

Prof. Dr. Achim Enders Institut für Elektromagnetische Verträglichkeit (EMV) Technische Universität Braunschweig Schleinitzstr. 23 38106 Braunschweig

E-Mail: a chim.enders @tu-braunschweig.de

1. Auflage, Braunschweig, Oktober 2011 ISBN 978-3-00-035810-4 Bezug über das Institut für EMV möglich, siehe: www.emv.ing.tu-bs.de

© Copyright 2011 Achim Enders

Basistext Elektromagnetische Felder

Achim Enders

Braunschweig, im Oktober 2011

Nicht so sehr die Wiederholung, sondern eher die Abwandlung ist die Quelle des Verstehens (Norbert Treitz, Vorwort "Brücke zur Physik", 2003).

Vorwort

Autoren verfassen wissenschaftliche Bücher, um die Materie endlich einmal selber zu durchdringen. Neben dieser spöttischen Behauptung mit einem gewissen Wahrheitsgehalt ist aber die These "There are as many scientific methods as scientists" sicher ausschlaggebend. Auch aus Sicht des Lernenden ist es zu begrüßen, dass gerade bei einem so komplexen Thema wie der elektromagnetischen Feldtheorie aus einer Vielzahl von Büchern dasjenige ausgewählt werden kann, das der eigenen Denkweise am ehesten entspricht. Meine Motivation für den vorliegenden Text war die Feststellung, dass existierende Lehrbücher mit 250 bis teilweise über 1000 Seiten über den Umfang einer vierstündigen Grundvorlesung weit hinausgehen. Ein Basistext stellt nun den Versuch dar, sich auf einen Kern der e.m. Feldtheorie und ihrer Anwendungen zu beschränken und gleichzeitig für den Anfänger geeignet zu sein. Hierzu ist eine vernünftige Balance zwischen anschaulicher Ausdrucksweise, Praxisbezug und elementarem Vorwissen auf der einen und hinreichender mathematischer Strenge und notwendiger Abstraktion auf der anderen Seite angestrebt worden – wie gut dies gelungen ist, sei dem Urteil des Lesers überlassen.

Dieser Basistext setzt elementare Kenntnisse der Vektoranalysis (Kurven-, Flächen-, Volumenintegrale, Differentialoperatoren div, rot, grad), der partiellen Differentialgleichungen sowie von elementaren physikalischen und elektrotechnischen Begriffen wie Kraft, Leistung, Energie, Strom, Spannung und komplexer Widerstand (und damit auch elementarer Funktionentheorie in Form komplexer Zeigerdarstellung) voraus, wie sie meist in den Lehrplänen der ersten beiden Semester enthalten sind. Es ist natürlich möglich, sich im Rahmen eines ganzheitlichen Lernens alles gleichzeitig mit der elektromagnetischen Feldtheorie anzueignen. Dazu wird aber ergänzende Literatur, z.B. aus der angegebenen Auswahl, erforderlich sein.

Die Systematik stellt in den Kapiteln 1 bis 7 zunächst die elementaren elektromagnetischen Phänomene von den Kraftwirkungen bis hin zu den Fresnelschen Formeln und dem Hertzschen Dipolfeld zusammen. Aus Gründen der Übersichtlichkeit sind hier Übungsaufgaben nur vereinzelt zum Selbststudium empfohlen. In den Kapiteln 8 und 9 werden dann Lösungsmethoden für die Maxwell-Gln. unter Randbedingungen incl. von einfachen Beispielen vorgestellt, d.h. der mehr für die praktische Anwendung bedeutsame Teil. Diese Systematik besitzt den Vorteil, dass nach Ausarbeitung der vollen dynamischen Theorie das Anwendungspotenzial der verschiedenen Lösungsmethoden deutlicher wird, so z.B. die Verwendung quasistatischer Lösungsverfahren in der Leitungstheorie bei der TEM-Mode.

Viele Student(inn)en und Mitarbeiter(innen) haben mit ihren für eine präzisere Formulierung hilfreichen Zwischenfragen zum Gelingen dieses Buches beigetragen. Namentlich möchte ich erwähnen die Herren B. Neubauer, N. Eulig, R. Geise, A. Junge, J. Leopold, S. Pötsch, I. Schmidt und J. Werner. Insbesondere ist Herrn Dr. H. Spieker für seine kritisch-konstruktive Durchsicht zu danken, sowie Frau Kretzschmann für das Umsetzen in eine lesbare Form. Gleichzeitig erfolgt die Bitte an den geneigten Leser, dem Autor weitere Korrekturen, Fehler, Verbesserungsvorschläge etc. mitzuteilen.

Braunschweig, Oktober 2011

Achim Enders

Inhaltsverzeichnis

1	Not	wendigkeit des Feldbegriffs	1
2	Phy	rsikalische Grundprinzipien	5
	2.1	Geschichtliches	5
	2.2	Elektrische Kraftwirkung: das Coulomb–Gesetz	5
	2.3	Superpositionsprinzip	6
	2.4	Prinzip der Erhaltung der Ladung, Kontinuitätsgleichung	7
	2.5	Magnetische Kraft zwischen parallelen Strömen	10
	2.6	Gesetz von Biot-Savart-Ampère	12
3	"Ver	reinfachungen" der Kraftgleichungen	14
	3.1	Wie zweckmäßiger darstellen?	14
		3.1.1 Entkopplung Ursache / Wirkung	14
		3.1.2 Differentielle Formulierung	17
	3.2	Elektrisches Feld	17
		3.2.1 Das Gaußsche Gesetz der Elektrostatik	17
		3.2.2 Zentralkraft, Rotation und Gradient, Potential	19
		3.2.3 Poisson- und Laplace-Gleichung, δ -Distribution	25
	3.3	Greensche Integralsätze, Eindeutigkeitsbeweis	30
	3.4	Flussdichte $ec{B}$, Vektorpotential $ec{A}$, Durchflutungsgesetz $\ldots \ldots \ldots \ldots \ldots$	33
	3.5	Lorentzkraft und Relativitätstheorie	37
4	Dyn	namik in Vakuum/Materie	40
	4.1	Das Faradaysche Induktionsgesetz	40
	4.2	Der Maxwellsche Verschiebestrom	46
	4.3	Die Maxwell–Gleichungen	49
	4.4	Maxwell–Gleichungen in Materie	50
		4.4.1 Phänomenologie	50
		4.4.2 Die dielektrische Polarisation; der elektrische Dipol	50
		4.4.3 Die magnetische Polarisation (Magnetisierung)	53
		4.4.4 Maxwell–Gln. in Materie; konstitutive Gleichungen	55
	4.5	Randbedingungen (RBn)	59

INHALTSVERZEICHNIS

5	Ene	rgetische Betrachtungen	62
	5.1	Das Poynting-Theorem: Energieerhaltung	62
	5.2	Elektrische Feldenergie und Kapazität	65
	5.3	Magnetische Feldenergie und Induktivität	68
	5.4	Praxis der E-Technik: Ersatzschaltbild und einige Bemerkungen	70
6	Lösı	ungen ohne Felderregung: $ ho, ec{J}=0$	72
	6.1	Wellenausbreitung im Raum ohne RBn	72
	6.2	Harmonischer Ansatz, Fourier–Transformation	76
	6.3	Ebene RBn: Brechungsgesetze/Fresnelsche Formeln	82
	6.4	Dispersion durch $\varepsilon_{r(\omega)}, \mu_{r(\omega)}$; Metall–RBn	93
7	Lösı	ungen für $ ho_{(ec{r},t)},ec{J}_{(ec{r},t)} eq 0$ ohne RBn	98
	7.1	Dynamische Potentiale	98
	7.2	Der elektrische Hertzsche Dipol	101
	7.3	Diskussion des Hertzschen Dipolfeldes	104
	7.4	Energetische Betrachtungen zum elektrischen Hertzschen Dipol	107
	7.5	Der Fitzgeraldsche Dipol	108
	7.6	Praxis der E-Technik: Näherungen	109
8	Ana	lytische Feldberechnung: Wellenleiter als Randwertproblem	112
	8.1	Allgemeine Vorgehensweise, TEM-Wellenlösung	112
	8.2	Struktur der allgemeinen Lösung	116
	8.3	Analytische Lösungsmethode: Separation der Variablen	118
	8.4	Beispiel: Rechteckhohlleiter und H–Moden	119
	8.5	Zylindrische Wellenleiter	123
	8.6	Allgemeine 1-dim. Wellenausbreitung	125
9	Wei	tere Lösungsverfahren bei Randwertproblemen	129
	9.1	Allgemeines zu analytischen und diskret-numerischen Verfahren	129
	9.2	Bildladungsmethode	130
	9.3	Konforme Abbildungen	140
	9.4	Prinzipien weiterer Verfahren	146
Lit	teratı	urliste	148
Ind	dex		150

Kapitel 1

Notwendigkeit des Feldbegriffs

<u>Leitfrage:</u> Wieso ist das Feld als zentrales und fundamentales Naturphänomen aufzufassen bzw. aufgrund welcher Beobachtungen ist dies in der heutigen Alltagswelt einsichtig?

