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Exercise 1: Galerkin method and the Finite Element Method (40 points)
Consider the Poisson equation

−∆u = f

with f = 2 on the interval [0, 1] with the boundary conditions u(0) = 0 and u(1) = 0.
(a) Compute the solution analytically, by direct integration. (5 points)

Solution

−u,xx = 2

,

−
∫
u,xx dx =

∫
2dx

−u,x = 2x+ c1

−
∫
u,x dx = 2

∫
xdx+

∫
c1dx

u(x) = −(x2 + c1x+ c2).

By using the boundary conditions, we get c2 = 0 and c1 = −1, the solution of the BVP then
reads

u(x) = −x2 + x.

−−−−−−

(b) Derive the weak formulation of the BVP. Identify bilinear form, linear functional, and
corresponding trial and test spaces. The bilinear form of the weak equation is bounded and
V-elliptic in the H1

0 space. Why is that important? Write down an equivalent minimization
problem. Knowing that the bilinear term is V-elliptic and bounded, what is the additional
property of the weak form that assures this equivalence? (5 points)

Solution
By multiplying the PDE by a trial function v(x) and integrating it over the domain

−
∫ 1

0
u(x),xx v(x)dx =

∫ 1

0
f(x)v(x)dx for v ∈ V

V := H1
0 =

{
v ∈ H1(0, 1)|v(1) = v(0) = 0

}



Then, integrating by parts

−
∫ 1

0
u(x),xx v(x)dx =

∫ 1

0
u,x (x)v,x (x)− u,x (x)v(x)

∣∣∣1
0︸ ︷︷ ︸

0

The the weak formulation of the PDE then reads the following: find u ∈ V such that∫ 1

0
u,x (x)v,x (x) =

∫ 1

0
f(x)v(x)dx ∀v ∈ V

And the bilinear form is
a(u, v) =

∫ 1

0
u,x (x)v,x (x),

and the linear form is
l(v) =

∫ 1

0
f(x)v(x)dx.

The bilinear form must be bounded and V-elliptic so that the conditions of the Lax-Milgram
lemma is fulfilled (and the linear term should be also bounded); hence, there exist a unique
solution u ∈ V . Suppose the functional

J(u) = 1
2a(v, v)− l(v).

Then the equivalent minimization problem can be represented as

u = argv∈V min J(v).

The additional property is that a(u, v) should be symmetric and positive operator.

−−−−−−

(c) Let’s proceed now with the Galerkin method. Use both, for the basis/shape Φi functions
and for the trial functions ϕi:

Φi = ϕi = sin(iπx), x = 1, 2, 3.

Compute the stiffness matrix K, the right hand side of the weak form F and solve the sys-
tem of equations. Make a figure with the exact solution and the one obtained by Galerkin
method. (10 points)

Solution
The discretized form of the weak form reads

a(uh, ϕj) = l(ϕj) j = 1, 2, 3,

with uh being the discretized approximation of the solution u

uh(x) =
n∑
i=1

uiΦi(x).

Which results in the system of equations
n∑
i=1

ui a(Φi, ϕj)︸ ︷︷ ︸
=Kji

= l(ϕj)︸ ︷︷ ︸
=Fj

j = 1, 2, 3.



The diagonal elements of the stiffness matrix are

Kij =
∫ 1

0
ϕ′iΦ′jdx = ijπ2

∫ 1

0
cos(iπx) cos(jπx)dx.

Kii = (iπ)2
∫ 1

0
cos2(iπx)dx

= (iπ)2
[
x

2 + sin(2iπx)
4iπ

]1

0

= (iπ)2
[1

2 + sin(2iπ)
4iπ

]
= (iπ)2

2 .

And the off-diagonals

Kij = ijπ2
∫ 1

0
cos(iπx) cos(jπx)dx

Using the identity

cos(θ) cos(α) = cos(θ + α) + cos(θ − α)
2 then

Kij = ijπ2

2

∫ 1

0
[cos(iπx+ jπx) + cos(iπx− jπx)]

= ijπ2

2

[ 1
i+ j

sin ((i+ j)πx) + 1
i− j

sin ((i− j)πx)
]1

0

= ijπ2

2

[ 1
i+ j

sin ((i+ j)π) + 1
i− j

sin ((i− j)π)
]

= 0

The stiffness matrix K then reads

K =


π2

2 0 0
0 2π2 0
0 0 9π2

2


And the right hand side vector F.

Fj =
∫ 1

0
f(x)φj(x)dx = 2

∫ 1

0
sin(jπx)dx

= − 2
jπ

cos(jπx)
∣∣∣1
0

= − 2
jπ

[cos(jπ)− 1]

Hence,

F =


4
π

0
4

3π

 .
The system of equations

Ku = F

can be solved for the coefficients

u =


8
π3

0
8

27π3

 ,



which gives the approximated solution of the PDE, which is

uh(x) = 8
π3 sin(πx) + 8

27π3 sin(3πx),

and which is presented in the following figure.

