
## **CB06 – STRUKTURBIOLOGIE**



### **CB06 - STRUKTURBIOLOGIE**

- Modul findet im Wintersemester statt
- gemeinsam mit Biologen & Biotechnologen

Vorlesung: doppelstündig, derzeit mittwochs 16:45 Uhr

■ Praktikum: 2 Wochen@HZI, im März, 20 Teilnehmer max.

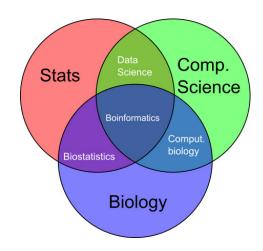
Prüfung: Klausur (3 Stunden), nach Praktikum

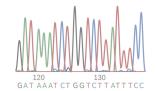
Modulverantwortlicher: Wulf Blankenfeldt

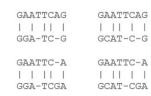
Kontakt: office.sfpr@helmholtz-hzi.de

Bachelor/Masterarbeit: gerne!

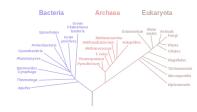



## CB07 - Einführung in die Bioinformatik


- Vorlesung (2h / Woche)
- Übung (2h / Woche)


Abschlussprüfung: Klausur

### Themen:


- Biologische Datenbanken
- Alignments (lokal, global)
- BLAST
- Multiple Alignments
- Phylogenie
- Assemblierung von Sequenzierdaten
- Sequenz-basierte Analysen
- Biostatistik







#### Phylogenetic Tree of Life

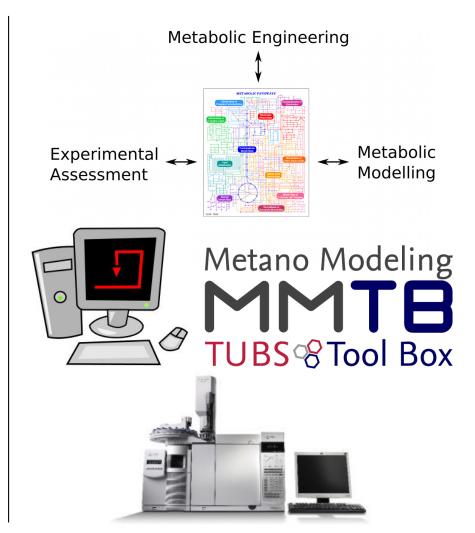






## CB08 - Einführung in die Systembiologie

- Vorlesung (2h / Woche)
- Übung (2h / Woche)
- Praktikum (2 Wochen)


Abschlussprüfung: Protokoll

## Vorlesung:

- Mathematische Grundlagen der metabolischen Modellierung
- Flux Balance Analysis
- <sup>13</sup>C-basierte metabolische Flussanalyse

### Praktikum:

- Rekonstruktion eines metabolischen Modells
- Metabolome Analyse mit GC-MS
- Simulation des Stoffwechsels
- Metabolische Optimierung







## **CB09** Mikrobielle Proteomik

### Ziel der mikrobiellen Proteomforschung

Erforschung der Gesamtheit der Proteine in einer mikrobiellen Zelle/in einer Lebensgemeinschaft mit biochemischen Methoden

Welche Methoden stehen uns zur Darstellung der Gesamtheit der Proteine zur Verfügung?

Welches Schicksal haben alle diese Proteine?

Wann werden sie synthetisiert?

In welchen Mengen kommen sie vor?

Werden sie modifiziert?

Wo sind sie lokalisiert?

Wann werden sie abgebaut?

Wer interagiert mit wem?

