hermann Wätzig, submitted to J. Proteom Res.

Experimenteller Aufbau für die Fluoreszenz-Detektion von Proteinen mittels Laseranregung (side entry)

total variability in quantitative 2-DE	15 – 70 % ^{15, 17, 18, 36}
 major error sources transfer between first and second dimension visualization: staining methods native fluorescence analyst 	10 – 15 % [section 3.1.] 13 – 70 % [section 3.2.] 12 – 16 % [section 3.3.] 10 % [section 3.4.]
further minor error sources include: sample preparation, IPG strip rehydration, protein loading, gel scanning, integration software, impact of the gel / interaction between gel and separated proteins, temperature changes etc	< 10 %

aus: Simone Schröder, Hui Zhang, Edward S. Yeung, Lothar Jänsch, Claus Zabel, Hermann Wätzig, submitted to J. Proteom Res.

Verbesserungsmöglichkeiten

- 1. Probenvorbereitung
- 2. IPG-Streifen: Rehydratisierung
- 3. 1. Dimension (IEF)
 - Beladung
 - Fokussierungszeiten
- 4. IPG-Streifen: Equilibrierung
- 5. 2. Dimension (SDS-PAGE)
 - Geldicke
 - Polymerisationsbedingungen
- 6. Visualisierung/Datenanalyse
 - ggf. Anfärbung;

Verbesserungsmöglichkeiten

1. Probenvorbereitung

- 2. IPG-Streifen: Rehydratisierung
- 3. 1. Dimension (IEF)
 - Beladung
 - Fokussierungszeiten
- 4. IPG-Streifen: Equilibrierung
- 5. 2. Dimension (SDS-PAGE)
 - _ Geldicke
 - Polymerisationsbedingungen
- 6. Visualisierung/Datenanalyse
 - ggf. Anfärbung;

Verbesserungsmöglichkeiten

- 1. Probenvorbereitung
- 2. IPG-Streifen: Rehydratisierung
- 3. 1. Dimension (IEF)
 - Beladung
 - Fokussierungszeiten
- 4. IPG-Streifen: Equilibrierung
- 5. 2. Dimension (SDS-PAGE)
 - _ Geldicke
 - Polymerisationsbedingungen
- 6. Visualisierung/Datenanalyse
 - ggf. Anfärbung;

Schlussfolgerungen:

- Das Hintergrundsignal ist meist die Hauptfehlerquelle
- Dieses kann durch Detektion mittels nativer Fluoreszenz oder NIR wesentlich reduziert werden
- Eine RSD% von 5% ist in Reichweite

Native Fluorescence

16 ng	8 ng	4 ng	1.6 ng	0.8 ng		
-						
-	1					

lysozyme (Mr 14 400 Da)

trypsin inhibitor (Mr 21 500 Da)

carbonic anhydrase (Mr 31 000 Da)

ovalbumin (Mr 45 000 Da) serum albumin (Mr 66 200 Da) phosphorylase b (Mr 97 000 Da)

Experimental setup for fluorescence detection of proteins with laser side-entry excitation,

NIR detector precision data

Gel_A_140607

	Lane B	Lane C	Lane D	Lane E	Lane F	Lane H	Lane I	mean	STD	RSD%
1	18.237	18.970	19.508	18.030	20.296	18.033	20.568	19.092	1.064	5.575
2	7.579	7.666	7.745	7.512	8.211	7.865	8.557	7.876	0.378	4.801
3	14.711	13.372	15.205	15.144	15.958	13.983	15.682	14.865	0.921	6.194
4	28.185	25.478	28.316	28.383	29.039	26.230	30.771	28.057	1.756	6.260
E	22 549	21 225	22.651	22 524	22 626	20 974	22 210	22.266	0 0 4 0	2 900
5	22.040	21.335	22.001	22.321	22.020	20.074	23.310	22.200	0.040	3.009
6	44,441	41,243	44,039	43,252	43,468	40.368	47.747	43.508	2.387	5,486
				10.202	-10.100	-10.000		-10.000	2.001	0.100
7	37.909	34.83 <u>6</u>	36.18 <u>6</u>	35.939	36.557	33.28 <u>8</u>	40.55 <u>3</u>	36.467	2.306	6.324
8	30.025	29.558	30.070	29.444	29.575	26.685	31.983	29.620	1.560	5.267

IPG - strip equilibration

- Sodium dodecyl sulphate (SDS) saturates the IPG strip and forms negatively charged protein-SDS complexes
- Disulfide bonds are cleaved by thiolreducing agents (dithiothreitol = DTT)
- Iodoacetamide alkylates thiol groups to prevent their reoxidation during electrophoresis

IPG - strip equilibration

IPG - strip equilibration

SDSconcentration:

2 %

1: glucoseoxidase

2: albumin

3: catalase

4: pepsin

5: ß-lactoglobulin

6: myoglobin

7: ribonuclease

8: cytochrome c

3,0

pН

-

Mr [kDA]

80

10,0

25

Visualization

carbonic anhydrase 80 60 Peak area 40 п 20 ň 0 2 8 12 16 0 6 10 14 18 protein amount [ng]

Native Fluorescence Detection 1D gel electrophoresis number n of runs: n = 106 proteins trypsin inhibitor: 33,8% RSD% carbonic anhydrase: 38,4% RSD%

Visualization

 $\begin{array}{c} 60 \\ 40 \\ 40 \\ 20 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ \hline \end{array} \right)$

trypsin inhibitor

carbonic anhydrase

Native Fluorescence Detection 1D gel electrophoresis number n of runs: n = 86 proteins trypsin inhibitor: 14,8% RSD% carbonic anhydrase: 16,0% RSD%

RuBPS - Staining

Coomassie - staining

