Introduction to PDEs and Numerical Methods (PDEs 1): Assignment 1 (50 points)

Exercise 1: Differential operators
(a) Let $f_{1}(x, y, z)=x^{2} e^{(-3 y)} \cos (2 z)$. Determine $\frac{\partial f_{1}}{\partial x}, \frac{\partial f_{1}}{\partial y}, \frac{\partial f_{1}}{\partial z}$ and ∇f_{1}.

Solution (a)

$$
\begin{gathered}
\frac{\partial f_{1}}{\partial x}=2 x e^{(-3 y)} \cos (2 z) \quad \frac{\partial f_{1}}{\partial y}=-3 x^{2} e^{(-3 y)} \cos (2 z) \quad \frac{\partial f_{1}}{\partial z}=-2 x^{2} e^{(-3 y)} \sin (2 z) \\
\nabla f_{1}(x, y)=\left[\begin{array}{c}
2 x e^{(-3 y)} \cos (2 z) \\
-3 x^{2} e^{(-3 y)} \cos (2 z) \\
-2 x^{2} e^{(-3 y)} \sin (2 z)
\end{array}\right]
\end{gathered}
$$

(b) Let $\mathbf{f}_{\mathbf{2}}(x, y, z)=\left(\cos (x y), x y, e^{(2 z)}\right)^{T}$. Determine $\nabla \cdot \mathbf{f}_{\mathbf{2}}$ and $\nabla \times \mathbf{f}_{\mathbf{2}}$.

Solution

$$
\begin{gathered}
\nabla \cdot \mathbf{f}_{2}=\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right]^{T}\left[\begin{array}{c}
\cos (x y) \\
x y \\
e^{(2 z)}
\end{array}\right]=\frac{\partial \cos (x y)}{\partial x}+\frac{\partial(x y)}{\partial y}+\frac{\partial e^{(2 z)}}{\partial z}=-y \sin (x y)+x+2 e^{(2 z)} \\
\nabla \times \mathbf{f}_{2}=\left[\begin{array}{c}
\frac{\partial}{\partial x} \\
\frac{\partial}{\partial y} \\
\frac{\partial}{\partial z}
\end{array}\right] \times\left[\begin{array}{c}
\cos (x y) \\
x y \\
e^{(2 z)}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial e^{(2 z)}}{\partial y}-\frac{\partial x y}{\partial z} \\
-\frac{\partial e^{(2 z)}}{\partial x}+\frac{\partial \cos (x y)}{\partial z} \\
\frac{\partial x y}{\partial x}-\frac{\partial \cos (x y)}{\partial y}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
y+x \sin (x y)
\end{array}\right]
\end{gathered}
$$

(c) Determine Δf_{1} (see the function f_{1} in subtask (a)).
$\Delta f_{1}=\frac{\partial^{2} f_{1}}{\partial x^{2}}+\frac{\partial^{2} f_{1}}{\partial y^{2}}+\frac{\partial^{2} f_{1}}{\partial z^{2}}$.
$\frac{\partial^{2} f_{1}}{\partial x^{2}}=2 e^{-3 y} \cos (2 z)$
$\frac{\partial^{2} f_{1}}{\partial y^{2}}=9 x^{2} e^{-3 y} \cos (2 z)$
$\frac{\partial^{2} f_{1}}{\partial z^{2}}=-4 x^{2} e^{-3 y} \cos (2 z)$
Therefore, $\Delta f_{1}=2 e^{-3 y} \cos (2 z)+9 x^{2} e^{-3 y} \cos (2 z)-4 x^{2} e^{-3 y} \cos (2 z)=e^{-3 y}\left(\left(2+5 x^{2}\right) \cos (2 z)\right)$.
(d) Show that $\nabla \cdot \nabla f=\Delta f$ and $\nabla \times \nabla f=0$ for any two-times differentiable function $f: \Omega \rightarrow \mathbb{R}^{3}$.
(4 points)