Beispiele für interessante wissenschaftliche Fragestellungen

### **CB09** Mikrobielle Proteomik

### Vorlesung (Engelmann, Fuchs, Kucklick)

Grundlagen der biochemischen Methoden

Proteinpräparation, Techniken zur Fraktionierung von Proteinen und Peptiden, Massenspektrometrie

Auswertung von globalen Datensätzen

Beispiele für Interessante wissenschaftliche Fragestellungen

### Seminar (Engelmann, Kucklick)

Vorträge der Seminarteilnehmer zu ausgewählten Themen der Proteomforschung

### Praktikum (Kucklick, Engelmann)

Darstellung und Dynamik des cytosolischen Proteoms von *S. aureus* in Antwort auf eine Sauerstofflimitation

Anwendung und Vergleich verschiedener massenspektrometrie basierter Techniken Auswertung globaler Datensätze Interpretation der erhaltenen Daten



## **CB 10 Biosynthese**

Verständnis für Biosynthesewege und biotechnologische und chemische Synthese zu Zielverbindungen.

| CB 10 a Biosynthese (V)        | 2 CP |
|--------------------------------|------|
| CB 10 b Biosynthese (Ü)        | 1 CP |
| CB 10 c Biologische Chemie (P) | 5 CP |

Sommersemester

Vorlesung: Prusov

Praktikum: AK Schulz, Tim Harig, 2er Gruppen, 2 Wochen



## **CB 10 Biosynthese**

Anmeldung: Email an Tim Harig bis Mittwoch, 11.4.2018

Vorbesprechung: Freitag, 26.4.2018, 14.00 Uhr, Raum 306,

Hagenring 30, 3. Stock

Praktikum: 7.5.-18.5.2018, 2. Stock HR 30, AG Schulz

### Chemische Charakterisierung einer Caryophyllen-Synthase

Dazu wird eine Caryophyllen-Synthase in E. coli exprimiert und mit selbst synthetisiertem Farnesylpyrophosphat umgesetzt.

### Biosynthese von Terpenen aus markierten Vorläufern

Deuteriertes Mevalonolacton wird synthetisiert und an einen Pilz verfüttert. Die produzierten Verbindungen werden mittels GC/MS analysiert.



## VL "Biochemie der eukaryontischen Zelle" (CB11)

Metallhomöostase

Biochemie des Molybdäns

Mutagenese von Proteinen

Proteinfaltung II

Protein - Ligand - Wechselwirkung I

Protein - Ligand - Wechselwirkung II

Strukturbiologie der Proteine I

Strukturbiologie der Proteine II

Strukturbiologie der Proteine III

Massenspektroskopie der Proteine I

Massenspektroskopie der Proteine II

Massenspektroskopie der Proteine III

Kanäle und Pumpen

VL: donnerstags, 8:00, HU1.1 + zweiwöchiges Praktikum

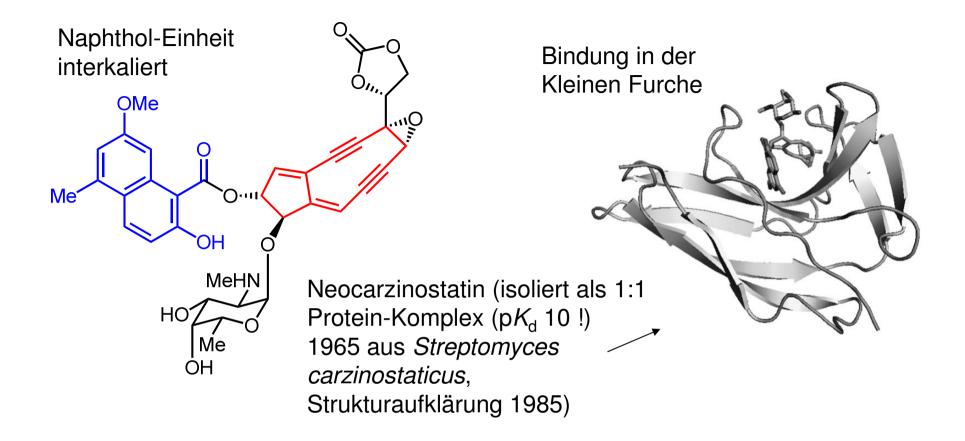
## **CB12 Fortgeschrittene OC**

Organische Synthese als Werkzeug in der Chemischen Biologie Baue Dir Dein Molekül selber! Umfassende Kenntnis von Reaktion erlernbar.

Wintersemester

Themen können wechseln, z. B. in diesem WS:

Vorlesung 2h Heterocyclen


Vorlesung 1h Retrosynthese

Vorlesung 1h Metalle in der OC (Werz).

