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Abstract—Parallel transmission is a known technique of trans-
mitting flows over multiple paths from a source towards the same
destination. In high-speed Ethernet standards, for instance, large
bandwidth flows are inverse-multiplexed into multiple lower-
speed flows and transmitted in parallel. However, when flows
traverse different paths, attention needs to be paid to the resulting
differential delay, which requires computationally expensive path
optimizations and large buffering at the receiver. In this paper,
we show analytically that linear network coding can significantly
reduce the buffering in high-speed Ethernet systems at a price of
en/decoding overhead, while relaxing the requirements on path
optimality. We implement the proposed decoding buffer model
according to the IEEE 802.3ba standard, and show that linear
network coding reduces the buffer size up to 40% as compared
to systems without coding. With linear network coding, input
interfaces of the destination node can deploy relatively smaller
buffers, which is critical for wider practical deployment of high-
speed Ethernet systems at 100 Gbps and beyond.

Index Terms—Multipath Routing, Linear Network Coding,
Differential Delay, Buffering, High-speed Ethernet

I. INTRODUCTION

Parallel (multpath) transmission is a known technique of
transmitting unicast large flows over multiple paths from a
source towards the same destination. In high-speed Ethernet,
parallel transmission over multiple paths is a standardized
solution in IEEE 802.3ba, enabling immediate capacity for
large bandwidth flows (40/100 Gbps and more) by inverse-
multiplexing into multiple lower-speed flows (e.g., 10 Gbps).
From a practical perspective, parallel transmission makes
networks highly backwards compatible: instead of upgrading
to high-speed interfaces, the existing low-speed interfaces can
be fully utilized to support large connections.

When multiple flows traverse different paths, attention needs
to be paid to the resulting differential delay, which requires
computationally expensive path optimizations and large buffer-
ing at the receiver. Frames arriving from different parallel
paths need to be correctly aligned and multiplexed into a single
flow at the receiver, which requires buffering. To this end,
all related past work has focused on optimizing the splitting
ratio among paths chosen and minimizing differential delay
via optimizations, e.g., [1].

Unlike any previous work, this paper proposes to apply
network coding in end-systems, and at the price of small
coding overhead, to consequently lower the requirements on
optimality of multipath routing, while reducing the buffer
required for differential delay compensation, thus making the
studied systems highly practically relevant. We analytically
derive an upper bound of the buffer size required for decoding,
and show that it is still smaller than the buffer size required

by re-ordering in conventional systems without coding. We
show with simulation results that linear network coding sig-
nificantly reduces the buffer, up to 40%. The reduction of the
overall buffer required is crucial for practical deployment of
high-speed network systems, where buffering at multi-Gigabit
capacity presents a major cost component.

II. SYSTEM MODEL

The reference model is shown in Fig. 1. The source node
follows the specification in IEEE 802.3ba, which scrambles
Ethernet frames and groups the data into 66b data blocks.
The data blocks are distributed to h Ethernet virtual lanes
in a round robin fashion. A linear encoder is introduced
which packetizes the data blocks, encodes and distributes the
packets to N paths in parallel, N ≥ h. The linear coding
process is performed over a field F2q , where 2q is the field
size. Hence, traffic as a binary sequence is decomposed into
symbol sequence with each symbol of the same length q. A
packet 1 consists of N symbols and packets encoded with the
same set of coding coefficients are referred to as in the same
generation. At the destination, received packets are stored in a
decoding buffer and processed by a decoder, which runs Gauss
elimination over the received packets. In the decoding buffer,
a virtual output queue (VOQ) is generated for each generation.
The decoder is a batch processor [2] which checks all VOQs
for complete generations with the decoding interval δt.