−−−−−−

(d) The interval [0, 1] shall be divided into three equally sized elements of size 1/3 with
standard linear nodal ansatz/shape functions. Determine and draw the shape functions.
Compute the FEM solution with this mesh by hand. Assemble the stiffness matrix K, cal-
culate the right hand side F of the weak form and solve the linear system.

(10 points)

Solution
The shape functions are the hat functions

Ni =



x−xi−1
xi−xi−1

x ∈ [xi−1, xi]

xi+1−x
xi+1−xi

x ∈ [xi, xi+1]

0 elsewhere

The derivatives of the basis functions are

N ′i =



1
xi−xi−1

x ∈ [xi−1, xi]

−1
xi+1−xi

x ∈ [xi, xi+1]

0 elsewhere



For the required intervals, we got:

N1 =



x−0
1/3 = 3x x ∈ [0, 1

3 ]

2/3−x
1/3 = 2− 3x x ∈ [1

3 ,
2
3 ]

0 elsewhere

N2 =



x−1/3
1/3 = 3x− 1 x ∈ [1

3 ,
2
3 ]

1−x
1/3 = 3− 3x x ∈ [2

3 , 1]

0 elsewhere

These hat functions are presented in the Figure below.

The new stiffness matrix reads

K =


∫ 2/3

0 N ′1N
′
1dx

∫ 2/3
1/3 N

′
2N
′
1dx

∫ 2/3
1/3 N

′
2N
′
1dx

∫ 1
1/3N

′
2N
′
2dx

 .
where ∫ 2/3

0
N ′1N

′
1dx = 1

l2
x

∣∣∣∣1/3

0
+ 1
l2
x

∣∣∣∣2/3

1/3
= 2

3l2 = 6

∫ 2/3

1/3
N ′2N

′
2dx = 1

l2
x

∣∣∣∣2/3

1/3
+ 1
l2
x

∣∣∣∣1
2/3

= 2
3l2 = 6

∫ 2/3

1/3
N ′2N

′
1dx = − 1

l2
x

∣∣∣∣2/3

1/3
= − 1

3l2 = −3.



So the stiffness matrix is

K =
[

6 −3
−3 6

]
.

The right hand side of the system of equations modifies to

F =
[∫ 1

0
f(x)N1dx,

∫ 1

0
f(x)N2dx

]T
where ∫ 1

0
f(x)N1dx = 2

∫ 1/3

0
3xdx+ 2

∫ 2/3

1/3
(2− 3x)dx = 2

3∫ 1

0
f(x)N2dx = 2

∫ 2/3

1/3
(3x− 1)dx+ 2

∫ 1

2/3
(3− 3x)dx = 2

3

Solving the system of equations Ku = F we get u = [2/9, 2/9]T , which defines the approxi-
mation of the solution

uh(x) = 2/9N1(x) + 2/9N2(x),

which is shown in the below figure. One can observe, that due to the nodal basis, the vector
u directly gives the nodal values of the solution.

−−−−−−

(e) Code the FEM solver of the problem in MATLAB and compare the solution with the
one computed by hand. Write the code such a way, that the number of equidistant elements
can be flexibly changed. Make a plot of the numerical and exact solutions. (10 points)

Solution
The solution can be observed in the following Figure

−−−−−−



Exercise 2: FEM with inhomogenous Dirichlet boundary conditions (10 points)
Consider again the same PDE:

−∆u = 2

on the interval [0, 1], but with inhomogenous Dirichlet Boundary Conditions u(0) = 1,
u(1)=2.
(a) Calculate the solution analytically by direct integration. (5 points)

Solution

−u,xx = 2,

−
∫
u,xx dx =

∫
2dx

−u,x = 2x+ c1

−
∫
u,x dx = 2

∫
xdx+

∫
c1dx

u(x) = −x2 + c1x+ c2

By using the boundary conditions, we get c2 = 1 and c1 = 2. The solution then reads

u(x) = −x2 + 2x+ 1.

−−−−−−

(b) Repeat exercise 1(d) with the given boundary conditions. (5 points)

Solution
From the previous exercise, we know that the weak form of the equation with homogenous
BC was to find u ∈ V such that

a(u, v) = l(v) ∀v ∈ V,

where a(u, v) =
∫ 1

0 u(x),x v(x) and l(v) =
∫ 1

0 f(x)v(x)dx. The V vector space is still the
same, but due to the modified inhomogeneous boundary conditions the problem changes to
find u ∈ Vg = {u ∈ H1(0, 1), u(0) = 1, u(1) = 2} such that

a(u, v) = l(v) ∀v ∈ V.

