Adaptive Refinement 1

ADAPTIVE REFINEMENT

Any adaptive refinement scheme is composed of:

1. Error Indicator/Estimator

- Interpolation theory
Residuals of PDE (adjacent grid)
Indicator variable (e.g. Ma, S)

Comparison of derivatives (h,p,s)
Subgrid: Introduction of further d.o.f. (h,p,s)

2. Aim of refinement

- Equidistribution of Error
- Local: €" < ¢; Vx € Quup

- Refine/Coarsen if: €* > ¢, , " < c,

3. Refinement Strategy

- Mesh Movement (Same Topology)
- Mesh Enrichment (h,p,s)

- Mesh Regeneration

Adaptive Refinement 2

ERROR INDICATORS/ESTIMATORS

h

Make assumption: 4" =~ u = solution should be ‘close’

a) Interpolation theory: for elements of order p
le®]| = flu —u"[| = ¢ BP*Hulpsa

b) Residuals of PDE (adjacent grid)

R=0

R=0
R=0

c) Element jump in indicator variable (e.g. Ma,S)

d) Comparison of derivatives (h,p,s)

1 1

U pg = 72 (j—1 — 2u; + uig1) — EhQu,IV
1 1,
U xx = 1972 (_’U/i_Q + 16ui_1 — 30%1 + 16ui+1 - UH_Q)—I——}L U vi

90
d) Subgrid: Introduction of further d.o.f. (h,p,s)

....and all work for most cases !

Adaptive Refinement 3

INTERPOLATION THEORY ESTIMATE (1)

H2-seminorm :

lu—u"llg < e h®-ul, |

where

In 1-D:

= Compute second derivatives at nodes
Assume:

w=N" ; wij = N"(Q;)k
Then use WRM:

/NlNk(a,ij)de:/Nlejjade:—/NfiNf;ade
Q Q Q
=

M-u,ij:—K-u

- take max(element nodes) to compute (*)
(‘conservative’)

Adaptive Refinement 4

INTERPOLATION THEORY ESTIMATE (2)
For linear elements, constant h, 1-D, at nodes :
ei=h"% (U1 —2-Ui+U;_1)

- not dimensionless, i.e. requires user expertise

- strong shocks dominate refinement

= MODIFIED ERROR INDICATOR (1-D)

o) Uiy1 —2-Us + Ui I

T Ui — Ui+ [Us = Ui | + € [Uia | + 2 |Ui| + Ui

- ‘eating-up’ effect of strong shocks avoided
- dimensionless
- bounded : 0 < F; <1 (preset tolerance)

- € : noise/physics filter (hydro-solver dependent)

Adaptive Refinement 5

MODIFIED ERROR INDICATOR (2/3-D)

Generalization to multidimensional situations :

2ok (Jo Ny N7dQ-Uy)?

g
SRR\ ESHTARTE IN{Uy |+ e (INF1[U]) | de?

-1 < k,l < NDIMN
- good for 2-D

- for 3-D unreliable; reason:
- large local variations in element size
- large local variations in element shape
- large local variations in elements surrounding a point

= IMPROVED ERROR INDICATOR

2o (Jo NN -Us)?
> (o INLINTUdQ)? + eMihy* UL

B! =

- M7: lumped mass-matrix at point [
- hy: average element length at point [

- Very good performance due to averaging (My, hy)

Adaptive Refinement

DETERMINATION OF THE ELEMENT SIZES

Define:
D} = ¢, (Uita] + 2 - |Ui] + |Ui—1])

D} = |Uiy1 — Ui| + |U; — U]
Dz2 — |Uz'_|_1 —2- UZ +Ui—1‘

Error on the old grid E°:

E_old _ DZQ
’ D! + DY

Reduce current element size h°'¢ by a fraction ¢ to

prew — 5 . hold
=
D¢
E;rzew _ - zg -
=
(e [D V(DL +4D9 224 (D} + DY)

Bl 2 DI+ DY

6

Adaptive Refinement 7

Remarks:
- Solution smooth (D' < D) = ¢=./£57

- Near discontinuity (D! > DY) = ¢= %

- Use target E"9 as E™ev
GENERALIZATION TO 2/3—D
(D)l = e | INLINU142 |
(OO =1 [NGV | (M =] [Niviaous |

h: ‘typical element length’

