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Exercise 1: Finite elements in 1D (14 points)
Consider the Poisson equation for u : (0, 2)→ R

−u′′ = f on interval (0, 2)

with f=1 and with boundary conditions u(0) = 0 and u′(2) = 3.
(a) Derive the weak formulation of the problem and determine the trial/test space.
(6 points)

Solution
Multiplication with v, integration over interval I = (0, 2), and integration by parts leads to

−
∫
I
u′′v =

∫
I
fv (1)∫

I
u′v′ − u′v|20 =

∫
I
fv (2)

where we can incorporate Neumann boundary conditions. The week form of the equation is
thus: ∫ 1

0
u′(x)v′(x)dx =

∫ 1

0
fvdx+ 3v(2) ∀v ∈ V = {f ∈ H1((0, 2))|v(0) = 0}

− −−−−−

(b) The interval [0, 2] shall be divided into two equally sized elements of size 1 with stan-
dard linear nodal ansatz functions. Assemble the stiffness matrix K, calculate the right
hand side F and give the solution at the endpoints of the elements.

(8 points)

Solution

So the global stiffness matrix will have the form:

K =


1 −1 0
−1 2 −1
0 −1 1


And the right hand side will be:

F =


1/2
1

3 + 1/2





The first row and first column of stiffness matrix gets cancelled because of boundary condi-
tions. Hence we get the solution as :

u =


0

4.5
8


−−−−−−

Exercise 2: Finite elements in 2D (24 points)
Consider the following equation for u : Ω→ R defined on square domain Ω = (0, 1)2 ⊂ R2

−∆u+ u = f on Ω

n · ∇u = g on ∂Ω

with f(x) = f(x) = x2 for x ∈ Ω and g(x) = xy for x ∈ ∂Ω.
(a) Derive the weak formulation of the problem and specify the trial/test space. (6 points)

Solution
The weak formulation is∫

Ω
∇u(x) · ∇v(x) + u(x)v(x)dx =

∫
Ω
f(x)v(x)dx+

∫
∂Ω
g(x)v(x)ds(x) ∀v ∈ V (3)

where the trial/test space is

V = H1(Ω) = {v ∈ L2(Ω) | ∇v ∈ L2(Ω;R2)}. (4)

−−−−−−

(b) Now let’s consider one specific, general rectangular element Tk. How many basis func-
tions are nonzero over this element when you use bilinear basis functions? What is the size
of the local (element) stiffness matrix of the element Tk? (3 points)

Solution
There are 4 basis functions so the size of local stiffness matrix is 4× 4.

−−−−−−

(c) How many rows and columns the element(local)-stiffness matrix have? Give, in a gen-
eral way (without any calculation), one component of the element-stiffness matrixK(e)

ij (x, y).
(6 points)

Solution
The element(local)-stiffness matrix have 4 rows and 4 columns. Let’s consider now the



discretisation of the weak form by FEM, with nodal ansatz and basis functions {φi}Ni=1.
Hence one component of the element stiffness matrix K(e)

ij (x, y) can be expressed as :

K(e)
ij (x, y) =

∫
Tk

∇φi(x) · ∇φj(x)dxdy,

with the nabla operator

∇ =
[
∂
∂x
∂
∂y

]
−−−−−−

(d) Now let’s suppose, that we define the basis functions, that are nonzero over this given
rectangular element, on a reference rectangle (T̂ ), so we define it with a local coordinate
system ξ = [ξ η]T , instead of the global coordinate system x = [x y]T . We can easily
evaluate integrals over this reference rectangle with numerical integration. However, all the
differential operators and the integrals that has to be evaluated for the components of the
stiffness matrix are defined on the global coordinate system. Now, let’s further suppose, that
you can define a mapping from the local to the global coordinates system by the mapping
F : T̂ → T defined as:

F (ξ) = x = Aξ + b x,b ∈ <2, A ∈ <2×2

Or in a more detailed form: [
x

y

]
=
[
a11 a12

a21 a22

] [
ξ

η

]
+
[
b1

b2

]
.

How do you convert the differential operators and the integration variable in K(e)
ij (x, y), that

you specified in the previous task? (Here you have to give the same expression as in the
previous task, but defined with the local coordinate system ξ, K(e)

ij (ξ, η).). (9 points)

Solution
In global coordinate system, the stiffness matrix can be represented as :

K(e)
ij (x, y) =

∫
Tk

∇φi(x) · ∇φj(x)dxdy,

Using the above mentioned local coordinate system we can write the stiffness matrix as

K(e)
ij (ξ, η) =

∫
T̂

J−T∇ξφi(ξ) · J−T∇ξφj(ξ)|J|dξdη,

with the local nabla operator

∇ξ =

 ∂
∂ξ
∂
∂η .


The change in global cordinates can be expressed using local coordinates by

∇φi(x) = J−T∇ξφi(ξ),

and the change in area of the element from global to local cordinate is given by :

dxdy = |J|dξdη



number of points, n Points, xi Weights, wi
1 0 2
2 ±

√
1
3 1

3 0 8
9

±
√

3
5

5
9

4 ±
√

3
7 −

2
7

√
6
5

18+
√

30
36

±
√

3
7 + 2

7

√
6
5

18−
√

30
36

5 0 128
225

±1
3

√
5− 2

√
10
7

322+13
√

70
900

±1
3

√
5 + 2

√
10
7

322−13
√

70
900

Table 1: Points and weights of the univariate Gauss-Legendre quadrature rule

where J is the Jacobian and |J| is the determinant of the jacobian which defines the ration
of the areas of the original element and the one on the local coordinate system.

J =

 ∂
∂ξx

∂
∂ηx

∂
∂ξy

∂
∂ηy

 .
If the map from the local to the global coordinate is defined by[

x

y

]
=
[
a11 a12

a21 a22

] [
ξ

η

]
+
[
b1

b2

]
,

then the Jacobian is simply the matrix A, that is

J =

 ∂
∂ξx

∂
∂ηx

∂
∂ξy

∂
∂ηy

 =
[
a11 a12

a21 a22

]
.

So the new form of the element stiffness matrix with reference to the local coordinate system
is

K(e)
ij (ξ, η) =

∫
T̂

A−T∇ξφi(ξ) ·A−T∇ξφj(ξ)|A|dξdη.

−−−−−−

Exercise 3: Numerical integration (12 points)
Caclulate the integral ∫ 1

−1
f(x)dx

With the integrand:
f(x) = x3 − 2x2 + 5

using Gauß-Legendre quadrature, such way, that the result is exact. How many points are
needed to get the exact integral? Calculate the solution using the table with the points and
the weights in Table 1.
Solution
with n points polynomials of order 2n − 1 can be integrated exactly, accordingly as the
integrand’s order is 3:

2n− 1 = 3→ n = 2



With the two point rule:
xi ωi f(xi) f(xi)ωi√

1
3 1

√
1
3

3
− 2

3 + 5
√

1
3

3
− 2

3 + 5

−
√

1
3 1 −

√
1
3

3
− 2

3 + 5 −
√

1
3

3
− 2

3 + 5
−4

3 + 10 = 8.6667
Therefore :∫ 1

−1
x3−2x2+5dx =

2∑
i=1

f(xi)ωi = f(x1)ω1+f(x2)ω2 ==
(√

1
3

3
− 2

3 + 5
)
·1+

(
−
√

1
3

3
− 2

3 + 5
)
·1 = 8.6667

−−−−−−