We adopt the network model from [3], where network is a
directed and acyclic graph G(V,E), with V and E as vertex
set and edge set, respectively. Incoming links and outgoing
links of a node v ∈ V are denoted as head(ei) = v and
tail(ej) = v, respectively. The capacity of a network link is
modeled as one packet (with generation ID in case of network
coding) per time unit, and is chosen based on the link capacity
of the physical link. For instance, if the physical network
is with 10 Gbps per channel, and assuming finite field F28 ,
then the time unit is 0.8 ns when a packet contains only a
symbol. In case of a network with different link capacities,
the greatest common divisor of link capacities will be chosen
as the unit capacity. For instance, a link of 40 Gbps is modeled
as four parallel links with unit capacity per time unit. Traffic
originated from source node on lane i is as traffic generated
by the process X(s, i) with an identical and constant entropy
of q bits per unit time. Y t(pi) is the encoded packet on path pi
at time t. To model linear network coding in this system, a set

1We adopt a generic terminology of linear network coding and refer to a
group of symbols as a packet. Each packet has the same number of symbols,
which is a different concept from IP packets.
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Fig. 1: Reference multipath routed system with parallel transmission and linear network coding

of virtual incoming links is introduced at the source node. In
practical high-speed Ethernet systems, these virtual incoming
links corresponds to multiple lanes. Packets are distributed
to the virtual incoming links in a round robin fashion and
encoded at the source node as defined in Eq. (1), i.e., the
encoded packets on an outgoing link of s at time t + 1 is
denoted as Y t+1(ej), s = tail(ej) is as follows:
∀ej : tail(ej) = s : Y t+1(ej) =

∑
i:I={1,2,...,h}

ai,ej ·Xt(s, i)

(1)
where Xt(s, i) is the information sent out on lane i at time t
by the process X(s, i). The coding process at an intermediate
node v at time t+ 1 is represented as follows:
∀ej : tail(ej) = v : Y t+1(ej) =

∑
ei:head(ei)=v

fei,ej · Y t(ei)

(2)
The received information at time t on the output lane i is:

Zt(d, i) =
∑

ej :head(ej)=d

δt+1∑
u=0

bi,ej · Y t−u(ej) (3)

Where ai,ej , fei,ej and bi,ej are randomly chosen from the
finite field F2q and collected in the matrices A, F and B,
respectively. A triple (A,F ,B) is referred to as a linear
network code [4]2. The received information is buffered at
the destination and decoded by running Gaussian Elimination.
When a generation is successfully decoded, it is immediately
released from the decoding buffer. When the number of paths
are larger than the generation size, i.e., N ≥ h, we call the
system has r redundancy, and r = N − h.

A. Assumptions and Preliminaries
The multipath routed systems of interest are based on the

circuit switching networking with parallel transmission, such
as high-speed Ethernet specified in IEEE 802.3ba. In such
networks, transmission rate per circuit path can be defined.
As discussed earlier, the link capacity is normalized to be a
packet per time unit. We hereby assume that all input queues at
the destination node are D/M/1 queues with identical arrival
rate (λ and λ = 1) and job processing follows exponential

2A = {ai,ej } is a h×N matrix contains all coefficients used at the source
node; i ∈ I and tail(ej) = s B = {bej ,i} is a h × N matrix contains all
coefficients used at the destination node; i ∈ I and head(ej) = d. F =
{fei,ej } is a N × N matrix contains the network information. fei,ej = 1
if link ej has input information from ei, otherwise, fei,ej = 0.

distribution. Given that the output data rate of the destination
is h · λ, we assume that service scheduler runs h time faster
than the arrival rate of the input queue. Therefore, there are
almost no packets buffered at the input queues and the size of
the input buffer does not affect the decoding. In addition, we
define that the service scheduler starts from the queue with
corresponding shortest path at time τ0 when the first packets
arrive at the destination. The notations used are as follows:

• µs: the mean service frequency of the service scheduler
• Us: poll time per queue of the service scheduler
• E{Tp}: mean forwarding time of a packet
• τ0: arrival time of the first packet at the destination
• Tbi : time from τ0 till the first packet on queue i is served
• Dpi : propagation delay of path pi
• Mpi : buffer at the input interface required by pi
• MB : buffer required by re-ordering
• MD: buffer required by decoding
• δt: decoding interval, i.e., the decoding process happens

every δt time units
• p̃ and p′: the longest path and the shortest path in the

multipath routed system, respectively.