Ubung 2h abwechselnd zu jeder Vorlesung

Vorlesende: Klahn, Lindel, Schulz, Werz





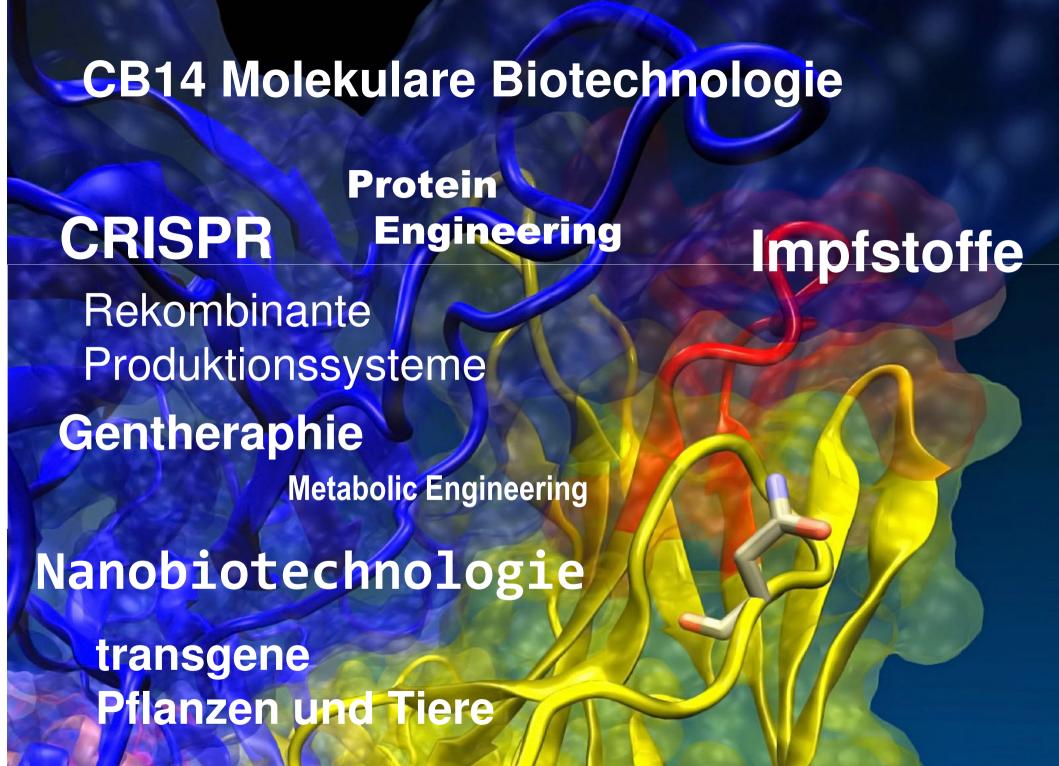
Bergman-Zyklisierung (1972):