Seit Heinrich Hertz, noch prägnanter nach Marconis 1901 gelungener Transatlantik-Übertragung, ist nachgewiesen, dass eine drahtlose Nachrichtenübertragung mit elektromagnetischen Feldern möglich ist. In Abb. 1.1 ist dies skizziert.

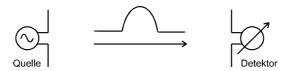


Abbildung 1.1: Drahtlose Signalübertragung

Was heißt das genauer? Es kann ein Zeitintervall $[t_1,t_2]$ geben, in dem weder in der Quelle noch im Detektor eine Spannung oder ein Strom zu messen sind, aber im Raum dazwischen eine Energieform transportiert wird. Anders ausgedrückt, müssen sich hier die Raumeigenschaften geändert haben und entsprechend beschrieben werden können. Detektierbar, also messbar, wäre dies aber nur in der Auswirkung auf sich hier befindliche Ladungen, zumindest im Rahmen des Elektromagnetismus.

Diese Energieform im Raum nennt man <u>elektromagnetisches (e.m.) Feld</u>, rein phänomenologisch werden also eine oder mehrere Funktionen benötigt, die die Eigenschaften des Raums, also das Feld, charakterisieren.

$$Feld = f_{(x,y,z,t)}$$

Ein derartiges Vorgehen erscheint zunächst sehr abstrakt und der Sinnes- und Erfahrungswelt nicht zu entsprechen, letztendlich ist das Feld aber nur die math./physikalische Formulierung des Mess- und damit Erfahrbaren mit dem Schwerefeld der Erde als vertrautestem Beispiel. Die allgemeine Beschreibung der elektromagnetischen Phänomene erlaubt die Angabe des Zusammenhangs zwischen der Felderzeugung durch Ladungen und deren Bewegungen, der Ausbreitung der Felder im Raum sowie ihrer Orientierung; e.m. Felder besitzen also Vektorcharakter, man spricht von "Vektorfeldern". Rein formal gilt dann (oft wird die Angabe der Funktionsvariablen, weil selbstverständlich, weggelassen):

$$Feld = \vec{f}_{[(x,y,z,t),\mathsf{Ladungen}(x,y,z,t),\mathsf{Ladungsbewegung}(x,y,z,t)]}$$

Kapitel 1 Notwendigkeit des Feldbegriffs

Bekanntere elektrotechnische Begriffe wie Spannung U oder Strom I müssen hier also durch orts- und zeitabhängige Vektorfelder ersetzt werden. Nun könnte eingewandt werden, dass die drahtlose Signalübertragung (allgemein also die Hochfrequenz-Technik) eine so komplizierte Theorie schon benötige, dies aber von der Anwendung her nur den kleinsten Teil des Elektromagnetismus betreffe. Deshalb seien noch zwei weitere Beispiele für die Notwendigkeit des Feldbegriffs aus anderen Gebieten erläutert.

Bei folgender Geometrie aus Metall kommt es zum Funkenüberschlag bei Spannungserhöhung immer zuerst an der Spitze. Wieso?

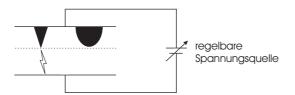


Abbildung 1.2: Funkenüberschlag an spitzen Elektroden; die gepunktete Linie soll nur zeigen, dass die spitze und runde Elektrode auf gleicher Höhe liegen.

Für die Leser mit Vorwissen: Offensichtlich werden geladene Teilchen in der Nähe zur und/oder in einer spitzen Elektrode (der Effekt ist im Vakuum ebenfalls vorhanden) stärker beschleunigt als an der runden Elektrode trotz gleicher Spannung. Der Begriff der Spannung ist hier offensichtlich zur Beschreibung unzureichend, die grundlegenden Begriffe Spannung, Strom und Widerstand der Elektrotechnik können also bei weitem nicht erschöpfend sein.

Ein vermeintlich triviales Gedankenbeispiel in Form einer Gleichstrom-Übertragungsstrecke zu einem Verbraucher regt die wissenschaftliche Phantasie vielleicht am stärksten an. Die Frage lautet hier: An welchen Stellen im Raum wird die Leistung in der skizzierten Schnittebene übertragen?

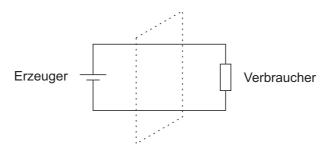
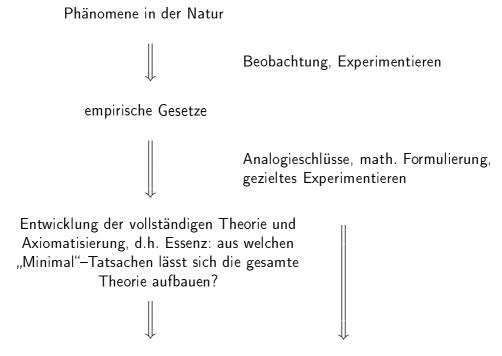



Abbildung 1.3: Gleichstrom-Übertragungsstrecke

Eine zunächst selbstverständlich klingende, aber falsche Antwort lautet: Im Kabel, weil ohne Kabel oder nach Kabelauftrennung mit einem Schalter die Übertragung unterbleibt. Nachdenklich wird man aber, wenn die übertragene Leistung nach der bekannten Formel $P=U\cdot I$ angegeben wird: Längs eines einzelnen Kabels ist der Spannungsabfall meist vernachlässigbar, so dass weder im oberen noch unteren Strang für sich eine Leistung übertragen wird. Das U aus der Formel wird zwischen den beiden Kabeln gemessen, so dass der Raumzustand zwischen

den Kabeln die Leistungsübertragung bewirken muss. Die Felder transportieren also auch im Gleichstromfall die Energie durch den Raum, und zwar außerhalb der Kabel!

Solche Beispiele geben zunächst Wissensstoff in Form von experimentellen bzw. empirischen Gesetzmäßigkeiten wieder und wurden hier speziell zur Begründung des Feldbegriffs ausgesucht. Damit ist ebenfalls ganz grob die Entwicklung einer Wissenschaft und damit auch der Aufbau des folgenden Stoffes skizziert:

technische Anwendung, Lösung von Praxisproblemen, Realisierung besserer Lebensbedingungen

Die Wechselwirkungen zwischen Ladungen durch e.m. Felder werden durch die Maxwell-Gleichungen formuliert, die in ihrer vollständigen Form von J.C. Maxwell in den Jahren 1861-64 angegeben wurden. Sie sollen in diesem Text möglichst anschaulich nachvollzogen werden bei hinreichender Tiefe und genügender math. Strenge. Im Folgenden sei noch die Feststellung begründet, warum die Lehre des Elektromagnetismus und ebenfalls das Studium der Elektrotechnik auf absehbare Zeit einen einzigartigen Stellenwert beibehalten werden.

In der Physik stellt die klassische elektromagnetische Feldtheorie nach wie vor das Musterbeispiel und Ideal einer Feldtheorie an sich dar. Neben der erschöpfenden Beschreibung einer der vier elementaren Naturkräfte ist sie Ausgangspunkt sowohl für die spezielle Relativitätstheorie als auch für quantisierte Feldtheorien. Dem Elektrotechniker ermöglicht sie, neben dem Erwerb des benötigten Handwerkszeugs an sich, das Verständnis für den Aufbau der einzelnen elektrotechnischen Fachdisziplinen mit ihren jeweiligen Näherungen bzw. Vernachlässigungen.

Kapitel 1 Notwendigkeit des Feldbegriffs

Eine solide Ausbildung in diesen Grundlagen wird nie durch ein gutes Computerprogramm ersetzbar sein, obwohl die Theorie vollständig mathematisch ausformuliert und damit im Prinzip algorithmisierbar, d.h. durch Rechenprogramme abbildbar ist:

- a) Randbedingungen (=RBn) im Elektromagnetismus existieren in hierfür zu vielfältiger, komplexer Form (siehe o.a. Beispiel der spitzen Elektrode). Notwendige Vereinfachungen, gerade auch für effiziente Algorithmen, sind nur mit Fachwissen und Erfahrung möglich.
- b) Immer neue Anforderungen (= Parameterbereiche bzw. RBn) müssen berücksichtigt werden.
- c) Kreativität bei der Entwicklung, aufbauend auf und schöpfend aus guter Sachkenntnis und Erfahrung, wird immer benötigt.

