CFD Short Course: Approximation Theory

APPROXIMATION THEORY (1)
To do: given u(x) in §2, approximate by known functions

u(e) = o' (@) = fi(x)a; = N'(2)i

Approximation of Functions
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APPROXIMATION THEORY (2)

Examples:

- Truncated Taylor Series

u(z) =~ u(x) = ag + a1 + asx® + ... + apma™

1 diu

a;, = — —
T4 dad

x=0
- Truncated Sine Series

u(z) ~ u'(x) = ajsin‘%

2 )T

L
a; = Z/O u(x)sz’n‘%dw

- Legendre Polynomials

- Hermite Polynomials
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In General: Choose complete set of trial functions N J.

u(z) ~u"(r) = Nla; ; j=1,2,..M

DETERMINATION OF CONSTANTS

1. Point Fitting: set u" = u at M selected points

Point Fitting
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2. Weighted Residual Methods(WRM):

Define: eh = — - the error or residual

Require: " -0 in

Introduce a set of weighting functions W*; i =1,2,..M
Require that:

/Wieth:O L i=1,2,..M
Q

Then,as M — oo , € — 0 at all points in 0

Insert expression for wu”:

/Wi (u—Njaj) d) =0
Q

Kij:/WideQ , ri:/WiudQ
Q Q

Choice of W* defines method !
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2.1 Point Collocation

Choose: W' =6(x —z;) , z;€Q

WR statement

/5($—xi)ehdﬂzeh(xi)20 , 1=1,2,.M
Q

N7 (z3)a; = u(x;)

= same as Point Fitting
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2.2 Galerkin Method

Choose: W* = N*
WR statement

/Nieth:/Ni (u—Na;)d2=0 , i=1,2.M
Q Q

U N%’Nﬂ'dﬂ] aj:/N@'udQ . i=1,2,..M
Q Q
1.e.

M. -a=r
Remarks:
- M. is the consistent mass-matrix

- Lumping of M. will not give point fitting, as r has in-
tegrals
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LEAST SQUARES PROBLEM

I, = /Q(eh)QdQ = /Q(uh — u)2dQ

6115 = bay, / N¥*(N'a; —u)dQ =0
Q

/ NENYQ a; = / NFEudQ
@) )

= Equivalent to Galerkin WRM

= Choice of W from same set as N* optimal
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DRAWBACKS OF GLOBAL TRIAL FUNCTIONS

1. Determining N7’s difficult for all but the simplest
geometries in 2/3D

2. Matrix K is full

3. Matrix K can become ill-conditioned - even for simple
problems (can use strongly orthogonal polynomials)

4. a;’s have no physical significance

= Use LOCAL TRIAL FUNCTIONS
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LOCAL TRIAL FUNCTIONS

Given u(x) , x € Q:
Divide 2 into a set of non-overlapping sub-intervals )

Define u" in each sub-interval
Sub-intervals - ELEMENTS
X1, L2, .... - NODES

node

element

9



CFD Short Course: Approximation Theory 10

CONSTANT TRIAL FUNCTIONS

Define a piecewise constant function

pE _ { 1 in element E
0 in all other elements

X

Constant Trial Functions

Then globally

10
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LINEAR TRIAL FUNCTIONS

" vary linearly

Better approximation: let wu
Place nodes at end of each element

Define a piecewise linear trial function

Nj:{l at node j
0 at all other nodes

and N7 non-zero only on elements associated with node j

o

X

X

Linear Trial Functions

11
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Globally
uwr~u = Nj(w)u(azj) = Nj(w)ﬁj
Locally over element el with nodes 1 and 2
uw=~u = N, + N2as
§= (2 —x1)/(22 — 1)
Ng = (z2 — @) /het =1 —¢

Nz =(z—z1)/ha =&

uh — (mz—ac)ulhtl(x—ml)UQ — (1 . 5)“1 _|_ S’U/Q

Observe that: x = (1 — &)z + Exo = Nl'zi 4+ N2z,

12
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QUADRATIC TRIAL FUNCTIONS

h

Better approximation: let u" vary quadratically

Place nodes at end of each element, as well as the middle

N N2

—
0 0.5 1 3
Quadratic Trial Functions

Ny =(1-8(1 -2
NZ = 4¢(1—¢)
Negl = —5(1 - 25)

13
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GENERAL PROPERTIES OF SHAPE-FUNCTIONS

1. Interpolation Property:

ul = N’(:z:)f&Z

u'(z;) = N'(zj)a; = 05 = N'(z;) = 4

2. Constant Sum: Must be able to represent a constant

u=1 = u"=1=N'(2)i

but interpolation property = u; =1 =

ZN%’(:I:):1 , Yz eQ (%)

