Introduction to Scientific Computing Assignment 1

Exercise 1: Gauss elimination

Solve the below system of linear equations by a Gauss elimination, writing out the process step by step.

$$
\begin{aligned}
& x+2 y=8 \\
& 2 x-y=1
\end{aligned}
$$

Exercise 2: vector norm
(1 points)
Compute the 1-norm, 2-norm and ∞-norm of the vector $\mathbf{x}=(1,2,2)$, i.e. $\|\mathbf{x}\|_{1},\|\mathbf{x}\|_{2}$ and $\|\mathbf{x}\|_{\infty}$.
Exercise 3: matrix norm
(1 points)
Compute the induced norm $\|\mathbf{A}\|_{1}$ and $\|\mathbf{A}\|_{\infty}$ of the below matrix \mathbf{A}.

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & 2 \\
-1 & 4
\end{array}\right]
$$

Exercise 4: eigenvalues
(a) Compute all the eigenvalues of the forementioned matrix \mathbf{A}
(b) We know $\mathbf{v}_{1}=(1,-1,1)$ is one of the eigenvectors of the below matrix \mathbf{B}, compute the eigenvalue that is associated to \mathbf{v}_{1}.

$$
\mathbf{B}=\left[\begin{array}{rrr}
11 & 1 & -1 \\
1 & 6 & -4 \\
-1 & -4 & 6
\end{array}\right]
$$

(1 points)

Exercise 5: differentiation

(1 points)
Write out the first order derivative of $f_{1}(x)=x^{3}+x^{2}+1$ and $f_{2}(x)=e^{2 x}$.
Exercise 6: Integration
(1 points)
Write out the integrations $\int x^{2} \mathrm{~d} x$ and $\int e^{2 x} \mathrm{~d} x$
Exercise 7: Interpolation
(2 points)
Identify the polynomial $y=a x^{2}+b x+c$ that interpolates the (x, y) points $(1,2),(2,7)$ and $(3,14)$. Hint: Using the fact that when x takes the values 1,2 and $3, y$ takes the values 2,7 and 14 , to form three linear equations of a, b and c and solve it by Gauss elimination.

