CFD Short Course: Euler (1) 1

GALERKIN (1)

/Nzut—i—V F)dQ =0
/NZ (NI ()¢ + V-F(N4;)] d2=0

In order to save CPU, use:

F(N’1,) = N'F(1;)

=
/NideQ (0y).¢ +/ N'V - N7dQ F(i;) = 0
Q Q
or
M., -G4;=r , r=r(u)
Remarks:

- Integration by parts possible; if N* linear, same as FVM

ho =%

- Again use:
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GALERKIN (2)

To see what happens: 1-D, h=const., linear advection:

us+auy, =0

For each element

2 1 Uq
h |11 4 1 (V%) .
6 1 4 1 us |
u 1 2_ _’UJ4_,t
—1 1 1 Twr
—a | —1 0 1 U9
2 -1 0 1 U3
| —1 1. L Uy
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GALERKIN (3)

With mass-lumping, at node i :

a
(Uz’>,t = —% (Uz'+1 — Ui—1)

= same as central differencing
Stability: RHS

1
r; = —% (Uz'+1 — ui—l)

Only every 2nd node coupled = zero-energy modes
= Chequerboard

= need stabilizing terms
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GALERKIN (4)

. o
. 2nd order (TVD) : hQW

Fig1 -2+ F,_1 =4

. 4th order : h488—;
Fiyo—4F; 1 +6F;, —4F;, 1+ F;_5 =16

- Simulate V* as V2V? (two passes of V?)

- Implicit matrix may also be assembled in this way
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EQUIVALENCY WITH FVM (1)

r’ :—/ N'V - N’ F(1,) dQ:/(VNi)Nj- F(d;) df
Q Q

For linear triangles

(sing) - Y  F(d)

Wl
N | —

= SOV F(ay) =

jel jel
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EQUIVALENCY WITH FVM (2)

For node a:

but

= same as FVM

same can be shown for 3-D tetrahedra
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LAX-WENDROFF (TAYLOR-GALERKIN)

Start with Taylor-series in time
+0
A2 "
Au = At u ¢ -+ TU,tt

Then use repeatedly original equation

u,t = —V . F
and

AF = AAu
=

At2 n+0O
but:
F|"™® =F"+0A- Au

=

At? At?
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EXPEDITING THE RHS EVALUATION (1)

Aim: avoid A

- many entries

- real gas

= Develop 2-step schemes

Half-Step: predict u?*0%°

At
un—|—0.5 —u— 7v .F

Full Step: use u”+9-°

At
Au=—-At V-Fu"""®) = —At V-F(u— 7V - F)

At?
= ~At V-F(u)+ —-V-A-V-F(u)
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EXPEDITING THE RHS EVALUATION (2)

Several Possibilities

1.) N*,N*: 5-point stencil in 1-D (larger support)
2.) P N': 3-point stencil in 1-D (same support)

time

tn+1

N
VNN

space

t
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LINEAR ELEMENTS (TRIANGLES, TETRAHEDRA)

Spatial discretization:
_at "t = 4 1At : u, F piecewise constant

- at t7 , t"T! : u, F piecewise linear

a) First step: (GATHER, ADD)

1=1 1=1

b) Second step: (SCATTER-ADD)

n—l—%
o At .
NINIAQ - Au = : Ly - N©F¥
/ a “ Nnode ;VO LTk el
=
M, - Au” =r" ()
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a)

CF

DATA FLOW

b)

D Short

Course: Euler

(1) 11
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SOLVING FOR THE CONSISTENT MASS MATRIX

Solve (*) as

M, - (Aui’; — Au’) =r" — M. - Au", i=0,..,niter

1

and Aug =0

Usually niter =3
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ARTIFICIAL VISCOSITIES

Observation:

Need to do something special for shocks/discontinuities

= need:

1.) Sensor: e.g. 1st/2nd order derivative

2.) Damping Operator: Laplacian

13
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LAPIDUS

0 ou

d=At- — (k"=

t az(‘k ‘az)

where

Viv| I o O(v-1)

1 = k' = e - B2 -

Vv “ ol

- invariant under coordinate rotation
- 1-D = cheap
- good effect at shocks

- k' vanishes at shear/ boundary layers and
contact discontinuites

- identification of shock (k" < 0) or
expansion (k! > 0) simple

Shock Shear Layer
V1 Vs
ﬁ w L v
— Y
_> I_
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PRESSURE-BASED

d = Cou V (h*f(p)) Vu

- invariant under coordinate rotation
- V? approximated by (M; — M,.) = fast

- should vanish at shear/ boundary layers and
contact discontinuites

- independent of At, but dependent on Courant-nr. C'ou

- take enthalpy for energy equation

a) Jameson:

N
—Cl— =

f(p) z

- good for transonic flows

b) Peraire et al. :

VRV

- good for hypersonic flows
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