Institute of Scientific Computing

Technical University Braunschweig
Thilo Moshagen
Bojana Rosic

Advanced Methods for ODEs and DAEs: Assignment 2

Exercise 1:

(36 points)
Consider two masses $m_{1}=2 \mathrm{~kg}$ and $m_{2}=2 \mathrm{~kg}$ on the distance $r=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$ attracted by gravitational force $g m_{1} m_{2} / r^{2}$, where $g=2 m^{3} \mathrm{~kg}^{-1} s^{-2}$ is the gravitational constant (artificial value!). The mass movement can be described by a second Newton law via four coupled equations

$$
\begin{aligned}
& m_{1} \frac{d x_{1}^{2}}{d t^{2}}=\frac{g m_{1} m_{2}}{r^{3}}\left(x_{2}-x_{1}\right) \\
& m_{1} \frac{d y_{1}^{2}}{d t^{2}}=\frac{g m_{1} m_{2}}{r^{3}}\left(y_{2}-y_{1}\right) \\
& m_{2} \frac{d x_{2}^{2}}{d t^{2}}=\frac{g m_{1} m_{2}}{r^{3}}\left(x_{1}-x_{2}\right) \\
& m_{2} \frac{d y_{2}^{2}}{d t^{2}}=\frac{g m_{1} m_{2}}{r^{3}}\left(y_{1}-y_{2}\right)
\end{aligned}
$$

Integrate the previous system of equations in time $[0,25]$ by using general Kronecker tensor product approach Runge Kutta method and Gauss-Legendre Runge Kutta coefficients:

The initial conditions are given as:

$$
x_{1}=-1, \dot{x}_{1}=0, y_{1}=0, \dot{y}_{1}=-1, x_{2}=1, \dot{x}_{2}=0, y_{2}=0, \dot{y}_{2}=1
$$

The time step size should be chosen appropriate to this problem. The nonlinear system of equations should be solved by a Newton method, and the linear system can be solved by using built in Matlab function pcg or backslash.