desto schneller, je näher die Alkin-Teilstrukturen benachbart

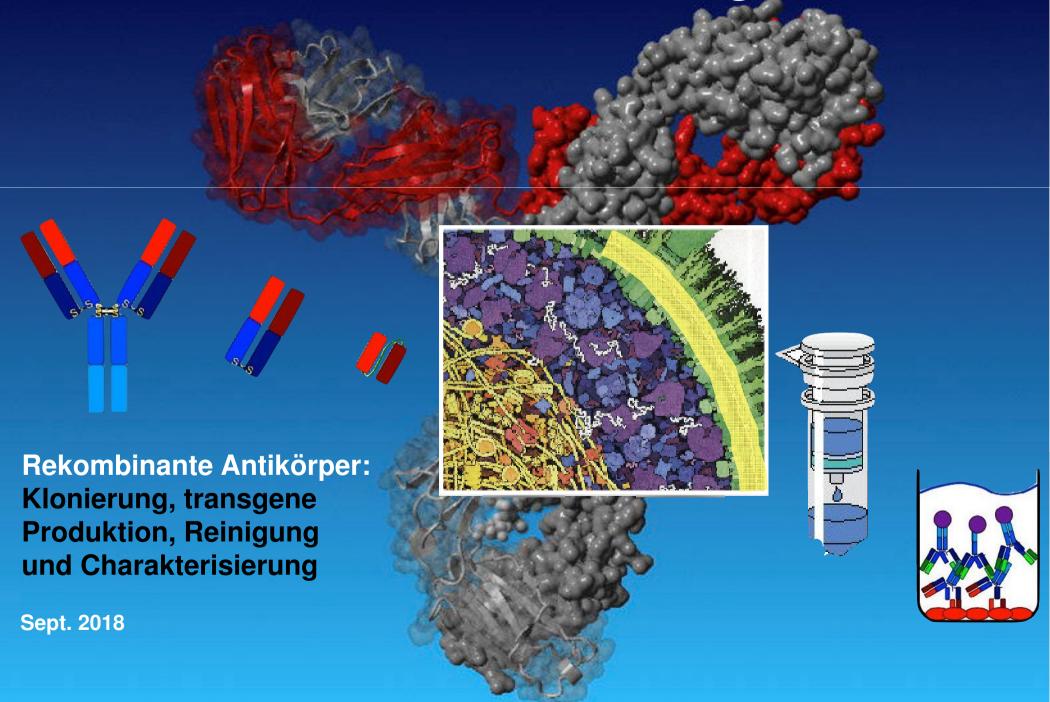


## **Modul CB13 Biokatalyse**

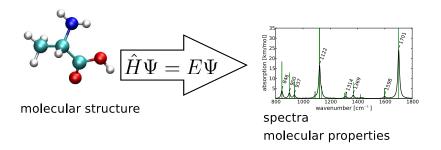
### Inhalt:


- Einsatz von Enzymen als Katalysatoren chemischer Reaktionen
- Enzymmechanismen und Katalyseprinzipien
- Enzymoptimierung durch Protein engineering
- Methoden
- (Industrielle) Anwendungsbeispiele




## Modul CB13 Biokatalyse

- Lehrveranstaltungen (mit Prüfungsleistung):
  - 1. Vorlesung Enzymkatalyse (2 SWS, im WS)
    - → Klausur/mündliche Prüfung
    - → Termin nach Absprache
  - 2. Praktikum Biokatalyse (120 h, im WS)
    - → Schriftliches Protokoll
    - → Zeitpunkt nach Absprache
- Kreditpunkte für das Gesamtmodul: 8 CP






# CB14 Molekulare Biotechnologie Praktikum



#### CB15 - Theoretische Biophysikalische Chemie



 $\Rightarrow$  Berechnung (bio-)molekularer Spektren



#### CB15 - Theoretische Biophysikalische Chemie

#### im WiSe 2018/19: Theoretische Spektroskopie

- zeitabhängige Quantenmechanik, Licht-Materie-Wechselwirkung
- quantenchemische Methoden zur Berechnung von Spektren
- Schwingungsspektroskopie, elektronische Anregungen, NMR, ESR

#### Voraussetzungen

- Biophysikalische Chemie (CBo<sub>4</sub>)
- empfohlen: Grundlagen der Quantenmechanik (z.B. PC3)

#### Lehrveranstaltungen (jeweils im WiSe)

- Vorlesung und Übung "Theoretische Spektroskopie" (3+1 SWS)
- Programmierprojekt "Theoretische Biophysikalische Chemie" (2 SWS)





## **CB16 Synthese-Vertiefungspraktikum**

Organische Synthese, aber richtig!

## Direkt am Platz eines Doktoranden an seinem Projekt Semester unabhängig

Teil 1: Synthese (4 Wochen halbtags od. 2 Wochen ganztags)

Teil 2: Synthese (4 Wochen halbtags od. 2 Wochen ganztags)

#### Seminar

die Studierenden suchen sich die Assistenten selbständig aus einer Arbeitsgruppe ihrer Wahl aus dem Institut für Organische Chemie aus. Für die Teilpraktika sollten Assistenten aus unterschiedlichen Arbeitsgruppen gewählt werden.

als Seminar wird das gemeinsame Kolloquium der Institute für Anorg. und Org. Chemie für ein Semester besucht. Die Teilnahme ist Pflicht und wird über eine Anwesenheitsliste kontrolliert (ca. 10 Termine).