Gerade die wachsende Bedeutung der elektromagnetischen Verträglichkeit (EMV) ist kennzeichnend hierfür. EMV ist als die Forschungstätigkeit zu verstehen, die das Nicht- oder Fehlfunktionieren aufgrund der Anwesenheit mehrerer elektrotechnischer Einrichtungen aufklären bzw. besser von vornherein vermeiden soll. Herauszufinden ist im o.a. Sinne also, welche e.m. Wechselwirkungen beim Betrieb störenderweise intern oder von außen auftreten, und wie die Störung und/oder Störungsübertragung minimiert werden kann.

Leitfrage ist also:

Wie sieht eine möglichst allgemeingültige und handhabbare Beschreibung elektromagnetischer Phänomene aus ?

Die praktische Anwendbarkeit der Maxwellschen Theorie hat u.a. die Energieversorgung und Nachrichtenübertragung der Menschheit im wahrsten Sinne des Wortes revolutioniert. Der heutige Lebensstandard in den technisierten Gesellschaften ist ohne sie nicht denkbar. Aber auch die Naturphilosophie wurde durch die Maxwellsche Theorie nachhaltig beeinflusst. Wissenschaftler werden durch sie genötigt, Naturerscheinungen abstrakter aufzufassen. Man muss den in der Beschreibung benötigten Grössen auch dann eine reale Existenz zubilligen, wenn sie nicht durch mechanische Modelle veranschaulicht werden können und nicht direkt mit unserer durch Sinnesorgane erfahrbaren Welt in Einklang zu bringen sind. Die benötigten Schnittstellen zwischen den Phänomenen in der Natur und unseren Sinnesorganen können dann nur noch durch geeignete technische Geräte realisiert werden.

Kapitel 2

Physikalische Grundprinzipien

<u>Lernziele:</u> Elektrisches (Coulomb) und magnetisches (Biot-Savart-Ampère) Kraftgesetz, Superpositionsprinzip, Ladungserhaltung, Kontinuitätsgleichung, Maßsystem.

2.1 Geschichtliches

Elementare elektrische und magnetische Kraftwirkungen waren schon alten Kulturvölkern bekannt; Thales von Milet (griechischer Naturphilosoph um 600 v.Chr.) nennt diese Phänomene bereits. Entsprechend sind die Begriffe ableitbar:

<u>electron</u> (griechisch) – Bernstein; beim Reiben mit Katzenfell an Bernstein wird "Elektrizität erzeugt" in Form elektrostatischer Aufladungen bis hin zu Funkenüberschlägen.

<u>lithos magnetos</u> (griechisch) – Stein aus der thessalischen Landschaft Magnesia: Magnetit Fe_3O_4 ; zwei Steine dieser Art können sich anziehen.

Wieso hat trotz dieser Kenntnisse die systematische Aufklärung der elektromagnetischen Phänomene so lange bis weit ins vorletzte Jahrhundert hinein gedauert?

- Ein systematisches Experimentieren ohne zu große Voreingenommenheit durch religiöse/ philosophische Weltanschauungen hat sich erst im Mittelalter entwickelt.
- Die Reibungselektrizität an Fellen etc. ist schwer reproduzierbar, erst relativ spät ist Technologie zur "Erzeugung von Elektrizität" entwickelt worden (Otto von Guericke, erste Reibungselektrisiermaschine ab ca. 1660).
- Gezielt erzeugbare Magnetfelder durch Ströme waren erst mit stabilen Stromquellen möglich, d.h. erst mit der Erfindung galvanischer Elemente seit ca. 1800.

2.2 Elektrische Kraftwirkung: das Coulomb-Gesetz

$$\vec{F}_1 = k_c \frac{q_1 q_2}{r^2} \vec{e}_{21} = -\vec{F}_2 \tag{2.1}$$

In dieser elementaren Formulierung beschreibt das Coulomb-Gesetz die Kraft zwischen zwei Punktladungen der Ladungsmenge q_1 und q_2 im Abstand r:

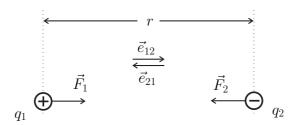


Abbildung 2.1: Das Coulomb-Gesetz

- drei Proportionalitäten (zu q_1 , zu q_2 und zu $1/r^2$, letzteres eine invers-quadratische oder häufig salopp als "quadratische Abstandsabhängigkeit" bezeichnet), Kraftrichtung von einem Ladungsursprung zum anderen (sog. Zentralkraft) und ein Vorzeichen (Kraft \vec{F}_1 geht bei gleichnamigen Ladungen in Richtung \vec{e}_{21} , also abstoßend, bei ungleichnamigen anziehend, da ein Ladungsvorzeichen dann negativ ist),
- Kraftgleichung für ruhende Ladungen, die im bewegten Fall ergänzt werden muss,
- ullet nur für Punktladungen (Durchmesser $arnothing_{\mathsf{Ladung}} \ll \mathrm{r}$) gültig,
- k_c als Proportionalitätskonstante ist abhängig vom Maßsystem, d.h. den Einheiten-Definitionen (siehe Kap. 2.5).

2.3 Superpositionsprinzip

Die Kräfte zwischen vielen, im Raum verteilten Punktladungen ergeben sich durch Addition der Kräfte zwischen jedem Paar, d.h. zusätzliche Ladungen im Raum verändern nicht die Kraftwirkung zwischen je einem einzelnen Paar. Die Gesamtkraft erhält man also mittels Vektor-Addition der Paar-Coulomb-Kräfte, d.h. durch ihre lineare Überlagerung (= Superposition).

Beispielsweise beträgt bei drei Punktladungen die Kraft auf q_3 :

$$\vec{F}_3 = k_c \cdot q_3 \left(\frac{q_1}{r_{13}^2} \vec{e}_{13} + \frac{q_2}{r_{23}^2} \vec{e}_{23} \right)$$

Deshalb berechnet man die Kraftwirkung einer "verschmierten" Ladungsverteilung auf eine Punktladung durch Aufintegration der infinitesimalen Ladungsanteile, letztere als "Punktladung" im o.a. Sinne. Salopp spricht man bei den in folgender Tabelle aufgeführten Funktionen von Ladungsdichten, die genauer Ladungsdichte-Verteilungsfunktionen heißen mit dem Zusatzräumlich (3-dim), flächig (2-dim) oder linienförmig (1-dim).

Bei Leitern ist aber vor Anwendung des Superpositionsprinzips Vorsicht geboten. Hier ist zuerst zu fragen, was für eine Ladungsverteilung sich eingestellt hat, da die Ladungen innerhalb von Leitern durch Felder verschoben werden können. Diesen Effekt der Verschiebung von Ladungen

Kapitel 5

Energetische Betrachtungen

<u>Lernziele:</u> Poynting-Theorem, raumgespeicherte und transportierte Feldenergie; Poynting-Vektor, Kapazitäts- und Induktivitätskoeffizienten.

