Introduction to PDEs and Numerical Methods (PDEs 1): Assignment 1 (50 points)

Exercise 1: Differential operators
(15 points)
(a) Let $f_{1}(x, y, z)=x^{2} e^{(-3 y)} \cos (2 z)$. Determine $\frac{\partial f_{1}}{\partial x}, \frac{\partial f_{1}}{\partial y}, \frac{\partial f_{1}}{\partial z}$ and ∇f_{1}.
(b) Let $\mathbf{f}_{\mathbf{2}}(x, y, z)=\left(\cos (x y), x y, e^{(2 z)}\right)^{T}$. Determine $\nabla \cdot \mathbf{f}_{\mathbf{2}}$ and $\nabla \times \mathbf{f}_{\mathbf{2}}$.
(c) Determine Δf_{1} (see the function f_{1} in subtask (a)).
(d) Show that $\nabla \cdot \nabla f=\Delta f$ and $\nabla \times \nabla f=0$ for any two-times differentiable function $f: \Omega \rightarrow \mathbb{R}^{3}$.

Exercise 2: Heat equation
(17 points)
Consider the heat equation on a bar of unit length, with parameter $\beta^{2}=\frac{\lambda}{\rho c}$:

$$
\frac{\partial}{\partial t} \theta(x, t)-\beta^{2} \frac{\partial^{2}}{\partial x^{2}} \theta(x, t)=f(x, t)
$$

(a) Assume boundary conditions $\theta(0, t)=0, \theta(\pi, t)=0$ and the source term $f(x, t)=$ $\sin (x)$. Prove that $\theta(x, t)=\sin (x)$ can be a solution of the heat equation and specify the value of β that ensures this proof.
(b) Now assume $\beta^{2}=4$, boundary conditions $\theta(0, t)=\theta(1, t)=0$ and a solution $\theta(x, t)=\left(t^{2}+\frac{1}{2}\right) \sin (\pi x)$. What must $f(x, t)$ look like if the heat equation should be satisfied.
(7 points)
(c) Prove that $\theta(x, t)=t+\frac{1}{2} x^{2}$ is a solution of the heat equation. Write down the corresponding boundary and initial conditions.

Classify (order, linear/nonlinear, stationary/instationary, homogeneous, inhomogeneous) the following differential equations:
(a)

$$
\frac{\partial^{3} u}{\partial x^{3}}+2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{4}}=0
$$

(b)

$$
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}+\sin (u)=x \sin (t)
$$

(4 points)

Exercise 4: Classification of differential equations 2
(10 points)
(a) Determine and sketch the subsets of \mathbb{R}^{2}, where the following equations are elliptic/parabolic/hyperbolic:

$$
u_{x x}+2 u_{x}+\left(1-y^{2}\right) u_{y y}+u=0
$$

(b) Determine whether the following equations are elliptic, parabolic or hyperbolic:

$$
\begin{gathered}
u_{x x}-u_{x y}+2 u_{y}+u_{y y}-3 u_{y x}+4 u=0 \\
9 u_{x x}+6 u_{x y}+u_{y y}+u_{x}=0
\end{gathered}
$$