B. Upper Bound of the Decoding Buffer

The buffer in each input interface of the destination node
is modeled as a First-In-First-Out (FIFO) queue. Queue i,
denoted as Qi, buffers packets from path pi. When the system
is steady, i.e., all input queues are non-empty, the cycle time
of the service scheduler is:

Tcycle = 1/µs = N · (Us + E{Tp}) (4)

1) Buffer model before steady state: Different paths have
different delays and thus exhibit different arrival time of the
first packet at the destination. Before the steady state, service
scheduler fetches

∑N
i=1 xi < N packets in each cycle, where

xi indicates if a packet is fetched from Qi in this cycle. Let
us denote the shortest among the multiple paths as p1, i.e.,
p′ = p1 and at τ0, the first packet arrives at Q1 and x1 = 1.
For i ≥ 2, the value of xi at time t is determined by the
differential delay between pi and p1:

xi =

{
1, if t ≥ Dpi −Dp′

0, else.

Assume the system has run m cycles at time t, i.e., t =



3

∑n=m
n=1 Tncycle. The m+ 1 cycle, denoted as Tm+1

cycle is:
Tm+1
cycle = N · Us + Xm+1 · E{Tp} (5)

where Xm+1 is the number of packets forwarded to the
decoding buffer in the cycle Tm+1

cycle ; Xm+1 =
∑N
i=1 xi with

xi =

{
1, if

∑n=m
n=1 Tncycle ≥ Dpi −Dp′

0, else.
(6)

The number of packets that have to be stored in the decoding
buffer till it starts decoding is then:

M0 =

K∑
n=1

Xn (7)

where K >
⌈
Dp̃−Dp′

Tcycle

⌉
and Xn is determined by Eq.(5) and

Eq.(6) in each cycle.

Lemma 1. The system has to run at least K cycles, K >⌈
Dp̃−Dp′

Tcycle

⌉
, before QN 6= ∅, where QN corresponds to the

longest path in the multipath routed transmission system.

Proof: In the worst case scenario, the service scheduler
has to poll and process N − 1 queues before it reaches the
queue of the longest path, i.e., p̃ = pN . As defined earlier,
the time from τ0 till the first packet from QN is forwarded
is TbN =

∑K
n=1 T

n
cycle + N {Us + E{Tp}}. According to

Eq.(6), QN 6= ∅ if and only if
∑n=K
n=1 Tncycle ≥ Dp̃ − Dp′.

And ∀n, n ≤ K, Tncycle < Tcycle. Hence, K · Tcycle >∑n=K
n=1 Tncycle ≥ Dp̃ −Dp′. Therefore, K >

⌈
Dp̃−Dp′

Tcycle

⌉
.

Lemma 2. The buffer size required to start decoding is upper
bounded, i.e., M0 = N · (Dp̃ −Dp′), where p̃ and p′ are the
longest and the shortest path, respectively.

Proof: According to Eq.(6), Qi 6= ∅ if and only if at time
ti ≥ Dpi−Dp′ . In the worst case, the decoding has to wait for
the packets from the longest path, i.e., p̃ to complete the first
generation, and QN 6= ∅ if and only if at time tN ≥ Dpi−Dp′

Hence, all packets on path pi arrive during tN − ti have to
be stored in the decoding buffer. Denote arrival rate of Qi as
λi, the number of packets forwarded from Qi to the decoding
buffer is λi ·(Dp̃−Dpi). In our model, λi = 1 packet per time
unit, therefore, during K cycles,

∑N
i=1(Dp̃−Dpi) packets are

stored in the decoding buffer. ∀pi, (Dp̃−Dpi) ≤ (Dp̃−Dp′),
the upper bound is derived.

