Introduction to PDEs and Numerical Methods (PDEs 1): Assignment 2 (50 points)

Exercise 1: Subspaces, orthogonal projection
(16 points)
Define S to be the set of all polynomials of the form $a x+b x^{2}$, considered as functions defined on the interval $[0,1]$.
(a) Explain why S is a subspace of $C^{2}[0,1]$
(b) Compute the approximation from S, to $f(x)=e^{x}$ by minimizing the induced norm

$$
\|u\|=\sqrt{\langle u, u\rangle}
$$

using the inner product:

$$
a(u, v)=\langle u, v\rangle=\int_{0}^{1} u(x) v(x) d x
$$

and plot the original function and its approximation with a suitable software (e.g. MATLAB, PYTHON).

Solution

(a)

The first derrivative:

$$
\begin{equation*}
\frac{\partial\left(a x+b x^{2}\right)}{\partial x}=a+2 b x \tag{1}
\end{equation*}
$$

The second derrivation:

$$
\begin{equation*}
\frac{\partial(a+2 b x)}{\partial x}=2 b \tag{2}
\end{equation*}
$$

Since the first and second derrivative exist and are continuous in the given interval $[0,1], \mathrm{S}$ is a subspace of C^{2} - the space containing functions which are two times differentiable.
(b)

The given space S is: $\mathrm{S}=\operatorname{span}\left\{x, x^{2}\right\}=\operatorname{span}\left\{\phi_{i}\right\}$
Say, $f_{h}=\sum_{i=1}^{2} \alpha_{i} \phi_{i}$ is the best approximation of e^{x} from S ,
where
$\phi_{1}=\mathrm{x}$ and $\phi_{2}=x^{2}$
We know that the error due to approximation will be minimum if the error $f-f_{h}$ under the given norm is orthogonal to the given space S . This means that the error is perpendicular to each of the basis functions which span the given space S . Mathematically,
error $=\mathrm{f}-f_{h}=e^{x}-\sum_{i=1}^{2} \alpha_{i} \phi_{i}$
$<\mathrm{f}-f_{h}, \phi_{j}>=0 \quad \mathrm{j}=1,2$
Therefore we have,
$\left.\sum_{i=1}^{2} \alpha_{i}\left\langle\phi_{i}, \phi_{j}\right\rangle=<f, \phi_{j}\right\rangle \quad \mathrm{j}=1,2$

Using the given inner product, the following matrix is obtained:

$$
\begin{gathered}
{\left[\begin{array}{cc}
\int_{0}^{1} \phi_{1} \phi_{1} d x & \int_{0}^{1} \phi_{1} \phi_{2} d x \\
\int_{0}^{1} \phi_{2} \phi_{1} d x & \int_{0}^{1} \phi_{2} \phi_{2} d x
\end{array}\right] *\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{c}
\int_{0}^{1} f(x) \phi_{1} d x \\
\int_{0}^{1} f(x) \phi_{2} d x
\end{array}\right]} \\
{\left[\begin{array}{ll}
\int_{0}^{1} x * x d x & \int_{0}^{1} x * x^{2} d x \\
\int_{0}^{1} x^{2} * x d x & \int_{0}^{1} x^{2} * x^{2} d x
\end{array}\right] *\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{c}
\int_{0}^{1} e^{x} * x \\
\int_{0}^{1} e^{x} * x^{2} d x
\end{array}\right]} \\
{\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{5}
\end{array}\right] *\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
e-2
\end{array}\right]}
\end{gathered}
$$

Solving the above system, we get $\alpha_{1}=4.90314$ and $\alpha_{2}=-2.53752$
Hence we have the best approximation for e^{x} from S using the above given norm is $f_{h}=$ $4.90314 x-2.53752 x^{2}$

```
% PDE 1-Assignemnet 2-Excercise 1(b) - Solution
% Given function in the interval [0 1]
fplot(@(x) exp(x),[0 1])
hold on
% Best approximation obtained from the space S is f_h = 4.90314x - 2.53752x}\mp@subsup{}{}{2
f = @(x) 4.90314*x - 2.53752*x^2;
fplot(f,[0 1],'r')
title('Best approximation of e^x from the space of second degree polynomials')
xlabel('x')
ylabel('f_h(x)')
legend('f(x)', 'Best approximation f_h(x)')
```