## **Antibiotika-Forschung**



Imidacin A1

Neue Antibiotika-Klasse

Synthetisches Derivat aktiver als Naturstoff

Natur Imidacin A<sub>1</sub> Synthetisches Derivat Imidacin E<sub>3</sub> ittig-Schlosser Simmons-Smith-Cyclopropanierung Horner-Wadsworth-**Emmons** 

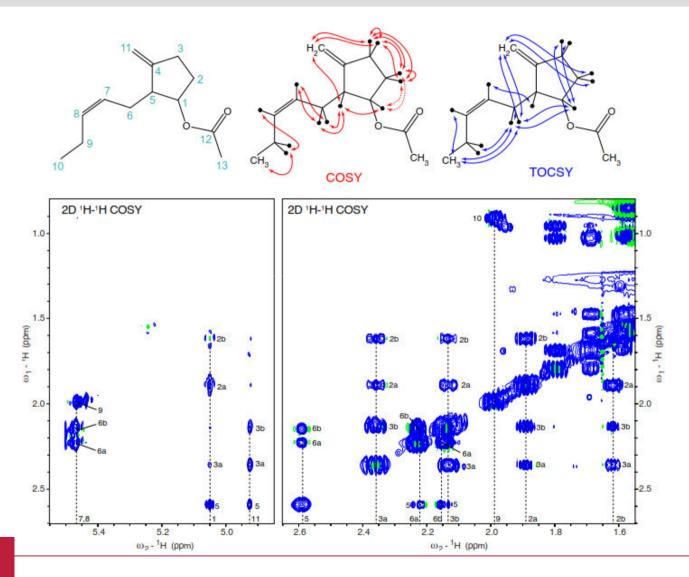


## CB17 Praktische Strukturaufklärung

Spektroskopie wird benötigt für: Alles und jedes! 17 Institute nutzen die NMR-Abteilung der TU. Sommersemester

Vorlesung 2h: CB 17 a Massenspektrometrie

Vorlseung 2h: CB 17 b NMR-Spektroskopie


Übung 2h: CB 17 c Anwendungen der NMR-Spektroskopie

NMR: Ibrom

MS: Papke



## **CB17 Praktische Strukturaufklärung**



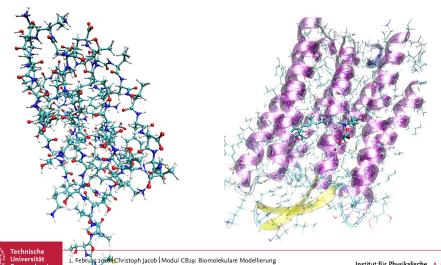


### Modul MI 21 (Molekulare Mikrobiologie)

### Modul Bt-MM 03 (Molekulare Mikrobiologie)

### **Modul CB 18 (Biochemie)**

- **Vorlesung** Molekulare Mikrobiologie II (WS 18/19) Montags 9.15 10.00 Uhr
- Laborpraktikum zur Molekularen Mikrobiologie
  - Doktoranden betreuen Zweiergruppen
    - → Praktikumsplätze können in Eigenregie frei vereinbart werden
  - nach Absprache im Winter- und Sommersemester möglich
  - 4 Wochen → wichtig: Planung
  - Forschungsthemen der Gruppen Jahn, Schallmey, Hiller, Stadler (HZI)
- **Protokoll** zum Praktikum
- **Lernzielkontrolle** (mündlich zum Praktikumsthema)
- **Modulabschlussklausur** (zur Vorlesung) 21.02.18. Nachtermin: Ende Sommersemester
  - → Teilnahme an der Klausur "unter Vorbehalt" möglich