2) Buffer model during the steady state: In every decoding
cycle, the number of packets arrived at the decoding buffer is:

Mδt =

⌊
δt

Us + E{Tp}

⌋
(8)

Mδt is composed of packets that can complete γδt generations
in the decoding buffer. After each decoding cycle, γδt gener-
ations are completed and released from the decoding buffer.
Hence, the decoding buffer is:

MD = N · (Dp̃ −Dp′) +Mδt −N · γδt (9)

The worst case scenario exists in case of linear network coding
when only one generation is decoded after each decoding
cycle, i.e., γδt = 1. In the best-case scenario, packets received
at each decoding interval can complete γδt = Mδt · h

N
generations, where h is the generation size, h ≤ N .

3) Lower bounds of the buffer required in absence of linear
network coding: When all the components related to linear
network coding (marked in shadow) are removed, i.e., the
linear network coding block at the source node and decoding
block at the destination node, the system corresponds to the
conventional multipath routing. We now derive the buffer
bounds for this case, and compare to the results obtained
above. For a fair comparison, the packets here are the same
as the packets used in a linear network coding system, i.e.,
packets with fixed size. Upon arrival, each packet is routed to
one of the N queues accordingly, i.e., packets transmitted on
path pi is routed to queue i of interface i. A packet leaves a
queue only if all packets that are sent earlier have been served.
This ensures that all packets leave the system in the correct
order, as they were sent out from the source node.

We consider the worst case scenario, where the path delay
is in descending order of packet order. Denote the delay of
path pi as Dpi , then the worst case scenario is Dp1 ≥ Dp2 ≥
· · · ≥ DpN . At τ0, the first packet routed on the shortest path
pN arrives at the system. Packets have to be buffered on each
input interface till the first packet on the longest path, i.e., p1
is served. Tb1 is defined as:

Tb1 =

⌈
Dp1 −DpN

NUs

⌉
·NUs + Us + E{Tp}. (10)

All other input queues cannot be served when the first packet
on the first queue has been served. The time that the first
packet on all other queues has to wait till it is served is:

Tbi = Tbi−1
+ Us + E{Tp}, i = 2, 3, ..., N. (11)

From Eq. (10) and Eq. (11), we can derive the time till the
first packet on queue N is served as:

TbN =

⌈
Dp1 −DpN

NUs

⌉
·NUs +N(Us + E{Tp}). (12)

In practice, the longest path can be connected to any input
interface. Hence, the buffer required by the path pN , i.e.,
the shortest path, is the minimum buffer size on each input
interface to ensure the packets processed in the right order.
Let us denote the size of queue N as MpN :

MpN =

⌈
Dp1 −DpN

NUs

⌉
·NUs +N(Us + E{Tp}). (13)

Total buffer size required by the reordering MB is the sum of
all the buffers on all input interfaces, i.e., MB = N ·MpN .
To generalize the buffer model, let us denote the longest path
as p̃ and the shortest path as p′. We can derive a lower bound
of the total buffer required by a multipath routed system, i.e.,

MB = N ·
{⌈

Dp̃ −Dp′

NUs

⌉
·NUs + Tcycle

}
. (14)

III. EVALUATION

A. Analytical results
Fig. 2 illustrates the buffer bounds required by re-ordering

and by linear network coding. The maximum differential
delay Dp̃ −Dp′ is set to 125 timeunits(tu) and the parallel
transmission is set to use 10 paths; Tcycle is 1 tu. Fig. 2 shows
the impact of the decoding interval δt on the buffer size. The
size of decoding buffer, MD (Eq. (9)) is normalized by the
re-ordering buffer MB (Eq. (14)).
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Fig. 2: Decoding buffer MD normalized by MB vs. decoding
interval δt (Tcycle = 1 tu , Dp̃ −Dp′ = 125 tu, N = 10)

