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Exercise 1: FDM and Irregular Meshes (14 points)
After a spatial discretisation using the Finite Difference method the instationary heat equation can
be expressed as

u̇(t) = Au(t) + f

where matrix A encapsulates the second order differences. Until now, we have considered a regular
mesh, that means, the discrete spatial points were chosen equidistantly. Now, we switch to irregular
meshes, which are commonly not used when applying FDM. In this exercise you shall answer the
question, why irregular meshes do not seem to be attractive here. Consider the following discrete
mesh:

x0 x1 x2 x3 x4

h h 2h 2h

Dirichlet conditions are given by u0(t) = u4(t) = 0
(a) The formulas for approximating ∂2u

∂x2 (x1) and ∂2u
∂x2 (x3) can be taken from the script (e.g. pp

17-18). Use two Taylor expansions around x2 and sum them up in a weighted manner to derive a
formula approximating ∂2u

∂x2 (x2).
Solution

The formulas for approximating the second derivatives in the x1 and x2 points:

∂2u

∂x2 (x1) = 1
h2 (u(x0)− 2u(x1) + u(x2)) +O(h2)

∂2u

∂x2 (x3) = 1
4h2 (u(x2)− 2u(x3) + u(x4)) +O(h2)

Derivation of the formula for approximating the second derivatives in the x2 point:

u(x2 + 2h) = u(x2) + 2∂u
∂x

(x2)h+ 4
2
∂2u

∂x2 (x2)h2 + 8
3!
∂3u

∂x3 (x2))h3 +O(h4) (1)

u(x2 − h) = u(x2)− ∂u

∂x
(x2)h+ 1

2
∂2u

∂x2 (x2)h2 − 1
3!
∂3u

∂x3 (x2)h3 +O(h4) (2)

Multiplying eq. (2) by two and adding eq. (1):

u(x2 + 2h) + 2u(x2 − h) = 3u(x2) + 3∂
2u

∂x2 (x2)h2 + 6
3!
∂3u

∂x3 (x2)h3 +O(h4) =

= 3u(x2) + 3∂
2u

∂x2 (x2)h2 +O(h3)



Rearranging the equation and dividing by h2 gives the second derivative:

∂2u

∂x2 (x2) = 2u(x2 − h)− 3u(x2) + u(x2 + 2h)
3h2 +O(h)

= 2u(x1)− 3u(x2) + u(x3)
3h2 +O(h)

−−−−−−

What can you say about the order of the error of your formula compared to the one of a regular mesh?

Solution
The formula is only a first order one instead of the second order approximation of the regular mesh.

−−−−−−

(8 points)

(b) Build up matrix A for the given irregular mesh. What can be noticed compared to the matrix
resulting from a regular mesh?
Solution u̇1(t)

u̇2(t)
u̇3(t)

 = −β
2

h2

 2 −1 0
−2/3 1 −1/3

0 −1/4 1/2


u1(t)
u2(t)
u3(t)


So the matrix is:

A = −β
2

h2

 2 −1 0
−2/3 1 −1/3

0 −1/4 1/2


Which is a nonsymmetric matrix (while the one of the regular mesh was symmetric)

−−−−−−

(6 points)

Exercise 2: Neumann stability analysis (31 points)
Apply the von Neumann stability analysis for checking the stability of the following scheme for the
instationary heat equation:

uj,n+1 − uj,n
∆t = β2

2(∆x)2 (uj−1,n+1 + uj−1,n − 2uj,n+1 − 2uj,n + uj+1,n+1 + uj+1,n)

(a) Determine the gain factor G(k) for the given scheme.

Solution
The given scheme corresponds to the Theta method with θ = 1/2, and consequently the gain factor
can be straightforwardly calculated from the script, by plugging in θ = 1/2 to the eq. (1.137). For a
better understanding we derive here the gain factor from the start.
Inserting the Ansatz:

uj,n = G(k)neikj∆x



to the scheme and dividing by G(k)neikj∆x gives:

G(k)− 1
∆t = β2

2(∆x)2

(
G(k)e−ik∆x + e−ik∆x − 2G(k)− 2 +G(k)e+ik∆x + e+ik∆x

)
Using the formula:

cos ξ = 1
2

(
eiξ + e−iξ

)
and rearranging the equation gives:

2 (G(k)− 1) = rG(k) (2 cos(k∆x)− 2) + 2r cos(k∆x)− 2r)

with

r = β2∆t
(∆x)2

Solving for G(k), we get the following expression for the gain factor:

G(k) = 1− r(1− cos(k∆x))
1 + r(1− cos(k∆x))

−−−−−−

(10 points)

(b) Prove, that the given scheme is unconditionally stable.

Solution
The scheme is unconditionally stable if

|G(k)| ≤ 1 (3)

See prove in Chapter 1.4.5 in the script with θ = 1/2

−−−−−−

(10 points)

(c) Under what condition the scheme will avoid oscillatory solutions?