Solution

$\nabla \cdot \nabla f=\frac{\partial}{\partial x} \frac{\partial f}{\partial x}+\frac{\partial}{\partial y} \frac{\partial f}{\partial y}+\frac{\partial}{\partial z} \frac{\partial f}{\partial z}=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}+\frac{\partial^{2} f}{\partial z^{2}}=\Delta f$
Using Matrix-vector Notation:
$\nabla \times \nabla f=\frac{\partial}{\partial x_{i}} e_{i} \times \frac{\partial f}{\partial x_{j}} \boldsymbol{e}_{j}=\frac{\partial^{2} f}{\partial x_{i} x_{j}} \epsilon_{i j k} e_{k}=\left(\frac{\partial^{2} f}{\partial x_{2} x_{3}}-\frac{\partial^{2} f}{\partial x_{3} x_{2}}\right) e_{1}+\left(\frac{\partial^{2} f}{\partial x_{3} x_{1}}-\frac{\partial^{2} f}{\partial x_{1} x_{3}}\right) e_{2}+\left(\frac{\partial^{2} f}{\partial x_{1} x_{2}}-\right.$ $\left.\frac{\partial^{2} f}{\partial x_{2} x_{1}}\right) e_{3}$

Since $\frac{\partial^{2} f}{\partial x_{i} x_{j}}=\frac{\partial^{2} f}{\partial x_{j} x_{1}}$, the sum for every one of the vector components is zero.

Exercise 2: Heat equation
(17 points)
Consider the heat equation on a bar of unit length, with parameter $\beta^{2}=\frac{\lambda}{\rho c}$:

$$
\frac{\partial}{\partial t} \theta(x, t)-\beta^{2} \frac{\partial^{2}}{\partial x^{2}} \theta(x, t)=f(x, t)
$$

(a) Assume boundary conditions $\theta(0, t)=0, \theta(\pi, t)=0$ and the source term $f(x, t)=$ $\sin (x)$. Prove that $\theta(x, t)=\sin (x)$ can be a solution of the heat equation and specify the value of β that ensures this proof.

Solution

First let's check if $\theta(x, t)=\sin (x)$ fulfills the boundary conditions:

$$
\begin{aligned}
& \theta(0, t)=0 \\
& \theta(\pi, t)=0
\end{aligned}
$$

Then let's check if $\theta(x, t)=\sin (x)$ is a solution to the heat equation. The left hand side (lhs) of the equation is:

$$
\frac{\partial}{\partial t} \theta(x, t)-\beta^{2} \frac{\partial^{2}}{\partial x^{2}} \theta(x, t)=0+\beta^{2} \sin (x)=\beta^{2} \sin (x)
$$

And the right hand (rhs) side is:

$$
f(x)=\sin (x)
$$

As the lhs and the rhs only equal if $\beta= \pm 1$ (from which only $\beta=1$ makes physically sense), so it is proved that $\theta(x, t)=\sin (x)$ is a solution of the given initial boundary value problem if $\beta=1$.
(b) Now assume $\beta^{2}=4$, boundary conditions $\theta(0, t)=\theta(1, t)=0$ and a solution $\theta(x, t)=$ $\left(t^{2}+\frac{1}{2}\right) \sin (\pi x)$. What must $f(x, t)$ look like if the heat equation should be satisfied.

Solution

First let's check if $\theta(x, t)=\left(t^{2}+\frac{1}{2}\right) \sin (\pi x)$ fulfills the boundary conditions:

$$
\begin{gathered}
\theta(0, t)=\left(t^{2}+\frac{1}{2}\right) 0=0 \\
\theta(1, t)=\left(t^{2}+\frac{1}{2}\right) 0=0 \\
\frac{\partial}{\partial t} \theta(x, t)-4 \frac{\partial^{2}}{\partial x^{2}} \theta(x, t)=2 t \sin (\pi x)+4 \pi^{2}\left(t^{2}+\frac{1}{2}\right) \sin (\pi x)=\left(4 t^{2} \pi^{2}+2 t+2 \pi^{2}\right) \sin (\pi x) \\
f(x, t)=\left(4 t^{2} \pi^{2}+2 t+2 \pi^{2}\right) \sin (\pi x)
\end{gathered}
$$

(c) Prove that $\theta(x, t)=t+\frac{1}{2} x^{2}$ is a solution of the heat equation. Write down the corresponding boundary and initial conditions.