5.1 Das Poynting-Theorem: Energieerhaltung

Auch für elektromagnetische Wechselwirkungen müssen die Fundamentalsätze der Energie- und der Impulserhaltung gewährleistet sein. Da die Impulserhaltung für e.m. Felder in der Ingenieurs-Praxis selten eine Rolle spielt, soll nur auf die Energie-Erhaltung bzw. äquivalent den Nachweis einer ausgeglichenen Leistungsbilanz eingegangen werden. Zunächst wird eine einzelne Ladung betrachtet, an die die Lorentz-Kraft Gl. (3.41) als Gesamtkraft angreift:

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) \tag{5.1}$$

Da die Magnetkraft als Vektorkreuzprodukt $q(\vec{v} \times \vec{B}) \perp zu \ \vec{v}$ steht, verrichtet sie keine Arbeit an q. Als Leistung P an q verbleibt der Coulomb-Kraftanteil bei der Geschwindigkeit \vec{v} . Ein Produkt Kraft mal Weg ergibt eine Energie und ein Produkt Kraft mal Geschwindigkeit eine Leistung, siehe auch Kap. 3.5, Erläuterungen zu Gl. (3.41) bzgl. des Produktes $q \cdot \vec{v}$:

$$P = q \cdot \vec{v} \cdot \vec{E} \qquad \qquad \vec{J} = \rho \vec{v} \\ \Longrightarrow \qquad \qquad P_{\substack{\mathsf{an} \vec{J} \, \mathsf{im} \\ \mathsf{Volumen} \, V}} = \int_{V} \vec{J} \cdot \vec{E} d^3 r \qquad (5.2)$$

Nach Vorzeichenkonvention handelt es sich bei positivem P um die Abgabe von Feldenergie an q in Form kinetischer Energie oder in andere Energieformen wie Wärme. Wegen des Energieerhaltungssatzes muss dies mit einer entsprechenden Abnahme der e.m. Feldenergie einhergehen, was jetzt explizit bewiesen wird. Mit Hilfe der Maxwell-Gleichungen soll $\int \vec{J} \vec{E} d^3 r$ deshalb rein durch Feldterme ausgedrückt werden. Zunächst wird das Maxwell-Ampèresche Gesetz ausgenutzt:

$$\int_{V} \vec{J} \cdot \vec{E} d^{3}r = \int_{V} \left[\underbrace{\vec{E} \cdot (\nabla \times \vec{H})}_{(*)} - \vec{E} \cdot \frac{\partial \vec{D}}{\partial t} \right] d^{3}r$$
 (5.3)

Wegen $\nabla \cdot \left(\vec{a} \times \vec{b} \right) = \vec{b} \cdot (\nabla \times \vec{a}) - \vec{a} \cdot \left(\nabla \times \vec{b} \right)$ gilt für (*) die Identität:

$$\vec{E} \cdot (\nabla \times \vec{H}) = \vec{H} \cdot \underbrace{(\nabla \times \vec{E})}_{} - \nabla \cdot (\vec{E} \times \vec{H})$$

$$= -\frac{\partial \vec{B}}{\partial t}$$

$$\implies \int_{V} \vec{J} \cdot \vec{E} d^{3}r = -\int_{V} \left[\nabla \cdot (\vec{E} \times \vec{H}) + \vec{H} \frac{\partial \vec{B}}{\partial t} + \vec{E} \frac{\partial \vec{D}}{\partial t} \right] d^{3}r \qquad (5.4)$$

Zunächst wird durch Gl. (5.5) der sogenannte Poynting-Vektor \vec{S} , nach dem engl. Physiker J.H. Poynting, eingeführt. Bei linearen Zusammenhängen zwischen \vec{E}, \vec{D} und \vec{B}, \vec{H} wie in den Gln. (4.30, 4.31) angegeben, die bei den meisten dielektrischen Materialien vorausgesetzt werden können, wird zusätzlich Gl. (5.6) benutzt:

$$\vec{S} = \vec{E} \times \vec{H} \tag{5.5}$$

$$w = \frac{1}{2} \left(\varepsilon \vec{E} \cdot \vec{E} + \mu \vec{H} \cdot \vec{H} \right) = \frac{1}{2} \left(\varepsilon \vec{E}^2 + \mu \vec{H}^2 \right) = \frac{1}{2} \left(\vec{E} \vec{D} + \vec{B} \vec{H} \right)$$
 (5.6)

Nach Gl. (5.6) folgen über $\partial w/\partial t$ die letzten beiden Terme der Gl. (5.4), wenn jeweils äußere und innere Ableitung oder die Produktregel angewendet werden. Für den nichtlinearen Fall wäre die zeitliche Aufintegration der Formel Gl. (5.4) mit dem expliziten zeitlichen Zusammenhang zwischen den Feldern \vec{E}, \vec{D} bzw. \vec{B}, \vec{H} für eine Energiebilanz erforderlich, z.B. zur Berechnung der Hystereseverluste ferromagnetischer Materialien im Wechselfeld. Im linearen Fall gemäß Gl. (5.6) ergibt sich die folgende, einfachere Formulierung in integraler bzw. differentieller Schreibweise. Sowohl die Gl. (5.4) als auch für den linearen Fall Gln. (5.7, 5.8) bilden Formulierungen des sogenannten Poynting-Theorems, dem e.m. Energieerhaltungssatz:

$$-\int_{V} \vec{J} \cdot \vec{E} d^{3}r = \int_{V} \left(\nabla \cdot \vec{S} + \frac{\partial w}{\partial t} \right) d^{3}r$$
 (5.7)

$$-\vec{J} \cdot \vec{E} = \nabla \cdot \vec{S} + \frac{\partial w}{\partial t}$$
 (5.8)

Analyse und Interpretation:

Links wird die von den Ladungen umgesetzte, d.h. durch sie von den Feldern abgegebene oder hineingesteckte Leistung spezifiziert. Dann muss eine Änderung der Feldenergie durch die Terme mit \vec{S}, w auf der rechten Seite beschrieben werden. Was für eine Bedeutung haben sie? Eine Änderung einer skalaren Energiedichte ist im Ausdruck $\partial w/\partial t$ enthalten, wobei eine Unterteilung gegeben ist in:

• elektrische Feldenergiedichte
$$\frac{1}{2} \varepsilon \vec{E}^2 = w_e$$
 (5.9)

• magnetische Feldenergiedichte
$$\frac{1}{2} \mu \vec{H}^2 = w_m$$
 (5.10)

In $\vec{S} = \vec{E} \times \vec{H}$ zeigt sich, dass neben w beide Feldanteile auch verkoppelt in der Leistungsbilanz auftauchen. \vec{S} besitzt die Einheit W/m² und weist eine Richtung auf, ist also eine Leistungsflussdichte als Vektorfeld. In der Gleichung tritt nur die ${
m div}\ ec{S}$ als räumliche Änderung der Leistungsflussdichte auf. Der div \vec{S} -Term kann in der Integraldarstellung Gl. (5.7) über den Gaußschen Integralsatz Gl. (3.6) in ein Flussintegral durch die Oberfläche von V umgewandelt werden: \vec{S} transportiert Feldenergie aus V heraus oder hinein. Der Vektor \vec{S} repräsentiert eine nur durch das kombinierte \vec{E}, \vec{H} -Feld zustande kommende Leistungsflussdichte, die leitungs-"geführt" sein kann, wie z.B. im Gleichstromkreis Abb. 1.3, oder von Ladungen/Strömen losgelöst, d.h. gestrahlt existiert. Zusammen mit der skalaren, nur zeitlich veränderlichen Energiedichte des elektrischen Feldes w_e und des magnetischen Feldes w_m sind dies die feldgebundenen Energieterme. w_e und w_m stellen "raumgespeicherte" Energiedichten des e.m. Feldes dar, integriert über den Raum also die elektrische bzw. magnetische Feldenergie, W_e bzw. W_m . In Gl. (5.8) ändern sich w_e , w_m nur zeitlich und nicht räumlich, wie auch in der allgemeineren Energiebilanzgl. (5.4) die beiden rechten Terme. Demnach kann durch sie kein Energietransport erfolgen. Ohne Umsatz in bzw. Einspeisung von anderen Energieformen folgt aus Gl. (5.8) die differentielle Energieerhaltung bzw. Kontinuitätsgleichung für die e.m. Feldenergie:

$$\nabla \cdot \vec{S} = -\left(\frac{\partial w_e}{\partial t} + \frac{\partial w_m}{\partial t}\right) \tag{5.11}$$

Bleiben $w_e,\ w_m$ und $\nabla\cdot\vec{S}$ mit den felderzeugenden Ladungs- und Stromdichten ρ,\vec{J} so verknüpft, dass ein Beitrag $\nabla\cdot\vec{S}$ von ρ,\vec{J} in den Raum hinaus vernachlässigbar bleibt, so handelt es sich um "quasistationäre" Feldverhältnisse (siehe Kap.7.6). In diesem Fall spricht man von quasistationären kapazitiven bzw. induktiven Feldern, die dann implizit raumgespeicherte Felddichten darstellen. Beispielsweise wird beim Laden eines Kondensators die elektrostatische = kapazitive Feldenergiedichte w_e zwischen den Kondensatorplatten durch eine von den Zuleitungen geführte Leistungsflussdichte \vec{S} aufgebaut und verbleibt dort. In den nächsten Kapiteln 5.3, 5.4 sollen $w_e,\ w_m$ noch einmal elementar aus den zu ihrem Aufbau benötigten Energien abgeleitet werden. Hierbei ergeben sich wichtige Proportionalitätskonstanten, in denen die geometrieund materialabhängigen Faktoren der gesamten elektrischen bzw. magnetischen Feldenergien zusammengefasst sind und die mit den Begriffen "Kapazität" und "Induktivität" bezeichnet werden. Der Poynting-Vektor wird in Kap. 6.2 näher behandelt.