= Error-matrix E

Ea:x ny sz Ell 0 0
E={E, E, E, ; =X 0F»n 0p-X1
E:Bz Eyz Ezz 0 0 E33

= Ey1,F9,F33,51,S2 = £1,82,&3,51,52

Adaptive Refinement 8

SMOOTHING OF ELEMENT LENGTHS

Ss.1 _For each element el: take the average element length
hg ¢ over its nodes:

Ss.2 _For each point 7: form the average element length
over its surrounding elements:

ave
li

nsuel

lq’l)e — 1 ha’ue
v nsuel Z el
el=1

Ss.3 For each point i: obtain the new element length h;
from

hz' = min(lff“e, hz)

= Take a ‘point average’, not an ‘area weighted average’

Adaptive Refinement 9

SMOOTHING OF STRETCHINGS (1)

Stretching direction s is a vector quantity

Sv.1 For each element el: compute the maximum stetching

s.;%* encountered at the nodes:

max __ max

I) S
© i = 1, nnoel

Sv.2 For each element el: form the average element stretch-

ing s¢; as

nnoel
1

av . maax

s — E s; sign(s -S4

el nnoel “ - (sci)
1=

Sv.3 For each point 2: compute the maximum stetching

s;* over its surrounding elements:

max

maxr __ av

S = S
’ el =1, nsuel

Adaptive Refinement 10

SMOOTHING OF STRETCHINGS (2)

Sv.4 For each point i: form the average element stretching
s; over its surrounding elements:

nsuel
1

N max
S; = g Se sign(s; - Sel)
nsuel
e

= Take a ‘point average’. not an ‘area weighted average’
p ge’, g g

INTERPOLATION OF STRETCHING DIRECTIONS

Stretching direction s is a vector quantity

Si.1 For the element in which the point to be interpolated
falls, compute the maximum stetching encountered at
the nodes of the element s,

Si.2 Modify the stretching vectors at the nodes to be
Sy, = SpSign(Se - Sp)

Si.3 Proceed as usual, adding the area-weighted modified
stretching vectors

10

Adaptive Refinement 11

REFINEMENT STRATEGIES

Mesh Movement

- Spring System (¢ = ¢(€))

- Moving Finite Element

Mesh Enrichment

- Uniform

- Uni-directional where possible

Remeshing

H-REFINEMENT wvs.

- Interpolation/Conservation
- Minimum h-size

- Directional Refinement

- Body/Interface Movement

- Parallelizable

- Timings (usec/pt./grid)

11

REMESHING

H-Refinement

easy

easy
not easy
not easy

easy

120

Remeshing

not easy
not easy
easy
easy

not easy

1300

Adaptive Refinement

H-REFINEMENT

10

Figure

Possible Coarsening Cases

13

13

Adaptive Refinement 14

H-REFINEMENT

1. Allow only 1:2, 1:4, 1:8 cases

2. Allow only one level of refinement /coarsening per mesh

change

- simplification of logic

- reduction of memory requirements

- increase in speed

GRID LOGIC: INTEGER INFO

Need to be able to reconstruct coarser mesh after refinement

Use 12 integers per element = INREME

INREME(1:7,IE):
INREME(8,IE):
INREME(C 9,IE):

INREME(10,IE):

INREME(11,IE):
INREME(12,IE):

son(s) of an element
parent of an element

position nr. in the parent ele-
ment

element type (parent or son,
1:8, 1:4, 1:2)

local refinement level

global refinement level

14

Adaptive Refinement 15

ALGORITHMIC STEPS FOR ONE MESH CHANGE

AN S A

For

Construction of missing grid information
Identification of elements to be refined
Identification of elements to be deleted
Refinement where needed

Deletion where needed

MAIN CPU-INTENSIVE OPERATIONS

Given tetrahedra, find the sides of the domain
Find the sides of each tetrahedron

Determine refinement pattern

Determine coarsening pattern

Correct boundary points (CAD-CAM data)

Renumber the elements

typical production runs (new mesh every 7 timesteps,

1.5Mtetra), these seemingly trivial operations may account
for more than 50% of total running time = optimize

15

Adaptive Refinement 16

IDENTIFICATION OF ELEMENTS TO BE REFINED

Aim: list of sides where new gridpoints will be introduced

mark elements for which error exceeds CTORE
add NLAYR protective layers
avoid refinement of elements that are too small

avoid refinement of elements that have been refined too
often

mark sides of elements to be refined

add sides until an admissible refinement pattern is
achieved

16

Adaptive Refinement 17

ADDING SIDES FOR ADMISSIBLE REF. (1)

