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Introduction to PDEs and Numerical Methods (PDEs 1):
Assignment 8 (75 points)

Exercise 1: Galerkin method and the Finite Element Method (40 points)

Consider the Poisson equation
—Au=f

with f = 2 on the interval [0, 1] with the boundary conditions «(0) = 0 and u(1) = 0.
(a) Compute the solution analytically, by direct integration. (5 points)

—Uygx = 2

—/u,mdx:/2dx

—U,py = 2T+ C1

—/u,xdfc:Q/:cdx—i-/cld:n

u(z) = — (22 + 1o + ¢2).

By using the boundary conditions, we get co = 0 and ¢; = —1, the solution of the BVP then

reads

(b) Derive the weak formulation of the BVP. Identify bilinear form, linear functional, and
corresponding trial and test spaces. The bilinear form of the weak equation is bounded and
V-elliptic in the H} space. Why is that important? Write down an equivalent minimization
problem. Knowing that the bilinear term is V-elliptic and bounded, what is the additional

property of the weak form that assures this equivalence? (5 points)

By multiplying the PDE by a trial function v(x) and integrating it over the domain

1 1
—/ w(x) 0 v(x)dw:/ f(@)v(z)dr forveV
0 0
V= Hj = {v e H'(0,1)[v(1) = v(0) = 0}



Then, integrating by parts

1 1 !
_/0 U(2)gp v(x)dz = /0 Uy (T)V,2 () — Uz (:c)v(:n)‘o

—_———
0

The the weak formulation of the PDE then reads the following: find v € V such that

/01 Uyy (20, (7) = /01 fla)v(z)de YweV

And the bilinear form is .
a(u,v) = / Uyz ()0, (),
0

and the linear form is

The bilinear form must be bounded and V-elliptic so that the conditions of the Lax-Milgram
lemma is fulfilled (and the linear term should be also bounded); hence, there exist a unique

solution u € V. Suppose the functional
1
J(u) = Ea(v,v) —I(v).
Then the equivalent minimization problem can be represented as
u = arg,cy min J(v).
The additional property is that a(u,v) should be symmetric and positive operator.

(c) Let’s proceed now with the Galerkin method. Use both, for the basis/shape ®; functions

and for the trial functions ¢;:
O, = ¢, =sin(inz), x=1,2,3.

Compute the stiffness matrix K, the right hand side of the weak form F' and solve the sys-
tem of equations. Make a figure with the exact solution and the one obtained by Galerkin
method. (10 points)

The discretized form of the weak form reads
a(uhvsoj) :l(@]) ]: 172a35
with up being the discretized approximation of the solution u

uh(:r) = Zn: uzq)l(x)
=1

Which results in the system of equations

n
Douia(®ip)) =1(p;) 7=1,2,3
i1 TV =

=Kji =F;



The diagonal elements of the stiffness matrix are

1
Kij —/ @i Pldar = zj7r2/ cos(imx) cos(jmz)dz.
0

1
K = (i?T)2/ cos?(imx)dx
0

)2 {x sin(2imx) ]1
5+
2 0

4y
|

1
Kij = ij7r2/ cos(imz) cos(jmx)dx
0

+

sin(2i) } _ (im)?
)

N | =

dq7

And the off-diagonals

Using the identity

cos(f + a) + cos(d — «)

cos(f) cos(a) = 5 then
ijn? 1
Kij = 5 [cos(imx + jma) + cos(imx — jmx)]
0
Ly [ L Lo T
= ——sin((¢ + j)mz) + ——sin((z — j)7w
2 lit+yg ( ) —J ( ) 0
_ U;T [i+jsjn((i+]’)7r)+ - sin((i—j)rr)} =0

The stiflness matrix K then reads

= 0 0
K=|0 272 0
71,2

0o 0

And the right hand side vector F.