Zwei Bemerkungen seien abschließend angebracht:

- a) Obwohl Magnetkräfte keine Arbeit an Ladungen verrichten, ist über die Änderung der Lage zwischen Permanentmagneten, die ja Magnetkräfte aufeinander ausüben, eine direkte Umwandlung zwischen mechanischer Energie und w_m möglich. Dies ist oft nicht praxisrelevant und wird beim Poyntingschen Theorem meist implizit, wie auch bei der obigen Beschreibung, vernachlässigt, da nur der Energieumsatz über \vec{J} , also über die Ladungen, behandelt wird.
- b) Zunächst kann es merkwürdig erscheinen, dass bei der Leistungsflussdichte \vec{S} als grundlegender physikalischer Größe das Hilfsfeld \vec{H} und nicht die Flussdichte \vec{B} erscheint, obwohl \vec{B} das grundlegende Feld für die magnetische Kraftwechselwirkung darstellt. Diese Frage wird manchmal mit dem Hinweis verschleiert, dass \vec{H} und \vec{B} über μ ineinander umrechenbar sind, obwohl

dies im allgemeinen Fall der Nichtlinearität beliebig kompliziert werden kann. Allgemein aber <u>müssen</u> bei der Energiebilanz nach Gl. (5.4) alle vier Felder explizit berücksichtigt werden und trotzdem gilt Gl. (5.5) mit $\vec{S} = \vec{E} \times \vec{H}$ auch in diesem Fall. Vom E-Technik-Basisverständnis her ist dies plausibel: Aufintegration über eine Fläche ergibt gerade die bekannte Leistungsformel $P = U \cdot I$. Die Begründung hierfür leitet sich aus dem in Kap. 4.4.1, am Ende von Kap. 4.4.3 und hier Gesagten ab: Für den Energieumsatz <u>an Ladungen</u> ist \vec{B} nicht relevant, da die Magnetkraft \perp zur Bewegung steht; die "Menge an Ladungsbewegung" gegen das oder mit dem Feld \vec{E} steckt in \vec{J} , genau: $\vec{J}_{\text{äußere}}$ nach Gl. (4.22), wofür das Hilfsfeld \vec{H} über $\mathrm{rot}\vec{H}$ das Maß ist.

5.2 Elektrische Feldenergie und Kapazität

In Kap. 3 wurde hergeleitet, dass das elektrostatische Potential φ die potentielle Energie W einer Probeladung q im elektrostatischen Feld (rot $\vec{E}=0$) bestimmt. Die Energie W_d einer diskreten Ladungsverteilung q_i berechnet sich dann absolut unter der RB $\varphi_{\infty}=0$ wie folgt:

$$W_d = \sum q_i \varphi_{(\vec{r_i})} \tag{5.12}$$

 φ wird wiederum nach Gl. (3.18) durch die q_i erzeugt. Beim Übergang auf eine zweite Doppelsumme zwecks Vereinfachung kommt im Nenner ein Faktor 2 wegen der Doppelzählung hinzu:

$$W_{d} = \frac{1}{4\pi\varepsilon_{o}} \sum_{i=1}^{n} \sum_{j < i} \frac{q_{i}q_{j}}{|\vec{r}_{i} - \vec{r}_{j}|} = \frac{1}{8\pi\varepsilon_{o}} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{q_{i}q_{j}}{|\vec{r}_{i} - \vec{r}_{j}|}$$
(5.13)

 W_d kann je nach Ladungsvorzeichen sowohl positive als auch negative Werte annehmen. Für kontinuierliche Ladungsverteilungen im endlichen Volumen V erhält man:

$$W = \frac{1}{8\pi\varepsilon_o} \int_{V} \int_{V} \frac{\rho_{(\vec{r})}\rho_{(\vec{r}')}}{|\vec{r} - \vec{r}'|} d^3r d^3r' \stackrel{\text{Def.}\varphi}{=} \frac{1}{2} \int_{V} \rho_{(\vec{r})}\varphi_{(\vec{r})} d^3r$$
 (5.14)

Will man W rein durch Feldterme ausdrücken, muss das verbliebene ρ durch die Poisson-Gl. ersetzt werden $(\nabla^2\varphi=-\rho/\varepsilon_o)$, wobei der Index e jetzt für die Feldtermformulierung steht, hier zunächst im Vakuum:

$$W_e = -\frac{\varepsilon_o}{2} \int_V \varphi_{(\vec{r})} \left(\nabla^2 \varphi_{(\vec{r})} \right) d^3 r \stackrel{(*)}{=} \frac{\varepsilon_o}{2} \int_V (\nabla \varphi)^2 d^3 r = \frac{\varepsilon_o}{2} \int_V \vec{E}^2 d^3 r$$
 (5.15)

Die Umformung (*) ergibt sich durch partielle Integration analog zum Vorgehen in Kap. 3.4 mit $\varphi_{\pm\infty}=0$. Auch inkl. der Materie-Polarisation ergibt sich im linearen, isotropen Fall für die

Auch hier ist neben dieser nur durch die explizite Feldangabe berechenbaren magnetischen Energie oft eine schnelle Charakterisierung der Energieverhältnisse durch Angabe eines einzigen Parameters neben der Stromstärke I möglich, nämlich der sogenannten Induktivität L. Die einfache Proportionalität von Φ zu I (Gln. (5.22 bzw. 4.3, 3.3)) erlaubt es, diese rein von den Geometrie- und Materialparametern des Leiterkreises abhängige Größe zu definieren:

$$\Phi = L \cdot I$$
 bzw. $L = \frac{\Phi}{I} \stackrel{\text{(5.23)}}{\Longrightarrow} W_m = \frac{1}{2}L \cdot I^2$ (5.28)

Bei mehreren Stromkreisen besitzt jeder eine solche Induktivität, die dann genauer als Selbstinduktivität L_i bezeichnet wird. Zusätzlich kennzeichnen die Gegeninduktivitäten M_{ij} den magnetischen Fluss, der vom Stromkreis i ausgehend den Stromkreis j durchsetzt. Beispielsweise ergibt sich bei zwei Stromkreisen entlang C_2 und C_1 :

$$U_1 = -\frac{d\Phi_{21}}{dt} = M_{21}\frac{dI_2}{dt} \tag{5.29}$$

Die Vorzeichen sind dabei eine Konventionsfrage. Bei n Stromkreisen folgt:

$$W_m = \frac{1}{2} \sum_{i=1}^n L_i I_i^2 + \frac{1}{2} \underbrace{\sum_{i=1}^n \sum_{j=1}^n M_{ij} I_i I_j}_{i \neq i}$$
(5.30)

5.4 Praxis der E-Technik: Ersatzschaltbild und einige Bemerkungen

Die in Kap. 5.2 und 5.3 als "Nebenaspekt" eingeführten Begriffe der Kapazität bzw. Induktivität besitzen in der elektrotechnischen Praxis eine enorme Bedeutung. Für konkrete Geometrien, Aufbauten und Bauelemente ersetzen sie meist die feldtheoretische Beschreibung und vereinfachen damit deren Behandlung. Die so überhaupt erst definierten Bauelemente L für Induktivität bzw. "Spule" und C für Kapazität bzw. Kondensator entsprechen einem <u>Ersatzschaltbild</u> als Annäherung an das wahre Verhalten nach den Gln. (5.4 - 5.11). Bei Schaltplänen wird also implizit zunächst immer eine energetische Integration über die geometrischen Abmessungen aller Bauelemente durchgeführt. Dabei wird weiterhin bei der Integration implizit angenommen, dass beim Kondensator zeitliche Änderungen \hat{w}_m , Abstrahlung durch $(\nabla \cdot \vec{S}_{Abstrahl})$ sowie Verluste $\vec{J} \cdot \vec{E}$ quantitativ gegen zeitliche Änderungen \hat{w}_e vernachlässigt werden dürfen, bei der Induktivität entsprechend \hat{w}_e , $\nabla \cdot \vec{S}_{Abstrahl}$ und $\vec{J} \cdot \vec{E}$ gegen \hat{w}_m und bei einem Ohmschen Widerstand \hat{w}_e , \hat{w}_m und $(\nabla \cdot \vec{S})_{Abstrahl}$ gegen $(\nabla \cdot \vec{S})_{Ohmsch} = \vec{J} \cdot \vec{E}$. Dasselbe gilt übrigens auch für nichtlineare Bauelemente: Halbleiter als variable Schalter sind in diesem Sinne Ohmsche Widerstände

(transistor = <u>tran</u>sfer re<u>sistor</u>), wobei der Widerstandswert zeitabhängig gesteuert werden kann. Als Steuergröße dient meist ein elektrisches Feld, d.h. im Ersatzschaltbild eine Spannung.

