Introduction to PDEs and Numerical Methods (PDEs 1): Assignment 2 (50 points)

Exercise 1: Subspaces, orthogonal projection
(16 points)
Define S to be the set of all polynomials of the form $a x+b x^{2}$, considered as functions defined on the interval $[0,1]$.
(a) Explain why S is a subspace of $C^{2}[0,1]$
(b) Compute the approximation from S, to $f(x)=e^{x}$ by minimizing the induced norm

$$
\|u\|=\sqrt{\langle u, u\rangle}
$$

using the inner product:

$$
a(u, v)=\langle u, v\rangle=\int_{0}^{1} u(x) v(x) d x
$$

and plot the original function and its approximation with a suitable software (e.g. MATLAB, PYTHON).
(12 points)

Exercise 2: Fourier Series

Determine the Fourier series of the function $f[-1,1] \rightarrow \mathbb{R}$ with $f(x):=(\pi x)^{2}$. Plot the original function and the first 5 Fourier terms with a suitable software (e.g. MATLAB or PYTHON).
Exercise 3: Norms and inner products
(a) Consider the vectors:

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
-9 \\
16
\end{array}\right] \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Compute the following expressions:

- $\left\|\mathbf{v}_{1}\right\|_{1},\left\|\mathbf{v}_{2}\right\|_{1}$
- $\left\|\mathbf{v}_{1}\right\|_{2},\left\|\mathbf{v}_{2}\right\|_{2}$
- $\left\|\mathbf{v}_{1}\right\|_{\infty},\left\|\mathbf{v}_{1}\right\|_{\infty}$
- $\left\|\mathbf{v}_{1}\right\|_{4},\left\|\mathbf{v}_{2}\right\|_{4}$
- $\left\langle\mathbf{v}_{1}, \mathbf{v}_{2}\right\rangle$
(b) Consider the scalar functions:

$$
f(x)=\cos (\pi x), \quad g(x)=2 \quad x \in \Omega=[-1,1]
$$

Compute the following expressions on the domain Ω :

- $\|f\|_{2},\|g\|_{2}$
- $\|f\|_{\infty},\|g\|_{\infty}$
- $\langle f, g\rangle$

Prove that if $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a symmetric and positive definite matrix, that is

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0 \quad \forall \mathbf{x} \in \mathbb{R}^{\mathbf{n}} \quad \text { and } \quad \mathbf{x}^{T} \mathbf{A} \mathbf{x}=0 \quad \text { onlywhen } \quad \mathbf{x}=\mathbf{0}
$$

then the mapping

$$
f(\mathbf{x}, \mathbf{y})=\mathbf{x}^{T} \mathbf{A} \mathbf{y}
$$

defines an inner product.
Exercise 5: PDE and Boundary Conditions
(a) For what values of α, is the PDE hyperbolic?

$$
\frac{\partial^{2} u}{\partial t^{2}}-\alpha \frac{\partial^{2} u}{\partial x^{2}}+4 \frac{\partial u}{\partial x}=0
$$

