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Exercise 1: Differential operators (15 points)
(a) Let f1(x, y, z) = x2e(−3y) cos(2z). Determine ∂f1

∂x ,
∂f1
∂y ,

∂f1
∂z and ∇f1. (4 points)

Solution (a)

∂f1
∂x

= 2xe(−3y) cos(2z) ∂f1
∂y

= −3x2e(−3y) cos(2z) ∂f1
∂z

= −2x2e(−3y) sin(2z)

∇f1(x, y) =


2xe(−3y) cos(2z)
−3x2e(−3y) cos(2z)
−2x2e(−3y) sin(2z)


−−−−−−

(b) Let f2(x, y, z) = (cos(xy), xy, e(2z))T . Determine ∇ · f2 and ∇× f2. (4 points)

Solution

∇ · f2 =


∂
∂x
∂
∂y
∂
∂z


T 

cos(xy)
xy

e(2z)

 = ∂ cos(xy)
∂x

+ ∂(xy)
∂y

+ ∂e(2z)

∂z
= −y sin(xy) + x+ 2e(2z)

∇× f2 =


∂
∂x
∂
∂y
∂
∂z

×


cos(xy)
xy

e(2z)

 =


∂e
∂y

(2z) − ∂xy
∂z

−∂e(2z)

∂x + ∂ cos(xy)
∂z

∂xy
∂x −

∂ cos(xy)
∂y

 =


0
0

y + x sin(xy)


−−−−−−

(c) Determine ∆f1 (see the function f1 in subtask (a)). (3 points)

Solution



∆f1 = ∂2f1
∂x2 + ∂2f1

∂y2 + ∂2f1
∂z2 .

∂2f1
∂x2 = 2e−3y cos(2z)

∂2f1
∂y2 = 9x2e−3y cos(2z)

∂2f1
∂z2 = −4x2e−3y cos(2z)

Therefore, ∆f1 = 2e−3y cos(2z)+9x2e−3y cos(2z)−4x2e−3y cos(2z) = e−3y ((2 + 5x2) cos(2z)
)
.

−−−−−−

(d) Show that ∇ · ∇f = ∆f and ∇ × ∇f = 0 for any two-times differentiable function
f : Ω→ R3. (4 points)

Solution

∇ · ∇f = ∂
∂x

∂f
∂x + ∂

∂y
∂f
∂y + ∂

∂z
∂f
∂z = ∂2f

∂x2 + ∂2f
∂y2 + ∂2f

∂z2 = ∆f

Using Matrix-vector Notation:

∇×∇f = ∂
∂xi

ei × ∂f
∂xj

ej = ∂2f
∂xixj

εijkek = ( ∂2f
∂x2x3

− ∂2f
∂x3x2

)e1 + ( ∂2f
∂x3x1

− ∂2f
∂x1x3

)e2 + ( ∂2f
∂x1x2

−
∂2f
∂x2x1

)e3

Since ∂2f
∂xixj

= ∂2f
∂xjx1

, the sum for every one of the vector components is zero.

−−−−−−

Exercise 2: Heat equation (17 points)
Consider the heat equation on a bar of unit length, with parameter β2 = λ

ρc :

∂

∂t
θ(x, t)− β2 ∂

2

∂x2 θ(x, t) = f(x, t)

(a) Assume boundary conditions θ(0, t) = 0, θ(π, t) = 0 and the source term f(x, t) =
sin(x). Prove that θ(x, t) = sin(x) can be a solution of the heat equation and specify the
value of β that ensures this proof.
Solution
First let’s check if θ(x, t) = sin(x) fulfills the boundary conditions:

θ(0, t) = 0

θ(π, t) = 0

Then let’s check if θ(x, t) = sin(x) is a solution to the heat equation. The left hand side
(lhs) of the equation is:

∂

∂t
θ(x, t)− β2 ∂

2

∂x2 θ(x, t) = 0 + β2 sin(x) = β2 sin(x)



And the right hand (rhs) side is:

f(x) = sin(x)

As the lhs and the rhs only equal if β = ±1 (from which only β = 1 makes physically sense),
so it is proved that θ(x, t) = sin(x) is a solution of the given initial boundary value problem
if β = 1.