Exercise 2: Fourier Series

(12 points)
Determine the Fourier series of the function $f[-1,1] \rightarrow \mathbb{R}$ with $f(x):=(\pi x)^{2}$. Plot the original function and the first 5 Fourier terms with a suitable software (e.g. MATLAB or PYTHON).
Solution

$$
\begin{aligned}
& a_{0}=\int_{-1}^{1}(\pi x)^{2} d x=\left[\frac{\pi^{2} x^{3}}{3}\right]_{-1}^{1}=\frac{2 \pi^{2}}{3} \\
& a_{k}=\int_{-1}^{1}(\pi x)^{2} \cos (k \pi x) d x \\
&=\pi^{2} \int_{-1}^{1} \underbrace{x^{2}}_{u} \underbrace{\cos (k \pi x)}_{v^{\prime}} d x \\
&=\frac{\pi}{k}\left[x^{2} \sin (k \pi x)\right]_{-1}^{1}-\frac{\pi}{k} \int_{-1}^{1} 2 \underbrace{x}_{u} \underbrace{\sin (k \pi x)}_{v^{\prime}} d x \\
&=0+\frac{2}{k^{2}}[x \cos (k \pi x)]_{-1}^{1}-\frac{2}{k^{2}} \underbrace{\int_{-1}^{1} \cos (k \pi x) d x}_{=0} \\
&=\frac{2}{k^{2}}(\cos (k \pi)+\cos (-k \pi)) \\
&=\left\{\begin{array}{c}
\frac{-4}{k^{2}} \quad k \text { odd } \\
\frac{4}{k^{2}}, \quad \text { even } \\
b_{k}
\end{array}\right. \\
&=\int_{-1}^{1}(\pi x)^{2} \sin (k \pi x) d x=0
\end{aligned}
$$

Accordingly the expansion is:

$$
\hat{f}(x)=\frac{\pi^{2}}{3}+4 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} \cos k \pi x
$$

```
% PDE 1-Assignemnet 2-Excercise 2 - Solution
% Given function in the interval [-1 1]
figure
fplot(@(x)pi*pi*x*x,[-1 1])
hold on
% Fourier expansion of the function up to 5th term.
f = @(x) (pi*pi/3) - 4* cos(pi*x) + cos(2*pi*x)-(4/9)*cos(3*pi*x)+ (1/4)*cos(4*pi*x);
fplot(f,[-1 1],'r')
title('Fourier repesentation of a Function')
xlabel('x')
ylabel('f(x)')
legend('f(x)', 'Fourier Representation of f(x)')
%
%*********************OBSERVATION FROM THE PLOT********************
% There is close agreement of the given function with its fourier representation.
```

Exercise 3: Norms and inner products
(a) Consider the vectors:

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-9 \\
16
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Compute the following expressions:

- $\left\|\mathbf{v}_{1}\right\|_{1},\left\|\mathbf{v}_{2}\right\|_{1}$
- $\left\|\mathbf{v}_{1}\right\|_{2},\left\|\mathbf{v}_{2}\right\|_{2}$
- $\left\|\mathbf{v}_{1}\right\|_{\infty},\left\|\mathbf{v}_{1}\right\|_{\infty}$
- $\left\|\mathbf{v}_{1}\right\|_{4},\left\|\mathbf{v}_{2}\right\|_{4}$
- $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$

Solution

Definition of norms:

$$
\begin{aligned}
& \|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \\
& \|x\|_{2}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{2}\right)^{\left(\frac{1}{2}\right.} \\
& \|x\|_{\infty}=\max _{i \epsilon N}\left|x_{i}\right| \\
& \|x\|_{4}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{4}\right)^{\left(\frac{1}{4}\right.} \\
& \langle x, y\rangle=\sum_{i=1}^{n} x_{i} * y_{i}
\end{aligned}
$$

Using the above, we get the following results:

$$
\begin{aligned}
& \left\|v_{1}\right\|_{1}=|-9|+16=25 \\
& \left\|v_{2}\right\|_{1}=1+|-1|=2 \\
& \left\|v_{1}\right\|_{2}=\sqrt[2]{(-9)^{2}+16^{2}}=18.3575 \\
& \left\|v_{2}\right\|_{2}=\sqrt[2]{1^{2}+(-1)^{2}}=1.4142 \\
& \left\|v_{1}\right\|_{\infty}=16 \\
& \left\|v_{2}\right\|_{\infty}=1 \\
& \left\|v_{1}\right\|_{4}=\sqrt[4]{(-9)^{4}+16^{4}}=16.3862 \\
& \left\|v_{2}\right\|_{4}=\sqrt[4]{1^{4}+(-1)^{4}}=1.1892 \\
& \langle x, y\rangle=(-9 * 1)+(16 *-1)=-25
\end{aligned}
$$

(b) Consider the scalar functions:

$$
f(x)=\cos (\pi x), \quad g(x)=2 \quad x \in \Omega=[-1,1]
$$

Compute the following expressions on the domain Ω :