### **Themen und Termine**

| Datum    | Thema                                                                                                                            | Dozent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15.10.18 | Proteinproduktion in E. coli                                                                                                     | Jürgen Moser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22.10.18 | Vorstellung Arbeitsgruppen                                                                                                       | Jürgen Moser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 29.10.18 | Proteinproduktion in E. coli                                                                                                     | Jürgen Moser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 05.11.18 | Natürliche Funktion von Sekundärmetaboliten in der<br>Natur                                                                      | Barbara Schulz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12.11.18 | Sekundärstoffwechsel und Wirkstoffe                                                                                              | Barbara Schulz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19.11.18 | Genexpressionsanalysen                                                                                                           | Elisabeth Härtig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 26.11.18 | Kulturheterogenität                                                                                                              | Can Ünal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 03.12.18 | Kulturheterogenität                                                                                                              | Can Ünal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10.12.18 | Bioinformatik                                                                                                                    | Dieter Jahn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17.12.18 | Bacillus megaterium                                                                                                              | Dieter Jahn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 07.01.19 | Systembiologie und Metabolomics                                                                                                  | Dieter Jahn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14.01.19 | Molekulare Nachweissysteme                                                                                                       | Michael Steinert                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21.01.19 | Analyse biomolekularer Interaktionen                                                                                             | Simone Bergmann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 28.01.19 | PCR-basierte Detektionstechniken                                                                                                 | Martina Jahn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | 15.10.18  22.10.18  29.10.18  05.11.18  12.11.18  19.11.18  26.11.18  03.12.18  10.12.18  17.12.18  07.01.19  14.01.19  21.01.19 | 15.10.18 Proteinproduktion in E. coli  22.10.18 Vorstellung Arbeitsgruppen  29.10.18 Proteinproduktion in E. coli  05.11.18 Natürliche Funktion von Sekundärmetaboliten in der Natur  12.11.18 Sekundärstoffwechsel und Wirkstoffe  19.11.18 Genexpressionsanalysen  26.11.18 Kulturheterogenität  03.12.18 Kulturheterogenität  10.12.18 Bioinformatik  17.12.18 Bacillus megaterium  07.01.19 Systembiologie und Metabolomics  14.01.19 Molekulare Nachweissysteme  21.01.19 Analyse biomolekularer Interaktionen |

#### CB19 - Biomolekulare Modellierung

Braunschweig

Simulation von Biomolekülen mit klassischen Kraftfeldmethoden



#### CB19 - Biomolekulare Modellierung

- Potentialenergiefläche, Strukturen und Reaktionen
- statistische Thermodynamik
- Kraftfelder und Molekulardynamik-Simulationen
- Multiskalen-Methoden (QM/MM, Einbettungsverfahren)

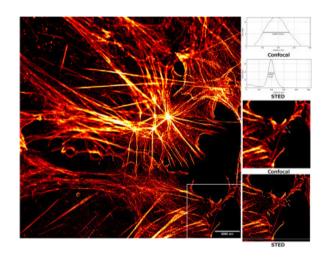
#### Voraussetzungen

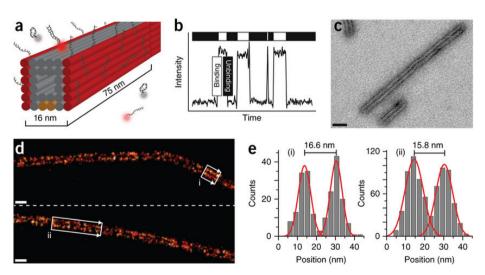
■ Grundlagen der physikalischen Chemie (PC1, PC2)

#### Lehrveranstaltungen (jeweils im SoSe)

- Vorlesung Biomolekulare Modellierungen (2 SWS)
- Computerübung Biomolekulare Modellierungen (2 SWS)
- Praktikum Biomolekulare Modellierungen (1 Woche Blockpraktikum)






# Moderne Optische Methoden & Imaging

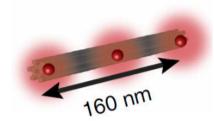
#### Main Content

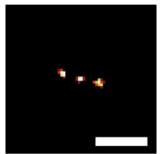
- Fundamentals of Microscopy
- Super-resolution and Nanoscopy
- Single molecule fluorescence techniques
- DNA Nanotechnolgy
- Nano-photonics and plasmonics

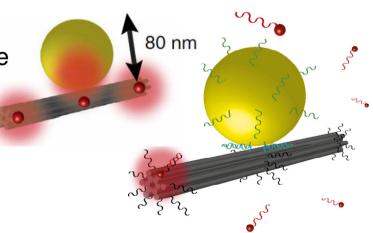




# **Format**


• Language: English


 Theory: 3 Modules (45 min) / week




· Lab Course: 4 days

 Evaluation: Oral + performance in exercises and Lab Course