Für die Berechnung von C und L gibt es je nach Aufgabenstellung meist mehrere Wege. Neben der direkten Bestimmung von Q und U beim Kondensator Gl. (5.20) aus Ladungsdichten und den dazugehörigen Feldstärken bzw. bei der Induktivität Gl. (5.28) aus Φ nach Gl. (4.3) und dem dazugehörigen Strom kann auch eine Feldenergieberechnung nach den linken oder mittleren Termen in den Gln. (5.31) weiterhelfen.

Kondensator
$$\frac{1}{2}\int$$
 $\rho \cdot U$ $d^3r = \frac{1}{2}\int \varepsilon \vec{E}^2 d^3r = \frac{1}{2}CU^2$ Induktivität $\frac{1}{2}\int \left(\vec{J} \cdot \vec{A}\right) d^3r = \frac{1}{2}\int \mu \vec{H}^2 d^3r = \frac{1}{2}LI^2$ (5.31)

Dies ist insbesondere bei solchen Induktivitäten vorteilhaft, die Flächen- und/oder Volumenströme enthalten. Hier wäre die Φ -Berechnung nach Gl. (4.3) ungünstig, da die Zuordnung von Flussbeiträgen zu jeweiligen geschlossenen Stromkreispfaden sehr schwierig ist.

Index

ALL'II I C 140	F 1.' 0 A . 10F	D111.13.55 11.50
Abbildung, konforme, 140	Funktion 2. Art, 125	Dielektrizitätszahl, 58
einer Hyperbelschar, 143	Bildladung, 143	Differential, totales, 13, 21
Ableitbelag, 115	Bildladungsmethode, 130, 132	Differentielle Formulierung, 17
Abstandsabhängigkeit, 6, 13,	Biot-Savart-Ampère, 12–14	differenzierbare Funktion, 140
52, 104, 106, 133,	Biot-Savart-Formel, 33	Dipol
134, 146	Biot-Savart-Gesetz, 15, 105,	elektrischer, 50, 106, 108
•		
Abstandsterme, 52, 104, 106	109	Fitzgeraldscher, 108
Abstrahlung, 70	Hertzscher Dipol, 105	Hertzscher, 101
actio-reactio-Prinzip, 13, 42	Blindwiderstand, 92	Dipolmoment
doppeltes, 42	Brechungsgesetz	influenziertes, 51
Äquipotentialfläche, 114, 134	dynamisches, 82	magnetisches, 109
Äquipotentialkreise, 136	statisches, 61	permanentes, 51
Äquipotentiallinien, 135, 144,		Dirac-Impuls, 28
	Brechungsindex, 78, 95	
146	Brechungsverhalten, 82, 85	Diracsche δ Funktion, 28–30
Aharonov-Bohm-Effekt, 37	Brewster-Winkel, 90, 91	diskret-numerische Verfahren,
allgemeine Wellengleichung,		129
73, 113	Cauchy-Riemannsche DGLn,	Dispersion, 85, 93, 95, 96, 120
Ampère, 10	141	Distribution, 28
Definition, 10	charakteristische Impedanz,	Divergenz (div), 8
Ampèresches Durchflu-	115	Divergenzfreiheit, 36, 114
•	Coulomb-Eichung, 37	
tungsgesetz, 33, 35		Doppelleitung, 137
Ampèresches Gesetz, 35	Coulomb-Feld, 19, 22	doppeltes actio-reactio-Prinzip,
analytische	Coulomb-Gesetz, 5, 15, 18,	42
Feldberechnung, 112, 129	140	drahtlose Nachrichtenüber-
Funktion, 141	Hertzscher Dipol, 105	tragung, 1
Lösung, 129	Coulomb-Kraft, 7, 14, 41	Drehstreckung, 142
Lösungsmethode, 118	cut-off-Frequenz, 120, 123	Durchflutungsgesetz , 33
_	CW-Lösungen, 78	
Analytizität, 141	CVV-Losungen, 70	Durchflutungssatz, 35
Anfangsbedingungen, 72	d'Alamah artasha Läsunar 72	verallgemeinerter, 47
Ansatz, harmonisch, 112	d'Alembertsche Lösung, 73	Dynamik, dynamische
Antenne, 108	Dachkapazitäten, 106	Formulierung, 40, 109
Antennentheorie, 108	Dämpfungskonstante, 79, 95,	dynamische Näherung, 109
Arbeit, 23	96	dynamisches Potential, 98, 100
Aufpunkt, 7, 22	Dämpfungsterm, 114	dynamisches Skalarpotential,
Ausbreitung einer ebenen e.m.	dauermagnetisch, 54	98
Welle, 74	DC = direct current, 114	dynamisches Vektorpotential,
	Delta-Distribution, 25	
Ausgleichsleiter, 25		98
B II I 24 422	destruktive Interferenz, 77	F.14 1 446
Bandbreite, 94, 123	Diamagnetismus, 53	E-Moden, 118
Basiseinheiten, 10, 12	dielektrische	ebene Welle, 72, 76, 95, 107,
Belag	Funktion, 59	114
Ableit-, 115	Konstante, 12	ebene Wellenlösung, 100
Induktivitäts-, 115	Polarisation, 50	Eichtransformation, 37, 99
Kapazitäts-, 115, 136	Suszeptibilität, 58	Eichung, 37
Widerstands-, 115	Verluste, 95	
		Eigenfunktion, 124
Besselsche	Verschiebung, 53	Eigenkraft, elektrische, 66
Differentialgleichung, 123	Dielektrizitätskonstante, 58	Eigenwertgleichung, 78, 118

Eindeutigkeit, 30, 131	elektrostatischer Aufladungen,	Feldbegriff, 3, 22
Eindeutigkeitsbeweis, 25, 30	5	Feldberechnung, analytische,
Eindeutigkeitssatz, 32, 72, 132	elektrostatisches Potential, 22	112
Eindringtiefe, 79	Elementarladung, 11, 50	Feldberechnungsverfahren
einfallende Welle, 85, 89	elementarste Strahlungsquelle,	analytisches, 129
Eingangsanpassung, 89	102	diskret-numerisches, 129
eingeprägter Strom, 107	Elementarstrahler,	Feldbild im Rechteckhohlleiter,
eingeschwungener Zustand, 59,	magnetischer, 108	121
78, 115	Ellipsometrie, 92	Feldbild im Zylinder, 125
Einheiten, 10	elliptisch polarisiert, 76	Feldenergie, 24, 96
Einheitensystem, 10	elliptische Polarisation, 92	elektrische, 64, 65
Einzelleitung über metallischer	EMK, 24, 40, 68	magnetische, 64, 68, 70
Ebene, 137	EMV, 4	Feldenergiedichte
elektrische	Energie	elektrische, 63
	elektrostatische, 67	magnetische, 63
Eigenkraft, 66	kinetische, 38	Felder
Feldenergie, 65	magnetische, 70	
Feldenergiedichte, 63	potentielle, 24	evaneszente, 92
Feldstärke, 57, 66, 140,	Energiebilanz, 89	transversale, 75, 104
146	Energiedichte, 63, 80	felderzeugende Ladungs- und
Kraftwirkung, 5, 38	Energieerhaltung, 62	Stromdichten, 14, 50
Polarisation, 56	Energieerhaltungssatz, 63	Feldgeometrie, 108
Weglänge, 95	Energiefunktion, 23	Feldimpedanz, 115, 125
elektrische und magnetische	Energiegeschwindigkeit, 81	Feldlinien, 15
Kraftwirkungen, 5,	Entfernung, Abhängigkeit von	Feldlinienbild, 142
12, 16	der, 6, 13, 52, 104,	Hertzscher Dipol, 107
elektrischer Dipol, 50, 106, 108	106, 133, 134, 146	Feldlösung, 114, 118, 131
elektrisches Dipolmoment, 106		Feldstärke, 16, 47, 50, 55, 58,
elektrisches Feld, 17, 44	Entkopplung, 14, 30, 72, 75, 98	59, 61, 71, 79, 82,
Elektrode, 146		85, 89, 116
elektromagnetische	Erfahrungswissen, 109	-abfall, 93
Feldenergie, 64	Erhaltung der Ladung, 7	elektrische, 47, 53, 57, 66,
elektromagnetische Felder	Erregungsstärke, 55	96, 140, 146
quasistationäre, 110	Ersatzladungsmethode, 130 Ersatzschaltbild, 70	magnetische, 54, 55
stationäre, 109		reale, 50
statische, 109	evaneszente Felder, 92	reflektierte, 126
Elektromagnetische	evaneszente Mode, 93	transmittierte, 126
Verträglichkeit, 4	Fading, 97	-verteilung, 82
elektromagnetische	Faradaysche Induktion, 114	Feldsteuerung, 61
Wechselwirkung, 62	Faradaysches Induktionsgesetz,	Feldverteilung, 16
elektromagnetisches Feld	25, 40, 44, 49, 75	Feldwellenwiderstand, 115
Grunddefinition, 1	Farbzerlegung, 84	Fernfeld, 104, 107
elektromagnetisches	FDTD, 130	-terme, 105
Kraftgleichgewicht,	Feld, 14	Fernwirkungsgesetz, 105
41, 109	elektrisches, 17, 44	Fernzone, 104
elektromotorische Kraft, 24,	konservatives, 22	Ferroelektrika, 58
40, 68	langsam veränderliches,	Ferromagnetika, 58
Elektronen-Wellenfunktion, 11	110	Ferromagnetismus, 54
Elektrostatik, 9, 17, 36	nicht-strahlendes, 105	Finite Differenzen im
elektrostatische	quasistationäres, 110	Zeitbereich, 130
Feldenergiedichte, 64	quasistationales, 110 quasistatisches, 110	Fitzgeraldscher Dipol, 108
elektrostatische Influenz 7	reales 144	Fitzgeraldscher Vektor 109

