Introduction to PDEs and Numerical Methods (PDEs 1): Assignment 1 (50 points)

Exercise 1: Differential operators	$(15 \hspace{0.1 cm} \mathrm{points})$
(a) Let $f_1(x, y, z) = x^2 e^{(-3y)} \cos(2z)$. Determine $\frac{\partial f_1}{\partial x}$, $\frac{\partial f_1}{\partial y}$, $\frac{\partial f_1}{\partial z}$ and ∇f_1 .	(4 points)
(b) Let $\mathbf{f_2}(x, y, z) = (\cos(xy), xy, e^{(2z)})^T$. Determine $\nabla \cdot \mathbf{f_2}$ and $\nabla \times \mathbf{f_2}$.	(4 points)

(c) Determine Δf_1 (see the function f_1 in subtask (a)). (3 points)

(d) Show that $\nabla \cdot \nabla f = \Delta f$ and $\nabla \times \nabla f = 0$ for any two-times differentiable function $f: \Omega \to \mathbb{R}^3$. (4 points)

Exercise 2: Heat equation (17 points) Consider the heat equation on a bar of unit length, with parameter $\beta^2 = \frac{\lambda}{\rho c}$:

$$\frac{\partial}{\partial t}\theta(x,t) - \beta^2 \frac{\partial^2}{\partial x^2}\theta(x,t) = f(x,t)$$

(a) Assume boundary conditions $\theta(0,t) = 0$, $\theta(\pi,t) = 0$ and the source term $f(x,t) = \sin(x)$. Prove that $\theta(x,t) = \sin(x)$ can be a solution of the heat equation and specify the value of β that ensures this proof. (5 points)

(b) Now assume $\beta^2 = 4$, boundary conditions $\theta(0,t) = \theta(1,t) = 0$ and a solution $\theta(x,t) = (t^2 + \frac{1}{2})\sin(\pi x)$. What must f(x,t) look like if the heat equation should be satisfied. (7 points)

(c) Prove that $\theta(x,t) = t + \frac{1}{2}x^2$ is a solution of the heat equation. Write down the corresponding boundary and initial conditions. (5 points)

Exercise 3: Classification of differential equations

Classify (order, linear/nonlinear, stationary/instationary, homogeneous, inhomogeneous) the following differential equations:

(a)

$$\frac{\partial^3 u}{\partial x^3} + 2\frac{\partial^4 u}{\partial x^2 \partial y^2} + \frac{\partial^4 u}{\partial y^4} = 0$$
(4 points)

(b)

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + \sin(u) = x\sin(t)$$
(4 points)

Exercise 4: Classification of differential equations 2 (10 points)

(a) Determine and sketch the subsets of \mathbb{R}^2 , where the following equations are elliptic/parabolic/hyperbolic:

$$u_{xx} + 2u_x + (1 - y^2)u_{yy} + u = 0$$

(5 points)

(b) Determine whether the following equations are elliptic, parabolic or hyperbolic:

 $u_{xx} - u_{xy} + 2 u_y + u_{yy} - 3 u_{yx} + 4u = 0$ 9 u_{xx} + 6 u_{xy} + u_{yy} + u_x = 0

(5 points)

(8 points)