F; = / x)p;(x)dx = 2/ sin(jmrx)dx
1
= cos(jmc)‘

= feos(jm) =1

Hence,
4
rs
F=1]0
4
3
The system of equations
Ku=F
can be solved for the coeflicients
%
u= 0o |,
_8



which gives the approximated solution of the PDE, which is

8 8
up(z) = 3 sin(mx) + 773 sin(3mz),

and which is presented in the following figure.
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(d) The interval [0,1] shall be divided into three equally sized elements of size 1/3 with
standard linear nodal ansatz/shape functions. Determine and draw the shape functions.
Compute the FEM solution with this mesh by hand. Assemble the stiffness matrix K, cal-
culate the right hand side F' of the weak form and solve the linear system.

(10 points)

The shape functions are the hat functions

T—Tij—1 ) )
P x € [xi—1, 24
- Tit1—T o
N; = F—— x € [zi, Tiq1]
0 elsewhere

The derivatives of the basis functions are

1

Ti—Ti—1

T € [1‘1;1, ZEl]

! __ —1
N/ = F— T € [xi,xzq.ﬂ

0 elsewhere



For the required intervals, we got:

le—?? — 3 r € [0, 3]
M= %gt=2-3  wel3]
0 elsewhere

%13/3:333—1 xé[é,%]

Ny = 11*739;“:3—3:1: xE[%,l]
0 elsewhere

These hat functions are presented in the Figure below.
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The new stifflness matrix reads

o NIN{dz  [7/3 NyN]da
K=
Y3 NyN{de [y NyN3d
f1/3 24V1aT f1/3 24V
where
2/3 1 (Y3 1 23 9
N{N}|dz = — —x| = =6
R N ok T
2/3 1 2/3 1 9
NiNjydr = x| + 2| =-5=6
2/3 1 2/3 1
NiN{dx = ——x =——5 =-3.
s 2! 13 312




So the stiffness matrix is
6 -3
K= .
-3 6
The right hand side of the system of equations modifies to
T

F— [/01 f(:L‘)Nldx,/Olf(a:)Ngdx

where
1 1/3 2/3 9
/ f(x)Nidx = 2/ 3xdr + 2 (2—3z)dr = -
0 0 1/3 3
1 2/3 1 9
/ F@)Nodz =2 [ Bz —Dde+2 [ (3—3a)de ==
0 1/3 2/3 3

Solving the system of equations Ku = F we get u = [2/9,2/9]7, which defines the approxi-
mation of the solution
up(x) = 2/9N1(x) + 2/9No(z),

which is shown in the below figure. One can observe, that due to the nodal basis, the vector

u directly gives the nodal values of the solution.

(e) Code the FEM solver of the problem in MATLAB and compare the solution with the
one computed by hand. Write the code such a way, that the number of equidistant elements

can be flexibly changed. Make a plot of the numerical and exact solutions. (10 points)

The solution can be observed in the following Figure
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Exercise 2: FEM with inhomogenous Dirichlet boundary conditions (10 points)
Consider again the same PDE:

—Au =2
on the interval [0,1], but with inhomogenous Dirichlet Boundary Conditions u(0) = 1,
u(l)=2.
(a) Calculate the solution analytically by direct integration. (5 points)
— Uy = 2,

—/u,mdx:/2dx

—U,py = 2T+ C1

—/u,xdfc:Q/:cdx—i-/cldx

u(z) = —2° + 1z + ¢
By using the boundary conditions, we get co = 1 and ¢; = 2. The solution then reads
u(z) = —2? + 22 + 1.

(b) Repeat exercise 1(d) with the given boundary conditions. (5 points)

From the previous exercise, we know that the weak form of the equation with homogenous
BC was to find u € V such that

a(u,v) =1l(v) YveV,

where a(u,v) = fol u(z),z v(x) and I(v) = fol f(z)v(z)dz. The V vector space is still the
same, but due to the modified inhomogeneous boundary conditions the problem changes to
find u € V; = {u € H(0,1),u(0) = 1,u(1) = 2} such that

a(u,v) =1(v) YveV.