−−−−−−

(5 points)

(b) Now assume β2 = 4, boundary conditions θ(0, t) = θ(1, t) = 0 and a solution θ(x, t) =
(t2 + 1

2) sin(πx). What must f(x, t) look like if the heat equation should be satisfied.
Solution
First let’s check if θ(x, t) = (t2 + 1

2) sin(πx) fulfills the boundary conditions:

θ(0, t) = (t2 + 1
2)0 = 0

θ(1, t) = (t2 + 1
2)0 = 0

∂

∂t
θ(x, t)− 4 ∂2

∂x2 θ(x, t) = 2t sin(πx) + 4π2(t2 + 1
2) sin(πx) = (4t2π2 + 2t+ 2π2) sin(πx)

f(x, t) = (4t2π2 + 2t+ 2π2) sin(πx)

−−−−−−

(7 points)

(c) Prove that θ(x, t) = t + 1
2x

2 is a solution of the heat equation. Write down the
corresponding boundary and initial conditions.
Solution

∂

∂t
θ(x, t)− β2 ∂

2

∂x2 θ(x, t) = 1− β2 = f(x, t)

θ(x, t) = t+ 1
2x

2 is only a solution if f(x, t) = 1− β2 and the boundary conditions are:

θ(0, t) = t

θ(1, t) = (t+ 1
2)

−−−−−−

(5 points)



Exercise 3: Classification of differential equations (8 points)
Classify (order, linear/nonlinear, stationary/instationary, homogeneous, inhomogeneous)
the following differential equations:
(a)

∂3u

∂x3 + 2 ∂4u

∂x2∂y2 + ∂4u

∂y4 = 0

(4 points)

Solution
4th Order. Since it does not depend on time, it is stationary. Consider u = 0, and replace
it in the Differential Equation, then:

∂3u
∂x3 + 2 ∂4u

∂x2∂y2 + ∂4u
∂y4 = 0. Therefore, the equation is homogeneous.

Linearity condition: L(αu+βv) = αL(u) +βL(v). In this case, L(u) = ∂3u
∂x3 + 2 ∂4u

∂x2∂y2 + ∂4u
∂y4 .

Then, L(αu+ βv) = ∂3(αu+βv)
∂x3 + 2∂

4(αu+βv)
∂x2∂y2 + ∂4(αu+βv)

∂y4

= α∂
3u
∂x3 + β ∂

3v
∂x3 + 2α ∂4u

∂x2∂y2 + 2β ∂4v
∂x2∂y2 + α∂

4u
∂y4 + β ∂

4v
∂y4

= α(∂3u
∂x3 + 2 ∂4u

∂x2∂y2 + ∂4u
∂y4 ) + β( ∂3v

∂x3 + 2 ∂4v
∂x2∂y2 + ∂4v

∂y4 ) = αL(u) + βL(v).

Consequently, the PDE is linear.

−−−−−−

(b)
∂2u

∂t2
− ∂2u

∂x2 + sin(u) = x sin(t)

(4 points)

Solution
2nd Order, instationary PDE. Since u = 0 leads to a non-zero RHS value x sin(t), it is a
non-homogeneous PDE.
Linearity condition: L(αu+ βv) = αL(u) + βL(v).
In this case, L(u) = ∂2u

∂t2 −
∂2u
∂x2 + sin(u)

Then, L(αu+ βv) = ∂2(αu+βv)
∂t2 − ∂2(αu+βv)

∂x2 + sin(αu+ βv)

= α(∂2u
∂t2 −

∂2u
∂x2 ) + β(∂2v

∂t2 −
∂2v
∂x2 ) + sin(αu) cos(βv) + cos(αu) sin(βv) 6= αL(u) + βL(v).

The term leading to non-linearity is sin(u)

−−−−−−

Exercise 4: Classification of differential equations 2 (10 points)



(a) Determine and sketch the subsets of R2, where the following equations are elliptic/-
parabolic/hyperbolic:

uxx + 2ux + (1− y2)uyy + u = 0

Solution

A = 1

B = 0

C = (1− y2)

AC −B2 = (1− y2)→
|y| < 0 elliptic
y = 0 parabolic
|y| > 0 hyperbolic

So the equation is parabolic in the point y = 0, elliptic in the points |y| < 0 and hyperbolic
for |y| > 0.

−−−−−−

(5 points)

(b) Determine whether the following equations are elliptic, parabolic or hyperbolic:

uxx − uxy + 2 uy + uyy − 3 uyx + 4u = 0

Solution

A = 1

2B = −4

C = 1

AC −B2 = (1− 4) = −3 < 0→ hyperbolic

So the equation is hyperbolic.
−−−−−−

9 uxx + 6 uxy + uyy + ux = 0

Solution

A = 9

2B = 6

C = 1

AC −B2 = (9− 9) = 0→ parabolic

To conclude, the equation is parabolic.

−−−−−−

(5 points)


