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Exercise 1: Differential operators (15 points)
(a) Let f1(x, y, z) = zex sin(y). Determine ∂f1

∂x ,
∂f1
∂y ,

∂f1
∂z and ∇f1. (4 points)

Solution (a)

∂f1
∂x

= zex sin(y) ∂f1
∂y

= zex cos(y) ∂f1
∂z

= ex sin(y) ∇f1(x, y) =


zex sin(y)
zex cos(y)
ex sin(y)


−−−−−−

(b) Let f2(x, y, z) = (xy2, xy, cos(z))T . Determine ∇ · f2 and ∇× f2. (4 points)

Solution

∇ · f2 =


∂
∂x
∂
∂y
∂
∂z


T 

xy2

xy

cos(z))

 = ∂(xy2)
∂x

+ ∂(xy)
∂y

+ ∂ cos(z)
∂z

= y2 + x− sin(z)

∇× f2 =


∂
∂x
∂
∂y
∂
∂z

×


xy2

xy

cos(z))

 =


∂ cos(z)
∂y − ∂xy

∂z

−∂ cos(z)
∂x + ∂xy2

∂z
∂xy
∂x −

∂xy2

∂y

 =


0
0

y − 2yx


−−−−−−

(c) Let f3(x, y, z) = x2 + y4z. Determine ∆f3. (3 points)

Solution



∆f3 = ∂2f3
∂x2 + ∂2f3

∂y2 + ∂2f3
∂z2 .

∂f3
∂x = 2x, then ∂2f3

∂x2 = 2

∂f3
∂y = 4y3z, then ∂2f3

∂y2 = 12y2z

∂f3
∂z = y4, then ∂2f3

∂z2 = 0

Therefore, ∆f3 = 2 + 12y2z.
−−−−−−

(d) Show that ∇ · ∇f = ∆f and ∇ × ∇f = 0 for any two-times differentiable function
f : Ω→ R3. (4 points)

Solution

∇ · ∇f = ∂
∂x

∂f
∂x + ∂

∂y
∂f
∂y + ∂

∂z
∂f
∂z = ∂2f

∂x2 + ∂2f
∂y2 + ∂2f

∂z2 = ∆f

Using Matrix-vector Notation:

∇×∇f = ∂
∂xi

ei × ∂f
∂xj

ej = ∂2f
∂xixj

εijkek = ( ∂2f
∂x2x3

− ∂2f
∂x3x2

)e1 + ( ∂2f
∂x3x1

− ∂2f
∂x1x3

)e2 + ( ∂2f
∂x1x2

−
∂2f
∂x2x1

)e3

Since ∂2f
∂xixj

= ∂2f
∂xjx1

, the sum for every one of the vector components is zero.

−−−−−−

Exercise 2: Heat equation (6 points)
Consider the heat equation on a bar of unit length, with parameter β2:

∂

∂t
u(x, t)− β2 ∂

2

∂x2u(x, t) = f(x, t)

(a) Assume boundary conditions u(0, t) = 0, u(π, t) = 0 and the source term f(x, t) = 0.
Prove that u(x, t) = e−2t sin(x) can be a solution of the heat equation and specify the value
of β2 that ensures this proof. (3 points)

Solution
At x = 0, u(0, t) = e−2tsin(0) = 0 x = π, u(π, t) = e−2tsin(π) = 0
Hence the boundary conditions are satisfed!

∂
∂tu(x, t) = −2e−2t sin(x) and ∂2

∂x2u(x, t) = −e−2t sin(x)
Substituting these in the above heat equation, we get:
−2e−2t sin(x) + β2e−2t sin(x) = 0
e−2t sin(x)[−2 + β2] = 0
β = ±

√
2

−−−−−−



(b) Now assume β = 1, boundary conditions ∂u
∂x (0, t) = 0 and ∂u

∂x (π, t) = 0 and a solution
u(x, t) = (t2 + t) cos(x). What must f(x, t) look like if the heat equation should be satisfied.

(3 points)

Solution
∂
∂tu(x, t) = (2t+ 1) cos(x), ∂

∂xu(x, t) = −(t2 + t) sin(x) and ∂2

∂x2u(x, t) = −(t2 + t) cos(x)
Substituting these in the above heat equation, we get:
f(x, t) = (t2 + 3t+ 1) cos(x)

But one should not forget to observe that u(x, t) = (t2 + t) cos(x) also satisfies the boundary
conditions and hence it is a solution.

−−−−−−

Exercise 3: Classification of differential equations (9 points)
Classify (order, linear/nonlinear, stationary/instationary, homogeneous, inhomogeneous)
the following differential equations:
(a)

∂3u

∂x3 + 2 ∂4u

∂x2∂y2 + ∂4u

∂y4 = 0

(4 points)

Solution
4th Order. Since it does not depend on time, it is stationary. Consider u = 0, and replace
it in the Differential Equation, then:

∂3u
∂x3 + 2 ∂4u

∂x2∂y2 + ∂4u
∂y4 = 0. Therefore, the equation is homogeneous.

Linearity condition: L(αu+βv) = αL(u) +βL(v). In this case, L(u) = ∂3u
∂x3 + 2 ∂4u

∂x2∂y2 + ∂4u
∂y4 .