Assuming u(x) = w(x) + z(x), where z(x) is any function in Vj, the weak form modifies to
the following. Find w(z) € V such that

a(w+ z,v) =1l(v) YveV.
Since a(u,v) is a bilinear operator, we have: a(w + z,v) = a(w,v) + a(z,v). Thus,

a(w,v) =1(v) —a(z,v) YveV.



The stiffness matrix remains the same then

5

For the function z we also use a discretized form, namely the ansatz using the had functions,

but here we need the "half" hat functions, which are defined as:

T < gp<g
Nofa) = § = =TS
0 elsewhere
0 0<z<wH
Nn(l‘) = T—Tn—1 < <
R
Therefore,
-1
Ny =4 mm DET SN
0 elsewhere
0 0<x<xy_1
! — = n
Nn(x) = 1 <<
Tnan Tnm1ST ST

These functions together with the basis functions are visualized in the below figure. So let’s

take for the 2z function the following ansatz:

3
2(x) = ziNj = u(0) - No(z) +0- Ny(z) + 0 Na(z) +u(l) - N3(z) = 1- No(z) + 2 - N3(x).
j=0
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The right hand side vector F then modifies with the term a(z,v), of which the discretized

form reads
n

a(z, N;) =Y zja(N;,N;) i=1,2 j=0,1,2,3
j=1



ol N'):[a(NO,Nl) a(N1,Ny) a(Na, Ny) a(Ng,Nl)] 2
Y [a(Nog, No)  a(N1, No)  a(Na, Na)  a(Ns, No)| |23
Z4
u(0)
a(ZN):l—3 6 -3 0] 0 :l—?)u(o]:l—s]
o 0 -3 6 -3/| 0 —3u(1 —6
u(1)

In the last equation we used

1 1 r1/3 1
!/

1 , ’d 1 1 p 1
NiNjde = —= =—— =-3.
/0 27308 = T /2/3 YT e

So the new right hand side will be the right hand side vector from the previous exercise

minus this modification:

f
3 f(x)Nodx — uy, [} NiNyda

-[-El-Ls

By solving the linear system of equations

— [ Jo f(x)Nydz —ug f N(’]N{d:v]

we get w = (14/9,17/9) ", so the function w(x) reads w(x) = 14/9N;(z) + 17/9Na(z) and

the final solution reads
u(z) = w(z) + z(z) = 14/9N1(x) + 17/9N2(x) + 1Nog(z) + 2N3(x).

The solution is shown in the Figure below.Because of the chosen z(x) function, which in only
nonzero on the inhomogenous Diriclet boundary, the values for w directly give the nodal

values of the solution at the non-Dirichlet nodes.



Exact and Galerkin approximated(using hat functions) solution
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Exercise 3: FEM with mized boundary conditions (15 points)

Consider again the same PDE:
—Au=2

on the interval [0, 1], but with mixed boundary conditions u(0) = 1, uz(1) = 1.
(a) Calculate the solution analytically by direct integration. (5 points)

—Uypz = 2

—/u,mdx:/2dx

—U,py = 2T+ C1

where we have applied the Neumann boundary condition ¢; = —3. By integrating again we

—/u,xdx:2/xdm—3/dm

u(z) = —x* + 3z + co.

get

Using the boundary condition, we get co = 1, so the solution reads

u(z) = —2? + 3z + 1.