Assuming u(x) = w(x) + z(x), where z(x) is any function in Vg, the weak form modifies to
the following. Find w(x) ∈ V such that

a(w + z, v) = l(v) ∀v ∈ V.

Since a(u, v) is a bilinear operator, we have: a(w + z, v) = a(w, v) + a(z, v). Thus,

a(w, v) = l(v)− a(z, v) ∀v ∈ V.



The stiffness matrix remains the same then

K =
[

6 −3
−3 6

]
.

For the function z we also use a discretized form, namely the ansatz using the had functions,
but here we need the "half" hat functions, which are defined as:

N0(x) =
{

x1−x
x1−x0

0 ≤ x ≤ x1

0 elsewhere

Nn(x) =

 0 0 ≤ x ≤ xn−1
x−xn−1
xn−xn−1

xn−1 ≤ x ≤ x1

Therefore,

N ′0(x) =
{ −1

x1−x0
0 ≤ x ≤ x1

0 elsewhere

N ′n(x) =

 0 0 ≤ x ≤ xn−1
1

xn−xn−1
xn−1 ≤ x ≤ x1

These functions together with the basis functions are visualized in the below figure. So let’s
take for the z function the following ansatz:

z(x) :=
3∑
j=0

zjNj = u(0) ·N0(x) + 0 ·N1(x) + 0 ·N2(x) + u(1) ·N3(x) = 1 ·N0(x) + 2 ·N3(x).

The right hand side vector F then modifies with the term a(z, v), of which the discretized
form reads

a(z,Ni) =
n∑
j=1

zja(Nj , Ni) i = 1, 2 j = 0, 1, 2, 3



a(z,Ni) =
[
a(N0, N1) a(N1, N1) a(N2, N1) a(N3, N1)
a(N0, N2) a(N1, N2) a(N2, N2) a(N3, N2)

]
z1

z2

z3

z4



a(z,Ni) =
[
−3 6 −3 0
0 −3 6 −3

]
u(0)

0
0

u(1)

 =
[
−3u(0)
−3u(1)

]
=
[
−3
−6

]

In the last equation we used∫ 1

0
N ′0N

′
1dx = − 1

l2

∫ 1/3

0
dx = − 1

3l2 = −3∫ 1

0
N ′2N

′
3dx = − 1

l2

∫ 1

2/3
dx = − 1

3l2 = −3.

So the new right hand side will be the right hand side vector from the previous exercise
minus this modification:

F =
[∫ 1

0 f(x)N1dx− u0
∫ 1

0 N
′
0N
′
1dx∫ 1

0 f(x)N2dx− un
∫ 1

0 N
′
3N
′
2dx

]

F =
[2

3
2
3

]
−
[
−3
−6

]
=
[11

3
20
3

]

By solving the linear system of equations

Kw = F (1)[
6 −3
−3 6

] [
w1

w2

]
=
[11

3
20
3

]
, (2)

we get w = (14/9, 17/9)>, so the function w(x) reads w(x) = 14/9N1(x) + 17/9N2(x) and
the final solution reads

u(x) = w(x) + z(x) = 14/9N1(x) + 17/9N2(x) + 1N0(x) + 2N3(x).

The solution is shown in the Figure below.Because of the chosen z(x) function, which in only
nonzero on the inhomogenous Diriclet boundary, the values for w directly give the nodal
values of the solution at the non-Dirichlet nodes.



−−−−−−

Exercise 3: FEM with mixed boundary conditions (15 points)
Consider again the same PDE:

−∆u = 2

on the interval [0, 1], but with mixed boundary conditions u(0) = 1, ux(1) = 1.
(a) Calculate the solution analytically by direct integration. (5 points)

Solution

−u,xx = 2

−
∫
u,xx dx =

∫
2dx

−u,x = 2x+ c1

where we have applied the Neumann boundary condition c1 = −3. By integrating again we
get

−
∫
u,x dx = 2

∫
xdx− 3

∫
dx

u(x) = −x2 + 3x+ c2.

Using the boundary condition, we get c2 = 1, so the solution reads

u(x) = −x2 + 3x+ 1.