Then, L(αu+ βv) = ∂3(αu+βv)
∂x3 + 2∂

4(αu+βv)
∂x2∂y2 + ∂4(αu+βv)

∂y4

= α∂
3u
∂x3 + β ∂

3v
∂x3 + 2α ∂4u

∂x2∂y2 + 2β ∂4v
∂x2∂y2 + α∂

4u
∂y4 + β ∂

4v
∂y4

= α(∂3u
∂x3 + 2 ∂4u

∂x2∂y2 + ∂4u
∂y4 ) + β( ∂3v

∂x3 + 2 ∂4v
∂x2∂y2 + ∂4v

∂y4 ) = αL(u) + βL(v).

Consequently, the PDE is linear.

−−−−−−

(b)
∂2u

∂t2
− ∂2u

∂x2 + sin(u) = x sin(t)

(5 points)

Solution
2nd Order, instationary PDE. Since u = 0 leads to a non-zero RHS value x sin(t), it is a
non-homogeneous PDE.



Linearity condition: L(αu+ βv) = αL(u) + βL(v).
In this case, L(u) = ∂2u

∂t2 −
∂2u
∂x2 + sin(u)

Then, L(αu+ βv) = ∂2(αu+βv)
∂t2 − ∂2(αu+βv)

∂x2 + sin(αu+ βv)

= α(∂2u
∂t2 −

∂2u
∂x2 ) + β(∂2v

∂t2 −
∂2v
∂x2 ) + sin(αu) cos(βv) + cos(αu) sin(βv) 6= αL(u) + βL(v).

The term leading to non-linearity is sin(u)

−−−−−−

Exercise 4: Analytic solution to a PDE (20 points)
Consider the PDE

ut − c2uxx = 0 for x ∈ (0, π) and t ∈ (0,∞)

with initial and Neumann boundary conditions

u(x, 0) = cos(2x) ∂u

∂x
(0, t) = 0, ∂u

∂x
(π, t) = 0.

(a) Do a separation–Ansatz and thus derive two separate ODEs

ḟ

f
= c2 g

′′

g
= A, with A ∈ R

(4 points)

Solution
The ansatz is:

u = f(t)g(x)

ut = ḟ(t)g(x) and uxx = f(t)g′′(x)

Substituting these in the given PDE, we get the two ODEs:

ODE1: ḟ
f

= A

ODE2: c2 g
′′

g
= A

−−−−−−

(b) Solve both ODEs subject to the boundary conditions to get an infinite number of par-
ticular solutions of the PDE. You may assume that the separation–constant A < 0. Write
down the general solution of the PDE without regard to the initial conditions as a sum
(superposition) of all particular solutions.

Solution
Solve

c2g′′ −Ag = 0

if we look for the function g(x) in the form:

g(x) = eλx



c2λ2eλx −Aeλx = 0

Dividing both sides by eλx, we get to the characteristic equation:

c2λ2 −A = 0

λ2 = A

c2 λ = ±

√
A

c2

where λ is a complex number when A < 0 assumed:

λ = ±i

√
−A
c2

And thus the solution has the form:

g(x) = C1e
i

√
−A

c2 x + C2e
−i

√
−A

c2 x

Or in different form:

g(x) = B1 cos

√
−A
c2 x

 +B2 sin

√
−A
c2 x


To apply the Neumann boundary conditions, we need the derivative of the solution:

∂u

∂x
= ∂(f(t)g(x))

∂x
= f(t)∂g(x)

∂x

∂g(x)
∂x

= −B1

√
−A
c2 sin

√
−A
c2 x

 +B2

√
−A
c2 cos

√
−A
c2 x


∂u

∂x
(0, t) = 0→ u(x) only gives non-trivial solution if g′(0) = 0

∂u

∂x
(π, t) = 0→ u(x) only gives non-trivial solution if g′(π) = 0

g′(0) = −B1

√
−A
c2 sin

√
−A
c2 0


︸ ︷︷ ︸

=0

+B2

√
−A
c2 cos

√
−A
c2 0


︸ ︷︷ ︸

=1

→ B2 = 0

Thus g(x) has only cosine terms.

g′(π) = −B1

√
−A
c2 sin

√
−A
c2 π

 = 0→ sin

√
−A
c2 π

 = 0

√
−A
c2 π

 = kπ k = 1, 2..n

→ −A = (kc)2 k = 1, 2..n

And accordingly a sequence of solution for g(x) is:

gk(x) = B1k cos (kx)

Solving the first ODE (ODE1):

ḟ = Af → f(t) = DeAt → fk(t) = Dke
−(kc)2t



Consequently, one sequence of the solution from the ansatz

uk(x, t) = fk(t)gk(x) = Cke
−(kc)2t cos (kx)

And the solution:
u(x, t) =

∞∑
k=1

uk =
∞∑
k=1

Cke
−(kc)2t cos (kx)

−−−−−−

(12 points)
(c) Incorporate the initial conditions to find the exact solution of the PDE.

Solution
Applying the initial condition:

u(x, 0) = cos(2x)

u(x, 0) =
∞∑
k=1

Ck e
−(kc)20︸ ︷︷ ︸

=1

cos (kx) =
∞∑
k=1

Ck sin (kx) = cos(2x)→ C2 = 1, Ci = 0 for i 6= 2

u(x, t) = e−4c2t cos (2x)

−−−−−−

(4 points)