(b) Write down the weak formulation of the BVP. (5 points)

By multiplying the PDE by a trial function v(z) and integrating it over the domain
1 1
—/ U(x) gz v(x)dr = / f@)v(x)de YveV
0 0
V= H§ = {v e H'(0,1)|v(0) = 0}

Then, integrating by parts

1

_ /01 Uyzy (T)0(2)dr = /1 Uy (2)0, (2)dx — u(),0 v(a:)‘
—/ Uz ()0, (2)dx — ug(1)v(1)

Therefore, the weak form of the PDE reads the following. Find u € Vj such that

0

/Olu(:v),xv,x( dx —v(1 /f x)dr YveV
/0 U(T),0 U,z ( d:B—/ f(x)v(x)dx +v(1) Yv eV,

with V; = {u € H*(0,1)|u(0) = 1}. Now we introduce again a z(z) function which satisfies
the inhomogeneous Dirichlet boundary condition, so a function from V,. Such way we can
write the solution function in the form u = z + w, so the weak form modifies to solving for
w € V such that

[ @) + 2@ dw—/f Dt o1) oe v
/ wW(T),z Uy (x)da —/ f(@)v(x)dz +v(1) — /01 2(x), Vyg (v)dx Yo €V
a(w,v) =ly(v) YveV
with the bilinear form .
a(w,v) = /0 wW(T),z U,z (x)dx
and the linear form
/ f(z)v(z)dz +v(1) — /01 2(2),0 0,5 (z)dx.
To conclude, our bilinear form did not change, only the linear form on the right hand side.

(c) Repeat exercise 1(d) with the given boundary conditions. (5 points)

First we fix our z(x) € V; function. Let that be

z(x) = u(0) Ny = No.



The system of equation must be redefined, as we have to use the basis function N3 too for

approximating the w(x) function. The stiffness matrix then modifies too a 3 by 3 matrix

[ 3P NIN{da [P NyN] da 0 ]

2/3
K= fl//s NiNidx  [})s NsNsda  [55 NsNydar

0 f21/3 N3 Njdax f21/3 N3N3dx i

with [y NyNjdo = —3 and [, 5 NjNjdz = 3. Then,

6 -3 O
K=|-3 6 -3
0 -3 3
The right hand side reads
o f@)Ndz|  [Ni()]  [u(0) fy NgNida
F = |[) f(z)Nodz | + | No(1)| — 0
| Jy f(z)Nsda N3(1) 0
[2 i 11
3 0 -3 3
— |2 _ 2
F=|2|+|0|-]|0]|=]%
1 4
3 1 0 3.

To conclude, our task is to solve the system of equations

6 -3 0] |w 4
-3 6 3| |w| =132
0 -3 3] |ws 3

Which solution is w = [wy, w2, w3]T = [17/9,23/9,3]". The solution function is then com-

puted by adding w(z) and z(z)
u(z) = w(x) + z(z) = 17/9N1(x) 4+ 23/9N2(x) + 3N3(z) + 1 No(x).

This solution in shown in the next Figure. Because of the chosen z(z) function, which in
only nonzero on the inhomogenous Diriclet boundary, the values for w directly give the nodal

values of the solution at the non-Dirichlet nodes.



Exact and Galerkin approximated(using hat functions) solution
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Exercise 4: FEM with Neumann boundary conditions (10 points)
Consider now the same PDE:
—Au =2

on the interval (0, 1), but with the Neumann boundary conditions u,(0) = 1, u,(1) = —1.
(a) Find the analytical solution by direct integration. How many solutions do you get?

(5 points)

—Uygx = 2

—/u,mdm‘:/2d$

—U,py = 2T+ C1

Applying the Neumann boundary condition, we get ¢; = —1. By integrating again

—/u,xd:v:2/xdas—/1daj

u(z) = -2 + 7+ c
Then, u(x) = —x2 4+ x + ¢ for arbitrary ¢ € R. Thus, there are infinitely many solutions.



b)  What will be changed if you assume homogeneous Neumann boundary conditions
u'(0) = /(1) = 0. Is there a solution? (5 points)

—Uygy = 2

—/u,mdx:/Qda:

—U,py = 2T+ C1

Apply the Neumann boundary condition.

u'(0) =0 c1 = 0.
u'(1) =0 = —2.

Thus we can conclude that there is no solution when we have homogenous Neumann bound-

ary conditions.