Flussdichte, magnetische, 43	Gruppengeschwindigkeit, 94	Kapazitätskoeffizienten, 67
Fourier, Theorem von, 79		Kapazitivität, 64
Fourier-Transformation, 76	H-Moden, 118, 119	kinematische Eigenschaften, 84
Frequenz, cut-off-, 120, 123	Hankelsche Funktion, 125	kinetische Energie, 38
Frequenz-Grenzwert, 114	harmonische	Kirchhoffsche Knotenregel, 9
Fresnelsche Formeln, 87, 91,	Lösung, 77, 78	Kirchhoffsche Maschenregel,
126, 127	Welle, 76, 77, 116	24
Funktion, 1	Wellenausbreitung, 79	Koaxialleitung, 112, 123, 125
analytische, 141	harmonischer Ansatz, 112	Kohärenz, 77
dielektrische, 59	hartmagnetisch, 54	komplex differenzierbar, 140
differenzierbare, 140	Helmholtzsche Theorem, 32	komplexe Größen, 79
holomorphe, 140	Hertz, 1	komplexwertige Funktion, 140
komplexe, 140	Hertzsche Dipolstrahlung, 103	Kondensator, 68, 70, 71
komplexwertige, 140	Hertzscher Dipol, 101, 102,	konform, 142
magnetische, 59	105	konforme Abbildung, 140
reguläre, 140	elektrischer, 102	einer Hyperbelschar, 143
verallgemeinerte, 28	magnetischer, 108	konservatives Feld, 22, 36
Funktionentheorie, 140	Hertzscher Lösungsvektor für	Konstante
·	E-Moden, 122	dielektrische, 12
Galilei-Transformationen, 38	Hertzscher Vektor, 100, 102	magnetische, 11
Gaußsche Gesetz, 49, 98	Hertzsches Dipolfeld, 104	konstitutive Gleichungen, 57
der Elektrostatik, 17, 18,	höhere Moden, 116	konstruktive Interferenz, 77
25, 66	holomorph, 140	Kontinuitätsgleichung, 7, 8,
Gaußsche Zahlenebene, 140	homogene, ebene Welle, 76	100, 101, 109
Gaußscher Integralsatz, 18, 31,	Huygenssche Prinzip, 83, 85	Kraft, normierte, 15
64	Hybrid-Moden, 118	Kraftgleichgewicht, 41, 109
Gaußscher Satz, 59	Hysterese, 54	Kraftverhältnisse, statische, 48
gebrochene Welle, 82	, -	Kraftwechselwirkung,
geführte Welle, 125	Impedanz, charakteristische,	magnetische, 64
Gegeninduktivität, 70	115	Kraftwirkung, elektrische, 38
Gesamtladung, 24	Impedanz des Nahfeldes, 106	Kraftwirkung, magnetische, 10
giant magneto resistance, 57	Impedanz des Strahlungsfeldes,	Kreisstrom, 9, 50
Gleichstrom, 114	104	Kugelwelle, 83, 104
-fall, 114	Impedanzanpassung, 81, 89	Kurzschluss, 89
Gleichungen, transzendente,	Impedanzverhältnis, 89	
125	Impulserhaltung, 62	Ladungsdichte, 6
GMR-Effekt, 57	Induktion, 25, 44, 49, 75, 114	-Verteilungsfunktion, 6
grad, 21	Induktivität, 64, 68, 70, 71	Ladungsdichteverteilung, 131
Gradient, 21	Induktivitätsbelag, 115	Ladungserhaltung, 7, 8, 24
Gradientenfeld, 33	Influenz, 7	Ladungsverschiebung, 8
Gradientenlinien, 141	Influenzkoeffizienten, 67	Ladungsverteilung, 6
Gradiententheorem, 21	inhomogene	Längsstrom, 115
Greenscher Integralsatz, 30	Maxwell-Gln., 98	langsam veränderliche Felder,
Greenscher Integralsatz, 1., 31	Wellengleichung, 99	110
Greenscher Integralsatz, 2., 31	Interferenz, 77, 97, 126	Laplace-Gleichung, 25, 26, 30,
Grenzfläche, 60, 82, 85	destruktive, 77	141
unendlich ausgedehnte, 84	konstruktive, 77	Laplace-Operator, 26, 141
Grenzflächenladungsverteilung,	Isotropie des Raumes, 74	Leistung, 92
61	· ·	Leistungsbilanz, 89
Grenzflächenstromverteilung,	Kanten, 142, 146	Leistungsflussdichte, 64, 80,
61	Kapazität, 65, 67, 70	81, 125
Grenzfrequenz, 123	Kapazitätsbelag, 115, 136	Leistungsübertragung, 3

Leitersystem, 67	Magnetisierungsdichte, 54	Oberflächenladungsdichte, 61
Leitfähigkeit, 11	Magnetisierungsstromdichte,	131
Wechselstrom, 95	55	Oberflächenstromdichte, 61
Leitungsimpedanz, 115, 125	Magnetit, 5	offenes Ende, 89
Leitungstheorie, 127, 138	Magnetkraft, 41	Ohmsche Gesetz, 81
Lenzsche Regel, 45, 53, 68	Magnetostatik, 9, 36, 105	Ohmscher Widerstand, 70
Lichtgeschwindigkeit, 12, 78	Marconi, 1	open, 89
Lichtwellenleiter, 93	Maschenregel, 24	' '
linear polarisiert, 76	Masse, 25	Paramagnetismus, 54
linear, Material, 55	matched load, 89	permanente magnetische
Liniendipol, 133		Momente, 15
Linienladungsdichte, 101, 133	Material, linear, 55	Permanentmagnet, 54, 58
Lösung	Maxwell-Ampèresches Gesetz,	Permeabilität, 11, 58
analytische, 129	49, 56, 62, 95, 99,	Permittivität, 12, 58
CW-, 78	114	Phasendrehung, 126
harmonische, 77, 78	Maxwell-Beziehung, 78	Phasengeschwindigkeit, 94
monochromatische, 78	Maxwell-Gleichungen, 3, 49,	Phasenkonstante, 79
retardierte, 105	72, 98, 115	Phasensprung, 82
sinusförmige, 78	in Materie, 50	Piezoelektrizität, 57
•	makroskopisch, 57, 59	Poisson-Gleichung, 25, 30
stationäre, 78	Maxwellscher Verschiebestrom,	Polarisation, 52, 82
Lösungsmethode, analytisch, 118	46	dielektrische, 50
	Mehrwegeausbreitung, 97	elektrische, 56
lokal	Metall-RBn, 112	elliptische, 76, 92
streckentreu, 142	Mode	lineare, 76
winkeltreu, 142	E-, 118	
Longitudinalstrom, 115	evaneszente, 93	magnetische, 53, 56
Lorentz-Kraft, 37, 41, 43, 62	H-, 118, 119	zirkulare, 76
Lorentz-Transformation, 39, 44	Hybrid-, 118	Polarisationsebene, 75, 85
Lorenz-Eichung, 99	TE-, 118	Polarisationsverhältnis, 85, 87
LWL, 93		Polarisierungsstrom, 57
ma a ma at i a a b a	TEM-, 125	Potential, 23, 67, 138
magnetische	Moden, 115	avanciertes, 100
Energie, 70	höhere, 116	dynamisches, 98, 100
Feldenergie, 68, 70	Modenreinheit, 116, 120	elektrostatisches, 22
Feldenergiedichte, 63	Modulationsverfahren, 94, 97	retardiertes, 100
Feldstärke, 54, 55	Momente, permanent	schwimmendes, 25, 67
Flussdichte, 33, 43	magnetische, 15	Potentialdifferenz, 24
Funktion, 59	Momentenmethode, 130	Potentialfunktion, 23, 25
Induktion, 44	monochromatische Welle, 78	Potentialkoeffizienten, 67
Konstante, 11	Multi-Mode-Faser, 93	Potentiallinien, 23, 134, 135,
Kraft, 38		141
Kraftwechselwirkung, 64	Nabla Operator 9	Potentiallinienbild, 142
Kraftwirkungen, 10	Nabla-Operator, 8	Poynting-Theorem, 62, 63
Polarisation, 53, 56	Näherung, dynamische, 109	Poynting-Vektor, 63, 92, 104
Suszeptibilität, 58	Näherungseffekt, 138	Prisma, 84
magnetischer Elementar-	Nahfeld, 105	Produktansatz, 118
strahler, 108	Nahzone, 105	Proximity-Effekt, 138
magnetischer Hertzscher	natürliche RBn, 147	Punktladungen, 6
Vektor, 109	Neumannsche Funktion, 125	<u>-</u>
magnetisches Dipolmoment,	nicht-strahlendes Feld, 105	quasistationär, 64, 110
109	normierte Kraft, 15	quasistatisch, 110
Magnetisierung, 53	numerische Verfahren, 129	Quelle, 16

