
Heuristic Optimality Checks for Noise-Aware
Sparse Recovery by `1-Minimization

Christoph Brauer and Dirk A. Lorenz
Institute for Analysis and Algebra, TU Braunschweig
Pockelsstraße 14, D-38106 Braunschweig, Germany

Andreas M. Tillmann
Research Group Optimization, TU Darmstadt
Dolivostr. 15, D-64293 Darmstadt, Germany

Abstract—During recent years, `1-norm minimization has become a
standard approach for the task of finding sparse exact or approximate
solutions to underdetermined linear equation systems, with a broad
range of specialized solvers to choose from. In this work, we present an
algorithmic tool we call Heuristic Optimality Check (HOC) which attempts
to construct an optimal point directly, given a support estimate and sign
pattern. Our general scheme can easily be adapted to a variety of `1-
minimization problems prominent in sparse recovery and compressed
sensing. We provide numerical experiments showing that our HOC
techniques can indeed often improve the solution speed and accuracy
of existing `1-minimization methods in the presence of sparse solutions.

I. INTRODUCTION & MOTIVATION

Some of the most popular approaches for sparse reconstruction
from incomplete linear measurements are included in the general
class of `1-minimization problems

min ‖x‖1 s.t. ‖Ax− b‖ ≤ δ, (P1)

where δ ≥ 0 is an estimate of measurement noise, and ‖·‖ is
some norm (chosen with respect to the noise model). By now, it is
well-known that under many different conditions, solving (P1) also
solves the generally NP-hard problem of finding the sparsest-possible
solution under the given constraints, or at least leads to desirable error
bounds. An overview of such results, and also of several specialized
solution methods for `1-problems, can be found, e.g., in [1].

To further exploit solution sparsity, a Heuristic Optimality Check
(HOC) for the noise-free (basis pursuit) problem was introduced
in [2] (see also [3]). Very briefly, given a (not necessarily primal
feasible) vector x with approximate support S, the HOC scheme
tries to construct an optimal primal-dual pair (x̂, ŷ) such that x̂ has
support Ŝ ⊆ S. Via approximate calculations and post-verification
instead of forced fulfillment of certain constraints to speed up the
incurred computations, executing HOC at certain iteration intervals
of a basis pursuit solver was then demonstrated to often allow for
“jumping” to the optimal sparse solution long before the respective
`1-solver terminates on its own, thereby improving both solution
speed and accuracy.

II. HEURISTIC OPTIMALITY CHECKS FOR `1-MINIMIZATION

The foundation of our HOC routine is a well-known primal-dual
characterization of optimality: For A ∈ Rm×n with rank(A) =
m ≤ n, strong duality holds for (P1) and its dual problem

max −b>y − δ‖y‖∗ s.t. ‖A>y‖∞ ≤ 1, (D1)

where ‖·‖∗ denotes the dual norm to ‖·‖.
Proposition 1: If ‖b‖ > δ, then a tuple (x̂, ŷ) is a primal-dual

optimal pair for (P1) and (D1) if and only if −A>ŷ ∈ ∂‖x̂‖1 and
Ax̂− b ∈ δ∂‖ŷ‖∗, or equivalently, ‖Ax̂− b‖ = δ, ‖A>ŷ‖∞ = 1
and ‖x̂‖1 + δ‖ŷ‖∗ + b>ŷ = 0.
This can be shown using Lagrange duality (cf., e.g., [4]).

The HOC scheme then proceeds as shown in Algorithm 1. It can

Algorithm 1 HEURISTIC OPTIMALITY CHECK (HOC) for (P1).

Input: A ∈ Rm×n, b ∈ Rm, δ ≥ 0, x ∈ Rn with approx. supp. S
1: ŷ ← approximate solution to −A>Sw = sign(xS)
2: if ‖A>ŷ‖∞ ≈ 1 then
3: x̂S ← approx. solution to ASz ∈ b + δ∂‖ŷ‖∗, x̂Sc ← 0
4: if ‖Ax̂− b‖ ≈ δ then
5: if (‖x̂‖1 + δ‖ŷ‖∗ + b>ŷ)/‖x̂‖1 ≈ 0 then
6: return (approximately) optimal primal-dual pair (x̂, ŷ)

easily be verified that, were we to carry out all computations and
comparisons exactly, a pair (x̂, ŷ) returned by HOC would indeed
be optimal. Although this needs not hold if the exactness requirements
are relaxed, we observed that HOC hardly ever makes false-positive
optimality claims. Performed repeatedly during a run of some `1-
solver, the hope is that HOC can thus lead to early termination.

III. NUMERICAL EXPERIMENTS

It is important to note that HOC is independent of the solution
algorithm and can, consequently, be intregrated into virtually any
`1-solver implementation. We did so for several problem classes
(with the most common `p-norm-constraints with p ∈ {1, 2,∞}) and
solvers and empirically evaluated the impact of HOC on various test
instances (with known sparse optima). The results clearly indicate that
using HOC indeed often improves the solution speed and accuracy.
Space limitations disallow us to go into much detail here; we outline
some results in the following.