- $\|f\|_{2},\|g\|_{2}$
- $\|f\|_{\infty},\|g\|_{\infty}$
- $\langle f, g\rangle$

Solution

- $\|f\|_{2}=\sqrt[2]{\left.\int_{-1}^{1}|f(x)|^{2}\right) d x}=\sqrt[2]{\int_{-1}^{1} \cos ^{2}(\pi x)} d x=1$
- $\|g\|_{2}=\sqrt[2]{\left.\int_{-1}^{1}|g(x)|^{2}\right) d x}=\sqrt[2]{\int_{-1}^{1} 2^{2} d x}=\sqrt[2]{8}=2.8284$
- $\|f\|_{\infty}=\sup _{x \epsilon \Omega}|f(x)|=|\cos (-\pi)|=|\cos (\pi)|=1$
- $\|g\|_{\infty}=2$
- $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x=\int_{-1}^{1} 2 \cos (\pi x) d x=0$

Exercise 4: Inner product

(10 points)
Prove that if $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric and positive definite matrix, that is

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0 \quad \forall \mathbf{x} \in \mathbb{R}^{\mathbf{n}} \quad \text { and } \quad \mathbf{x}^{T} \mathbf{A} \mathbf{x}=0 \quad \text { onlywhen } \quad \mathbf{x}=\mathbf{0}
$$

then the mapping

$$
f(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T} \mathbf{A} \mathbf{y}
$$

defines an inner product.

Solution

Symmetry:

$$
f(\mathbf{x}, \mathbf{y})=f(\mathbf{y}, \mathbf{x})
$$

As the mapping $f(\mathbf{x}, \mathbf{y})$ gives a scalar, it can be transposed without changing it:

$$
f(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T} \mathbf{A} \mathbf{y}=\left(\mathbf{x}^{T} \mathbf{A} \mathbf{y}\right)^{T}=\mathbf{y}^{T} \mathbf{A}^{T}\left(\mathbf{x}^{T}\right)^{T}=\mathbf{y}^{T} \mathbf{A} \mathbf{x}=f(\mathbf{y}, \mathbf{x})
$$

Where the last but one equation holds due to the symmetry of $\mathbf{A}: \mathbf{A}^{T}=\mathbf{A}$ Linearity in the first argument:

$$
\begin{gathered}
f(\alpha \mathbf{x}, \mathbf{y})=\alpha f(\mathbf{x}, \mathbf{y}) \\
f(\mathbf{x}+\mathbf{y}, \mathbf{z})=f(\mathbf{x}, \mathbf{z})+f(\mathbf{y}, \mathbf{z}) \\
f(\alpha \mathbf{x}, \mathbf{y})=(\alpha \mathbf{x})^{T} \mathbf{A} \mathbf{y}=\alpha\left(\mathbf{x}^{T} \mathbf{A} \mathbf{y}\right)=\alpha f(\mathbf{x}, \mathbf{y}) \\
f(\mathbf{x}+\mathbf{y}, \mathbf{z})=(\mathbf{x}+\mathbf{y})^{T} \mathbf{A} \mathbf{z}=\left(\mathbf{x}^{T}+\mathbf{y}^{T}\right) \mathbf{A} \mathbf{z}=\mathbf{x}^{T} \mathbf{A} \mathbf{z}+\mathbf{y}^{T} \mathbf{A} \mathbf{z}=f(\mathbf{x}, \mathbf{z})+f(\mathbf{y}, \mathbf{z})
\end{gathered}
$$

Positive-definiteness:

$$
\begin{gathered}
f(\mathbf{x}, \mathbf{x}) \geq 0 \\
f(\mathbf{x}, \mathbf{x})=0 \Rightarrow \mathbf{x}=\mathbf{0}
\end{gathered}
$$

$$
\begin{gathered}
f(\mathbf{x}, \mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0 \\
f(\mathbf{x}, \mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}=0 \Rightarrow \mathbf{x}=\mathbf{0}
\end{gathered}
$$

Because of the positive-definiteness of the matrix \mathbf{A}

Exercise 5: PDE and Boundary Conditions
(a) For what values of α, is the PDE hyperbolic?

$$
\frac{\partial^{2} u}{\partial t^{2}}-\alpha \frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial u}{\partial x}=0
$$

Solution

General form : $A u_{x x}+B u_{x y}+C u_{x y}+$ lower order terms $=0$
To be hyperbolic, $A C-B^{2}<0$ and here, $A=-\alpha, B=0, C=1$
We get $-\alpha<0$. Hence for any positive value of α the given PDE is hyperbolic.

