Introduction to Scientific Computing ASSIGNMENT 1

Exercise 1: Gauss elimination

Solve the below system of linear equations by a Gauss elimination, writing out the process step by step.

x + 2y = 8

$$2x - y = 1$$

Exercise 2: vector norm

Compute the 1-norm, 2-norm and ∞ -norm of the vector $\mathbf{x} = (1, 2, 2)$, i.e. $\|\mathbf{x}\|_1$, $\|\mathbf{x}\|_2$ and $\|\mathbf{x}\|_{\infty}$. Exercise 3: *matrix norm* (1 points)

Compute the induced norm $\|\mathbf{A}\|_1$ and $\|\mathbf{A}\|_{\infty}$ of the below matrix \mathbf{A} .

$$\mathbf{A} = \left[\begin{array}{rr} 1 & 2 \\ -1 & 4 \end{array} \right]$$

Exercise 4: *eigenvalues*

(a) Compute all the eigenvalues of the forementioned matrix **A**

(b) We know $\mathbf{v}_1 = (1, -1, 1)$ is one of the eigenvectors of the below matrix **B**, compute the eigenvalue that is associated to \mathbf{v}_1 .

$$\mathbf{B} = \begin{bmatrix} 11 & 1 & -1 \\ 1 & 6 & -4 \\ -1 & -4 & 6 \end{bmatrix}$$

(1 points)

(1 points)

Exercise 5: *differentiation*

Write out the first order derivative of $f_1(x) = x^3 + x^2 + 1$ and $f_2(x) = e^{2x}$. Exercise 6: Integration

Write out the integrations $\int x^2 dx$ and $\int e^{2x} dx$

Exercise 7: Interpolation

Identify the polynomial $y = ax^2 + bx + c$ that interpolates the (x, y) points (1, 2), (2, 7) and (3, 14). **Hint**: Using the fact that when x takes the values 1, 2 and 3, y takes the values 2, 7 and 14, to form three linear equations of a, b and c and solve it by Gauss elimination.

(2 points)

(1 points)

(1 points)

(2 points) (1 points)