Per Eq. (9), the size of decoding buffer depends on the
number of generations (γδt ) decoded in each decoding interval.
In the worst case, the decoder can only decode one generation
in each decoding interval, i.e., γδt = 1. As shown in Fig. 2,
linear network coding reduces about 10% buffer size when
δt = 0.5 with γδt = 1. However, the decoder can generally
decode and release multiple generations that are complete
in the decoding buffer, further reducing the size of MD.
When the decoder run faster than the service scheduler, i.e.,
δt < Tcycle, the possibility of getting more than one complete
generation from the decoding buffer is low. As shown the case
of δt = 0.5 Tcycle, larger γδt only slightly reduces the buffer.
When the decoding interval is larger than Tcycle, more packets
are stored in the decoding buffer, increasing the possibility of
decoding multiple complete generations. When the decoding
interval is large, on the other side, e.g., δt = 5.5 tu, a large
number of generations are decoded and released, resulting in a
small decoding buffer. The minimum size of decoding buffer
is as defined in Eq.(7). Fig. 2 shows that linear network coding
can reduc the buffer size without an extremely fast decoder.

B. Case study: High-Speed Ethernet
We now implement the proposed buffer model for a case

study of high-speed Ethernet system, using an event-driven
simulator written in Java. The parameters used are summarized
in Tab. I. In the simulation, the differential delay between a
channel pi and the shortest path is defined i · (125/4) µs i =
1, 2, .., 4. For instance, assume the shortest path is denoted as
p5, then the differential delay between p1 and p5 is 125/4 µs.
Generally, the generation size is equal to the number of paths
in our model. When the generation size is smaller than the
number of paths, we refer to as parallel transmission with
redundancy. For instance, if the generation size is 4 and we
use five paths, this redundancy of one more path can be used
against link failures as a spare path, and also for fast decoding.

We define the throughput as the percentage of successfully
decoded generations in all generations that are originated from
the same sender node. Fig. 3 shows the throughput as a
function of the size of decoding buffer. We can see that 100%
throughput can be achieved using 60% of MB (as calculated in
Eq. (14)). 90% generations can be successfully decoded when
the decoding buffer is only half of MB . When the generation
size is smaller than the number of paths, the required buffer
is always reduced. For a larger path redundancy, for instance,
for h = 4 and h = 3, 50% and 60% of buffer reduction can
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Fig. 3: Throughput of the decoding buffer in terms of percent-
age of successfully decoded generations
be achieved.

Parameter Value

Field size 28

Packet size 6 symbols with 8 bits/symbol
Generation ID 2 bytes
Number of generations 150,000
Number of parallel channels 5
Maximal differential delay 125 µs
TransmissionRate/channel 10 Gbps, i.e., time unit=6.4ns
Buffer without coding M ≈ 1MB (≈ 195,313 packets)
Size of each input queue 10 packets

TABLE I: Summary of Parameters

Discussion on coding overhead vs. differential delay. Suc-
cessful decoding requires a complete generation to obtain the
full rank of the coding matrix. The differential delay issue
in parallel transmission necessitates buffering of all packets
for one generation to compete. The generation ID attached
to each packet is then the coding overhead. Thus, in the
worst case, the number of generations that need be stored is
(Dp̃ − Dp′)/T imeUnit, each requiring a generation ID. As
two bytes are sufficient to distinguish 65,536 generations, this
overhead is a small price to pay in comparison to the buffer
size savings, especially with large packet sizes.

IV. CONCLUSION

In this paper, we showed analytically that linear network
coding can significantly reduce the buffer required in parallel
transmission over multipath routed network. The case study of
high-speed Ethernet standard IEEE 802.3ba showed a reduc-
tion of 40% of the buffer size with linear network coding. With
linear network coding, input interfaces of the destination node
can deploy very small buffers, which is critical to practical
implementation of high-speed Ethernet.
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