Fig. 1 illustrates the HOC concept, demonstrating a run of the
incremental subgradient method from [5] applied to (P1) with `∞-
constraints without and with HOC – one can see that by employing
HOC, the iteration number can be reduced to less than half (the
runtime improvement here was roughly 62%).

Even for very fast solvers such as SPGL1 (cf. [6]), HOC can
achieve improvements: Fig. 2 shows results of extensive experiments,
in terms of distance of the computed points x̄ to the known optimal
points x∗ versus running time without and with HOC. Clearly, HOC
often leads to both early termination and better accuracy; in case
HOC is not successful, the overhead introduced by its integration is
negligibly small.

Similar, or even better, results can be achieved for interior-point
methods: For `1-Magic [7] (applied to min{‖x‖1 : ‖Ax− b‖2 ≤
δ}), average speed-ups between 17.5% and 25% can be achieved by
running HOC in every iteration. (The overhead introduced by HOC is
again very small in unsuccessful cases, since interior-point methods
typically perform only a few iterations but of much larger iteration
complexity than in first-order methods.) The HOC scheme for `2-
norm constraint `1-minimization can also be adapted to the related
`1-regularized least-squares problem minλ‖x‖1 + 1

2
‖Ax− b‖22;

Fig. 3 shows the positive effect of this HOC variant employed in



47000 136772

10
−6

10
−3

10
0

10
3

10
6

Iteration k

 

 
‖xk

− x∗‖2
‖Axk

− b‖∞
δ
‖x̄− x∗‖2
‖Ax̄− b‖∞

Fig. 1. Example for HOC efficiency in the incremental subgradient method
of [5], applied to (P1) with `∞-constraints; δ ≈ 20, m = 512, n = 1024,
‖x∗‖0 = 28. Solution x̄ produced executing HOC every 1000 iterations.

each iteration of the SolveBP/PDCO solver from SparseLab [8]. It
is worth mentioning that the improvement persists, even if slightly
less prominent, when using a more typical, smaller value of the
regularization parameter λ on the same set of test instances (e.g.,
average speed-up is around 1.52% when λ = 0.01).

IV. CONCLUSION

We provide a generalized HOC scheme for the problem class (P1).
Empirical results for several problem types (in particular, those with
`p-norm constraints for p ∈ {1, 2,∞}) indicate that the HOC idea
also works well in this noise-aware setting. Moreover, our theoretical
and algorithmical tools can also be exploited to generate test instances
with known (sparse) optima for (P1), and may be extended to `1-
regularized least-squares as well as `1-analysis models that minimize
‖Bx‖1 with B ∈ Rq×n (q ≥ n) instead of just ‖x‖1.

REFERENCES

[1] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive
Sensing, ser. Applied and Harmonic Analysis. New York, NY, USA:
Springer, 2013.

[2] D. A. Lorenz, M. E. Pfetsch, and A. M. Tillmann, “Solving Basis Pursuit:
Heuristic Optimality Check and Solver Comparison,” ACM T. Math.
Software, vol. 41, no. 2, article no. 8, 2015.

[3] A. M. Tillmann, Computational Aspects of Compressed Sensing. Doc-
toral Dissertation, TU Darmstadt, 2013.

[4] A. Ruszczyński, Nonlinear Optimization. Princeton, NJ, USA: Princeton
University Press, 2006.

[5] E. S. Helou Neto and A. R. De Pierro, “Incremental Subgradient
Algorithms for Constrained Convex Optimization: A Unified Framework
and New Methods,” SIAM J. Optim., vol. 20, no. 3, pp. 1547–1572, 2009.

[6] E. van den Berg and M. P. Friedlander, “Probing the Pareto Frontier
for Basis Pursuit Solutions,” SIAM J. Sci. Optim., vol. 31, no. 2, pp.
890–912, 2008.

[7] `1-Magic webpage, http://statweb.stanford.edu/~candes/l1magic/ [re-
trieved 05/27/15].

[8] SparseLab webpage, https://sparselab.stanford.edu/ [retrieved 05/27/15].

0.01 0.03 0.1 1 10 30 60

10
−6

10
−3

10
0

10
3

10
5

Running Times [sec]

‖x̄
−

x
∗
‖ 2

Fig. 2. HOC impact within SPGL1 [6] applied to (P1) with `2-constraints;
444 test instances from [3] with average δ ≈ 0.1, (m,n) ranging from
(512, 1024) to (1024, 8192), with varying solution sparsities. Crossmarks
represent results without HOC, dots those with HOC called every bm/20c
iterations; results for the same instances are connected by lines (green/red:
faster/slower with HOC). Overall average speed-up: 3%.

Fig. 3. HOC impact within SolveBP/PDCO applied to minλ‖x‖1 +
1
2
‖Ax− b‖22; 444 test instances from [3] with average λ = 10, (m,n)

ranging from (512, 1024) to (1024, 8192), with varying solution sparsities.
Crossmarks represent results without HOC, dots those with HOC called
in every iteration; results for the same instances are connected by lines
(green/red: faster/slower with HOC). Overall average speed-up: 5.67%.