Solution
The scheme will avoid oscillatory solutions if

G(k) ≥ 0 (4)

Which is always satisfied for the given scheme (see eq. (1.142) in the script with θ = 1/2)

−−−−−−

(6 points)



(d) For extra 5 points: Prove that the given scheme is convergent.

Solution
As the given scheme is the trapezoidal rule (Theta method with second order error), the proof is in
the script (See Chapters 1.4.1 and 1.4.4.)
For 2D Taylor series, refer: http://www.math.ubc.ca/~feldman/m200/taylor2dSlides.
pdf

−−−−−−

(5 points)

Exercise 3: Analytical and numerical solution to the heat equation (15 points)
Consider the instationary heat equation

∂u

∂t
− β2∆u = 0

on the interval [0, L] with β = 0.5 and L = 10, with the initial condition

u(x, 0) = sin(π
L
x) + 2 sin(3π

L
x) + sin(5π

L
x)

and with the boundary conditions
u(0, t) = 0

u(L, t) = 0

(a) Analytical solution
We know from the lecture that the general solution of the equation with the given boundary condi-
tions is:

u(x, t) =
∞∑
k=1

Bke
−κ2

kt sin(κk
β
x)

with
κk = βkπ

L

Define the coefficients Bk from the initial condition and use a numerical software (Matlab, Python,
etc.) to plot the solution at t=0 and T=10.

Solution
Orthogonality of sine functions:∫ L

0
sin(mπx

L
) sin(nπx

L
)dx =

0, if m 6= n

L
2 , m = n

Given:

u(x, t) =
∞∑
k=1

Bke
−κ2

kt sin(κk
β
x)

Multiply sin(kπxL ) on both sides and at t=0 substitute the given initial condition for LHS and use the
above given orthogonality to get:

Bk = 2
L

∫ L

0

{
sin(πx

L
) + 2 sin(3πx

L
) + sin(5πx

L
) sin

}
(kπx
L

)

http://www.math.ubc.ca/~feldman/m200/taylor2dSlides.pdf
http://www.math.ubc.ca/~feldman/m200/taylor2dSlides.pdf


For k = 1, 3, 5 we get non-zero RHS and for k 6= { 1,3,5} RHS = 0 (recall Orthogonality of sine
functions)
Hence, B1 = 1 B3 = 2 B5 = 1 and rest are 0 and the general solution is:

u(x, t) = e−(βπL )2
t sin

(π
L
x
)

+ 2e−( 3βπ
L )2

t sin
(

3π
L
x

)
+ e−( 5βπ

L )2
t sin

(
5π
L
x

)
Plotting the solution at t=0 and at t=T=10 gives:
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ANALYTICAL SOLUTION at t=0 and t=10

 

 

solution at t=0

solution at t=10

The two bigger peaks at the initial state warm up the part of the rod that is in between the peaks and
the temperature is decreasing continuously in the bar. The peaks are almost completely smoothed
down at T=10. Physically: Since there is no source term in the PDE, the temperatures should
decrease over time. Hence the above obtained behavior corresponds to the physically expected one .

−−−−−−

(4 points)

(b) Solution with Euler forward
Solve the discretized system with the Euler forward method. Choose h = 0.2 for the space dis-
cretization and ∆t = 0.05 as time step. Determine the solution at time T = 10. Show a plot of the
solution at t = 0 and at t = T .



Solution
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Solution with EULER FORWARD METHOD at t=0 and t=10

 

 

solution at t=0
solution at t=10

−−−−−−

Compare the plots with the analytical solution.
Solution
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Error between analytical solution and EULER FORWARD

The errors are of order 10−3

−−−−−−

(6 points)

(c) Stability (Euler forward)
Repeatedly double the time step size until the numerical solution becomes unstable. At which ∆t



does the solution becomes unstable? Compare to the theoretical value you can deduce from the
formula from the lecture (or the script).
Solution

Doubling the timestep (∆t = 0.1) turns the Euler forward method instable. As the smallest eigen-
value of the matrix B is not far away smaller than one, it starts only oscilating around t=9. In other
words the stability criteria for Euler forward method is not satisfied:

∆t < h2

2β2 = (0.2)2

2(0.5)2 = 0.08

See a plot of the analytical solution and the one with the Euler forward method at t=9 and 10.
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Solution with EULER FORWARD method at t=0 and t=9 with doubled dt

solution at t=0
solution at t=9
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−−−−−−

Do the same as above by halving h.



Solution
Halving h (h = 0.1) also turns the Euler forward method instable as:

hcr =
√

2∆tβ2 =
√

2(0.05)(0.5)2 = 0.16 < h

It can be seen from the plot bellow that even before t=2 the solution with Euler forward method is
already unacceptable.
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Solution with EULER FORWARD METHOD at t=0 and t=1.4 with halved h�
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−−−−−−

(5 points)