Solution

$$
\frac{\partial}{\partial t} \theta(x, t)-\beta^{2} \frac{\partial^{2}}{\partial x^{2}} \theta(x, t)=1-\beta^{2}=f(x, t)
$$

$\theta(x, t)=t+\frac{1}{2} x^{2}$ is only a solution if $f(x, t)=1-\beta^{2}$ and the boundary conditions are:

$$
\begin{gathered}
\theta(0, t)=t \\
\theta(1, t)=\left(t+\frac{1}{2}\right)
\end{gathered}
$$

Classify (order, linear/nonlinear, stationary/instationary, homogeneous, inhomogeneous) the following differential equations:
(a)

$$
\frac{\partial^{3} u}{\partial x^{3}}+2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{4}}=0
$$

Solution

4th Order. Since it does not depend on time, it is stationary. Consider $u=0$, and replace it in the Differential Equation, then:
$\frac{\partial^{3} u}{\partial x^{3}}+2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{4}}=0$. Therefore, the equation is homogeneous.
Linearity condition: $L(\alpha u+\beta v)=\alpha L(u)+\beta L(v)$. In this case, $L(u)=\frac{\partial^{3} u}{\partial x^{3}}+2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{4}}$.

Then, $L(\alpha u+\beta v)=\frac{\partial^{3}(\alpha u+\beta v)}{\partial x^{3}}+2 \frac{\partial^{4}(\alpha u+\beta v)}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4}(\alpha u+\beta v)}{\partial y^{4}}$
$=\alpha \frac{\partial^{3} u}{\partial x^{3}}+\beta \frac{\partial^{3} v}{\partial x^{3}}+2 \alpha \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+2 \beta \frac{\partial^{4} v}{\partial x^{2} \partial y^{2}}+\alpha \frac{\partial^{4} u}{\partial y^{4}}+\beta \frac{\partial^{4} v}{\partial y^{4}}$
$=\alpha\left(\frac{\partial^{3} u}{\partial x^{3}}+2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{4}}\right)+\beta\left(\frac{\partial^{3} v}{\partial x^{3}}+2 \frac{\partial^{4} v}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} v}{\partial y^{4}}\right)=\alpha L(u)+\beta L(v)$.

Consequently, the PDE is linear.
(b)

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}+\sin (u)=x \sin (t) \tag{4points}
\end{equation*}
$$

Solution

2nd Order, instationary PDE. Since $u=0$ leads to a non-zero RHS value $x \sin (t)$, it is a non-homogeneous PDE.
Linearity condition: $L(\alpha u+\beta v)=\alpha L(u)+\beta L(v)$.
In this case, $L(u)=\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}+\sin (u)$
Then, $L(\alpha u+\beta v)=\frac{\partial^{2}(\alpha u+\beta v)}{\partial t^{2}}-\frac{\partial^{2}(\alpha u+\beta v)}{\partial x^{2}}+\sin (\alpha u+\beta v)$
$=\alpha\left(\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}\right)+\beta\left(\frac{\partial^{2} v}{\partial t^{2}}-\frac{\partial^{2} v}{\partial x^{2}}\right)+\sin (\alpha u) \cos (\beta v)+\cos (\alpha u) \sin (\beta v) \neq \alpha L(u)+\beta L(v)$.

The term leading to non-linearity is $\sin (u)$
(a) Determine and sketch the subsets of \mathbb{R}^{2}, where the following equations are elliptic/parabolic/hyperbolic:

$$
u_{x x}+2 u_{x}+\left(1-y^{2}\right) u_{y y}+u=0
$$

Solution

$$
\begin{array}{cc}
A=1 & \\
B=0 & \\
C=\left(1-y^{2}\right) & \\
& |y|<0
\end{array} \quad \text { elliptic } \quad \begin{array}{rll}
& & \text { parabolic } \\
A C-B^{2}=\left(1-y^{2}\right) \rightarrow & y=0 & \\
& |y|>0 & \text { hyperbolic }
\end{array}
$$

So the equation is parabolic in the point $y=0$, elliptic in the points $|y|<0$ and hyperbolic for $|y|>0$.
(b) Determine whether the following equations are elliptic, parabolic or hyperbolic:

$$
u_{x x}-u_{x y}+2 u_{y}+u_{y y}-3 u_{y x}+4 u=0
$$

Solution

$$
\begin{gathered}
A=1 \\
2 B=-4 \\
C=1 \\
A C-B^{2}=(1-4)=-3<0 \rightarrow \text { hyperbolic }
\end{gathered}
$$

So the equation is hyperbolic.

$$
9 u_{x x}+6 u_{x y}+u_{y y}+u_{x}=0
$$

Solution

$$
\begin{gathered}
A=9 \\
2 B=6 \\
C=1 \\
A C-B^{2}=(9-9)=0 \rightarrow \text { parabolic }
\end{gathered}
$$

To conclude, the equation is parabolic.