3. Conservation property: from Eqn.(x):

Y Niy=0, VzeQq

14
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LINEAR TRIANGLE (1)

A B A 1 &

Linear Triangle

1) Shape Functions

X =Xa+ (xp —x4)§ + (x¢ —xa)7

or

x=N'x; = (1 — € —n)xa +Exp + nxc

15
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LINEAR TRIANGLE (2)

2) Shape Function Derivatives

N;L;E — f&g’x + N,Z:r]n,x

J:<£U,§ xm) _ <xBA xC’A)
Yse  Yiny YBA YcA

det(J) = 2Ac; = TBA YoA — TcA YBA

J—l _ gm €7y _ i Yca _ZCC’A>
M Thy 2A —YBA IBA

N' 1 | ~Yca +yBa
£ i
Nt { | Tca—7TBa
A Y e

16
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LINEAR TRIANGLE (3)

3) Normals
3.1 Direction:
; VN’
n = — .
[VN?|
3.2 Height:
. 1 1
VN = — = hz = ,
| | h; IVN?|
3.3 Face-Normals:
. . VN . . .
(sn)" = —s' VN = —s'h;VN' = —2AVN"*
Ni
S,
n

17

17



CFD Short Course: Approximation Theory 18

LINEAR TRIANGLE (4)

4) Basic Integrals

1
| A
/Nm:_ |
el 3 1

2 1 1

o A,
MGZZ/NZNJCZQ: 12l 1 2 1
1 1 2
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SHAPE-FUNCTIONS FOR TRIANGLES (1)

1) Linear Triangle
N'=@G=1-¢—n
N?=(=¢
N®=(3=n

3 Area @a

Z]_:

Total Area

1 2

Area Coordinates

19
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SHAPE-FUNCTIONS FOR TRIANGLES (2)

2) Quadratic Triangle
N'=G(20—1) =1 —&—n)(1—26—2n)
N? =026 —-1) =£(26-1)
N? = (3(2¢s — 1) =n(2n — 1)
N* =416 =4£(1-€—n)
N° = 4¢a(3 = 4én
N® =413 =4n(1 — & —n)

3

1 4 2

Degrees of Freedom of Quadratic Triangle

20



CFD Short Course: Approximation Theory 21

SHAPE-FUNCTIONS FOR TRIANGLES (2)

3) Cubic Triangle

G1(3¢1 —1)(3¢ — 2)
2(3¢2 —1)(3¢2 — 2)
(3(3¢ — 1)(3¢s — 2)

(S
NIO© N[O N[O N[O NO NO N~ NF N=
I
=
I
[\
w
I
\V)
e

N1 =27¢1((3
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SHAPE-FUNCTIONS FOR QUADS

1) Bilinear Quad
N'=(1-¢&(1—n)

N?*=¢(1—n)
N? = ¢&n
N*=(1-¢&n

2.1) Quadratic Serendipity Quad
Nt =(1-&@1-n)(1-2{~2n)
N? = —£(1—n)(1—2¢+2n)
N® = —¢n(3 — 2€ — 2n)
Nt = —(1-&n(1+2¢ - 2n)
N® =4£(1-&)(1—n)
N® = 4n¢(1 —n)
NT = 4(1 = §)&n
N® =4(1=n)(1-&n

22
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WRM OF APPROXIMATION WITH LOCAL FUNCTIONS

/9221;/9 (%)

- build integrals on element level

Basic Idea:

- gather info from global point-arrays to local element-
arrays

- scatter-add resulting integrands to global rhs/matrix lo-
cations

Ky, = [ZK”] Z:ZTél:ri
el

Note: for Eqn.(x) only need info: nodes belonging to an
element

= drastic simplification of data structures/logic

23
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EFFORT vs ACCURACY (1)

Optimal Effort:

Assume even error distribution (optimal mesh) initially; then

Eff>cih™®

d: dimensionality of problem
Error:

lu =" = 2l ulpia

p: order of approximation for the elements
Desired: attain |[u —u"|| = 0 without Eff — oo

Eff-llu— ]| = esh?* =l

Worst Case Scenario (e.g. Turbulence)

Dimension Eff * Err Decrease with h — 0
1-D hP p=>1
2-D pp—1 p> 2
3-D P2 p>3

= strive for elements of higher order

24
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EFFORT vs ACCURACY (2)

However: Redeeming factors:

- 1-D features in 2/3-D: boundary layers, shocks, contact
discontinuities

- Engineering Accuracy O(1%)
- Unknown Physics

25
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