Queränderung, 20	Signalintegrität, 93, 116	magnetische, 58
Querebene, 112	Single-Mode-Faser, 93	
Querspannung, 115	Singularität, 26, 27	TE-Moden, 118
	sinusförmige Lösungen, 78	TE-Moden, Zylinder, 124
Randbedingungen, 4, 30, 36,	Skalarpotential, 37	techn. Masse, 25
59	dynamisches, 98	TEM, 114
metallische, 112, 131	Skineffekt, 92, 96, 111, 138	TEM-Bandbreite, 123
natürliche, 147	Skintiefe, 79, 96, 111, 138	TEM-Moden, 125
transversale, 117	Snellius-Gesetz, 86	Theorem von Fourier, 79
Randwertproblem, 115	Spannung, 24	TM-Moden, Zylinder, 124
Raumeigenschaft, 1, 11, 12, 14	Spektralfarben, 84	TM-Wellen, 118
Raumzustand, 2	Spektrum, 76, 94	Totalreflexion, 90, 93
Reaktion	spezielle Relativitätstheorie, 38	Transformation
lineare, 50, 55	Spiegelladungsmethode, 130	Galilei, 38
nichtlineare, 50, 55	Spiegelstrahler, 131	Lorentz, 39, 44
Rechteckhohlleiter, 112, 119	Spin, 50, 54, 68	Transistor, 71
reflektierte Welle, 82, 85, 89	stationär, 35, 109	Translationsinvarianz, 83
Reflexion, 81, 89, 126	stationärer Zustand, 78	Transmission, 89, 126
Reflexionkoeffizient, 89	statisch, 109	Transmissionskoeffizient, 89
Reflexionsverhalten, 126, 127	statische Kraftverhältnisse, 48	Transmissionsverhalten, 126,
regulär, 140	statische Stromdichte	127
Reibungselektrizität, 5	-verteilung, 109	transmittierte Welle, 82, 83,
relative Permeabilität, 58	=	85, 89
Relativitätstheorie	Stetigkeit, 85	transversal-elektromagnetische
spezielle, 38, 45	Strahlenoptik, 111	Wellen, 114
retardierte	Strahlungscharakteristik, 108	transversale Felder, 75, 104
Lösung, 105	Strahlungsdiagramm, 106	transversale Randbedingungen,
Potentiale, 100	Strahlungsfeld, 104	117
Zeit, 100	Strahlungsquelle, elementarste,	transversale Streuzentren, 126
Retardierung, 74, 106, 110	102	Transversalebene, 75
Richtdiagramm, 106	Strahlungsterme, 104	transversalelektrische Wellen,
Richtungsableitung, 21	Strahlungsverhalten, 102	118
Richtungskonvention, 9	Strahlungswiderstand, 108	transversalmagnetische Wellen,
rot, 20	streckentreu, lokal, 142	118
Rotation, 20	Streifenleitung, 112	transzendente Gleichungen,
Rücktransformation, 144	Streuzentren, transversale, 126	125
Rundhohlleiter, 112	Strömungsfeld, 8, 109	
	Strom, 9, 38	Übergangsbedingung, 106
Satz von Stokes, 23, 35, 44, 59	Stromdichtefunktion	Übergangsbereich, 106
Schwebung, 77	Hertzscher Dipol, 102	Umkehrfunktion, 143
schwimmende Anordnung, 67	Stromdichtefunktion bzw.	Umlauf, 16
schwimmendes Potential, 25,	-verteilung, 8, 15	Umlaufspannung, 24
67	Stromdichteverteilung, 108	uneigentliches Integral, 26
Schwingungsmoden, 115	statische, 109	unendlich ausgedehnte
Schwund, 97	Stromfluss, 8	Grenzfläche, 84
Sekundärwellen, 83	Stromrichtung, 9	
Selbstenergie, 66, 67	Stromstärke, 101	Vakuum-Wellenwiderstand,
Selbstinduktivität, 70	Stromverdrängung, 111	108
Senke, 16	Superpositionsprinzip, 6, 38,	Vektorfeld, 1, 17, 19–24, 31,
Separation der Variablen, 118	73, 77, 131	55
short, 89	Suszeptibilität	Vektorpotential, 32, 33, 37
SI-System, 10	dielektrische, 58	dynamisches, 98

verallgemeinerte Funktion, 28 einfallende, 85, 89 Wellenvektor, 78, 82, 84 verallgemeinerter gebrochene, 82 Wellenwiderstand, 108 Durchflutungssatz, 47 geführte, 125 Wellenzahl, 78, 95, 125 harmonische, 76, 77, 116 Verkettung, 16 Wellenzahlvektor, 78 Verkopplung, der Felder, 100 homogene, 76 Widerstand, ohmscher, 70 Verluste, 70 monochromatische, 78 Widerstandsbelag, 115 reflektierte, 82, 85, 89 dielektrische, 95 winkeltreu, lokal, 142 Verlustfaktor, 96 transmittierte, 82, 83, 85, Wirbel, 20 Wirbelfeld, 33 Verlustwinkel, 96 Verschiebestrom, 46, 47, 73, transversalelekrische, 118 Wirbelströme, 111 transversalmagnetische, 101, 110 Wirbelstromfall, 96 Verschiebung, dielektrische, 53 118 Verschiebungspolarisation, 51 Wellen, transversalz-Ebene, 140 elektromagnetische, 114 Zeit, retardierte, 100 Verschiebungsstromdichte, 47, Zentralfeld, 22 Wellen-Elementarlösungen, 76 Zentralkraft. 19 verzögerte Potentiale, 100 Wellenausbreitung, 72, 75, 81, Verzögerungsterm, 100 83, 92, 114 Zentralkraft bzw. -feld, 6, 13, harmonische, 79 w-Ebene, 140 zirkular polarisiert, 76 Wellengleichung, 73, 75, 99, Webersche Funktion, 125 Zirkulation, 16 Wechselstromfall, 96 Zustand allgemeine, 73, 113 Wechselstromleitfähigkeit, 95 inhomogene, 99 eingeschwungener, 59, 78, weichmagnetisch, 54 Wellenimpedanz, 81 115 Welle, 73, 75, 76 Wellenlänge, 78 stationärer, 78 Ausbreitung einer ebenen Wellenleiter Zweidrahtleitung, 112 e.m., 74 -struktur, 112 Zweileiterstruktur, 114 ebene, 72, 76, 80, 82, 95, zylindrische, 123 zylindrische Wellenleiter, 123 107 114 Wellenlösung, ebene, 100 zylindrischer Hohlleiter, 124