Admissible cases: new points along
- a side (1:2)
- a face (1:4)
- all sides (1:8)

Element by element algorithm:

- Set the node-array LNODE(1:4)=0
- First loop over the sides of the element:
if the LSIDE(IS)=1 :
set LNODE(IP1)=1, LNODE(IP2)=1
- Second loop over the sides of the element:
if LNODE(IP1)=1 and LNODE(IP2)=1:
set LSIDE(IS)=1

ax

m/h /Q
AN

U Sz

max

a) Sides to Points b) Points to Sides

17

Adaptive Refinement 18

A\DDING SIDES FOR ADMISSIBLE REFINEMENT PATTERN (2

Practical calculations: up to 15 passes over the mesh re-
quired to obtain an admissible set of sides = expensive

Idea: presort elements

Add up all the sides marked for refinement in an element
If 0,1 or 6 sides were marked: do not consider further
If 4 or 5 sides were marked: mark all sides of this element
to be refined

If 2 or 3 sides were marked: analyze in depth as de-
scribed above.

= 80%-90% reduction in CPU cost

18

Adaptive Refinement 19

IDENTIFICATION OF ELEMENTS TO BE DELETED

- mark elements for which error lies below CTODE
- consider only ‘parent’-elements to be deleted

- of these, keep only those ‘parent’-elements for which all
‘son’-elements are to be deleted

- obtain a preliminary list of points to be deleted

- delete points from this list to obtain an admissible coars-
ening pattern

19

Adaptive Refinement 20

REFINEMENT OF THE GRID WHERE NEEDED

Given: sides to be refined

introduce new points along sides to be refined
interpolate linearly
introduce the new boundary conditions where needed

order elements to be refined into groups:
(1:2,1:4,1:8,2:4,2:8,4:8)

refine each group in turn

correct boundary points using CAD-CAM data

20

Adaptive Refinement 21

COARSENING OF THE GRID WHERE NEEDED

Given: points to be deleted

renumber points / boundary conditions to fill up voids
in arrays

order elements to be coarsened into groups:
(8:1,8:2,8:4,4:1,4:2,2:1)

coarsen each group in turn

renumber elements to fill up voids in arrays

restructure INREME

21

R.1
R.2
R.3

R.4
R.5

Adaptive Refinement 22

ADAPTIVE REMESHING

Obtain the error indicator matrix
Compute new element size, stretching and str. direction

Using old grid as background grid, remesh using the
advancing front technique

If global h-refinement desired: refine further

Interpolate the solution from the old grid to the new
one

22

Adaptive Refinement 23

GLOBAL REMESHING AND GLOBAL H-REFINEMENT
Idea: Combine the strengths of the two approaches
Remeshing:

- Directional Refinement

- Moving Boundaries

H-Refinement:
- Speed

Even with 1 level of H-Refinement:
Speed-up of 3 (2D), 7 (3D) (!)

23

H.1

H.2
H.3

H.4

H.5

H.6

Adaptive Refinement 24

GLOBAL H-REFINEMENT

Construct the missing grid information:
- Points corresponding to sides,
- Sides corresponding to each element,
- Sides corresponding to each boundary face.

Introduce new points along the sides.

Form the new elements by subdivision of the old ele-
ments into eight.

Obtain the new boundary conditions from the boundary
face/side information.

Form the new boundary faces by subdivision of the old
boundary faces into four.

Correct the location of the boundary points lying along
curved lines/surfaces.

24

Adaptive Refinement 25

LOCAL REMESHING

Observation: Frequency of distorted elements high
= Global remeshing unnecessary
= Use Local remeshing

L.1 Identify distorted elements in moving layers =-
LEREM(1:NEREM).

L.2 Enlarge this region of elements by one layer =
LEREM(1:NEREM).

L.3 Form ‘holes’ in the present mesh:
L.3.1 Form a new background mesh with the elements
stored in LEREM .
L.3.2 Delete elements stored in LEREM from current
mesh.
L.3.3 Remove all unused points.

L.4 Compute the error indicators and new element distribu-
tion.

L.5 Regrid ‘holes’ using advancing front method.
Overall reduction in CPU: 60% (!)

25

Adaptive Refinement

Heated Cylinder

Mesh Temp: dt=0.005 abs(v): dv=1.

Particle Traces Comparison to Experiment

26

26

SAIC-GWU

SAIC-GWU

27

Adaptive Refinement

1400 STE

27

28

Adaptive Refinement

le Ejection

1Ssi

M

28