−−−−−−

(b) Write down the weak formulation of the BVP. (5 points)

Solution
By multiplying the PDE by a trial function v(x) and integrating it over the domain

−
∫ 1

0
u(x),xx v(x)dx =

∫ 1

0
f(x)v(x)dx ∀v ∈ V

V := H1
0 =

{
v ∈ H1(0, 1)|v(0) = 0

}
Then, integrating by parts

−
∫ 1

0
u,xx (x)v(x)dx =

∫ 1

0
u,x (x)v,x (x)dx− u(x),x v(x)

∣∣∣1
0

=
∫ 1

0
u,x (x)v,x (x)dx− u,x(1)v(1)

Therefore, the weak form of the PDE reads the following. Find u ∈ Vg such that∫ 1

0
u(x),x v,x (x)dx− v(1) =

∫ 1

0
f(x)v(x)dx ∀v ∈ V∫ 1

0
u(x),x v,x (x)dx =

∫ 1

0
f(x)v(x)dx+ v(1) ∀v ∈ V,

with Vg =
{
u ∈ H1(0, 1)|u(0) = 1

}
. Now we introduce again a z(x) function which satisfies

the inhomogeneous Dirichlet boundary condition, so a function from Vg. Such way we can
write the solution function in the form u = z + w, so the weak form modifies to solving for
w ∈ V such that∫ 1

0
(w(x) + z(x)),x v,x (x)dx =

∫ 1

0
f(x)v(x)dx+ v(1) ∀v ∈ V∫ 1

0
w(x),x v,x (x)dx =

∫ 1

0
f(x)v(x)dx+ v(1)−

∫ 1

0
z(x),x v,x (x)dx ∀v ∈ V

a(w, v) = lm(v) ∀v ∈ V

with the bilinear form
a(w, v) =

∫ 1

0
w(x),x v,x (x)dx

and the linear form

lm(v) =
∫ 1

0
f(x)v(x)dx+ v(1)−

∫ 1

0
z(x),x v,x (x)dx.

To conclude, our bilinear form did not change, only the linear form on the right hand side.

−−−−−−

(c) Repeat exercise 1(d) with the given boundary conditions. (5 points)

Solution
First we fix our z(x) ∈ Vg function. Let that be

z(x) = u(0)N0 = N0.



The system of equation must be redefined, as we have to use the basis function N3 too for
approximating the w(x) function. The stiffness matrix then modifies too a 3 by 3 matrix

K =



∫ 2/3
0 N ′1N

′
1dx

∫ 2/3
1/3 N

′
2N
′
1dx 0

∫ 2/3
1/3 N

′
2N
′
1dx

∫ 1
1/3N

′
2N
′
2dx

∫ 1
2/3N

′
2N
′
3dx

0
∫ 1

2/3N
′
2N
′
3dx

∫ 1
2/3N

′
3N
′
3dx


.

with
∫ 1

2/3N
′
2N
′
3dx = −3 and

∫ 1
2/3N

′
3N
′
3dx = 3. Then,

K =


6 −3 0
−3 6 −3

0 −3 3

 .
The right hand side reads

F =


∫ 1

0 f(x)N1dx∫ 1
0 f(x)N2dx∫ 1
0 f(x)N3dx

+


N1(1)
N2(1)
N3(1)

−

u(0)

∫ 1
0 N

′
0N
′
1dx

0
0



F =


2
3
2
3
1
3

+


0
0
1

−

−3
0
0

 =


11
3
2
3
4
3 .


To conclude, our task is to solve the system of equations

6 −3 0
−3 6 −3
0 −3 3



w1

w2

w3

 =


11
3
2
3
4
3 .


Which solution is w = [w1, w2, w3]T = [17/9, 23/9, 3]T . The solution function is then com-
puted by adding w(x) and z(x)

u(x) = w(x) + z(x) = 17/9N1(x) + 23/9N2(x) + 3N3(x) + 1N0(x).

This solution in shown in the next Figure. Because of the chosen z(x) function, which in
only nonzero on the inhomogenous Diriclet boundary, the values for w directly give the nodal
values of the solution at the non-Dirichlet nodes.



−−−−−−

Exercise 4: FEM with Neumann boundary conditions (10 points)
Consider now the same PDE:

−∆u = 2

on the interval (0, 1), but with the Neumann boundary conditions ux(0) = 1, ux(1) = −1.
(a) Find the analytical solution by direct integration. How many solutions do you get?
(5 points)

Solution

−u,xx = 2

−
∫
u,xx dx =

∫
2dx

−u,x = 2x+ c1

Applying the Neumann boundary condition, we get c1 = −1. By integrating again

−
∫
u,x dx = 2

∫
xdx−

∫
1dx

u(x) = −x2 + x+ c2

Then, u(x) = −x2 + x+ c2 for arbitrary c ∈ R. Thus, there are infinitely many solutions.

−−−−−−



(b) What will be changed if you assume homogeneous Neumann boundary conditions
u′(0) = u′(1) = 0. Is there a solution? (5 points)

Solution

−u,xx = 2

−
∫
u,xx dx =

∫
2dx

−u,x = 2x+ c1

Apply the Neumann boundary condition.

u′(0) = 0 c1 = 0.

u′(1) = 0 c1 = −2.

Thus we can conclude that there is no solution when we have homogenous Neumann bound-
ary conditions.

−−−−−−


