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Exercise 1: Differential operators

(a) Let fi(z,y,2) = ze®sin(y). Determine 2L

Solution (a)

0 0
s By e and Vi,

oh _ ze” sin(y)

ox

(b) Let fa(x,y, 2) = (zy?, xy,cos(z)). Determine V - f5 and V x fs.

(15 points)
(4 points)

(4 points)

=%+ —sin(z)
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o(x o(x 0 cos(z
Vit |2 w | = (ay)Jr (2y) | (2)
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v cos(z))
d dcos(z) _ 9
7 zy? N
V x fa = a% X Ty = = acg;(z) _|_ 82‘53 =
21 |cos(z)) S — o y — 2yz

(c) Let f3(z,y,2) = 22 + y*z. Determine A f3.

(3 points)



Af?,—%fg—i-af?’—i—azfg.

% = 2z, then %2:5’;‘5 =2

8f3 = 4932, then 2 8 —12y z

afs

= ¢*, then 2z23 =0

Therefore, Afs = 2 + 12y°z.

(d) Show that V-Vf = Af and V x Vf = 0 for any two-times differentiable function

f:Q— RS (4 points)
_00f  00f  0of _f 0 0
VVf=g ot gt G =kt ot aE=Af

Using Matrix-vector Notation:

of 0*f _ (. 0f _ &f o%f _ 9%f ?f
V x Vf 8 “€; X ox; €j = ox; Cijk€k = (8a:2a:3 8&83&:2)61 + (8383301 8a11a:3)62 + (Baclacz
2
o f
Oxox1 )63
Since ;2L = 2Lt f f the vect s i
mce 8:01‘:6]‘ = amjxl, € Sum Ior every one o € vector components 1S zZero.
Exercise 2: Heat equation (6 points)

Consider the heat equation on a bar of unit length, with parameter 32:

2

0 9 0 B
7“(1‘ t) ﬂ wu(m,t) - f(ZEat)

(a) Assume boundary conditions u(0,t) = 0, u(m,t) = 0 and the source term f(z,t) = 0.

Prove that u(z,t) = e %' sin(z) can be a solution of the heat equation and specify the value

of 42 that ensures this proof. (3 points)
At x = 0,u(0,t) = e ?!sin(0) = 0 = u(m,t) =e Hsin(n) =0

Hence the boundary conditions are satisfed!

gt (z,t) = —2e~?!sin(z) and aa—;u(a:,t) = —e ?tsin(z)
Substituting these in the above heat equation, we get:
—2e~ 2! sin(z) + B%e ! sin(z) = 0

e 2 sin(z)[—2 + 8% =0

B=4/2



(b) Now assume = 1, boundary conditions g—;‘((),t) =0 and %(ﬂ',t) = 0 and a solution

u(z,t) = (1 +t) cos(z). What must f(z,t) look like if the heat equation should be satisfied.
(3 points)

%u(az,t) = (2t + 1) cos(z), %u(m,t) = —(t? +t)sin(z) and %u(m,t) = —(t? +t) cos(x)
Substituting these in the above heat equation, we get:
f(z,t) = (2 + 3t + 1) cos(x)

But one should not forget to observe that u(z,t) = (12 +1) cos(z) also satisfies the boundary

conditions and hence it is a solution.

Exercise 3: Classification of differential equations (9 points)
Classify (order, linear/nonlinear, stationary/instationary, homogeneous, inhomogeneous)
the following differential equations:

(a)
u 0*u 0*u
923 +278x28y2 + oyt =0
(4 points)

4th Order. Since it does not depend on time, it is stationary. Consider u = 0, and replace

it in the Differential Equation, then:

3 4 4 . .
% + 2% + g—ylf = 0. Therefore, the equation is homogeneous.

Linearity condition: L(au+ fv) = aL(u)+ BL(v). In this case, L(u) = % + 2%5;2 + giylf.

Then, L(au + fv) = 2Gut2)  p@loutfn) | O'fantfo)

_8%u d3v o%u o*v d*u o*v
=ags + B + 20500 + 2B T gyt + B
93 o4 9t fosd 94 o4
= algzs + 2g7a T gyt) T B(ges T 2qmgp + gyr) = al(u) + BL(v).

Consequently, the PDE is linear.

(b)

(5 points)

2nd Order, instationary PDE. Since u = 0 leads to a non-zero RHS value xsin(t), it is a

non-homogeneous PDE.



Linearity condition: L(au + fv) = aL(u) + SL(v).
In this case, L(u) = g%‘ - % + sin(u)

Then, L(au + ﬁU) _ BQ(Cz;tj’ﬁv) _ 32(05!;‘;’511) + sin(au + ﬁv)

=a(Zu — Zuy 4 3Ty — Zu) | sin(au) cos(Bv) + cos(au) sin(Bv) # aL(u) + BL(v).
The term leading to non-linearity is sin(u)

Exercise 4: Analytic solution to a PDE (20 points)
Consider the PDE

Ut — gy =0 for x € (0,7) and t € (0, 00)

with initial and Neumann boundary conditions

u(z,0) = cos(2x) gZ(O, t) =0, g‘:(ﬁ, t) =0.

(a) Do a separation—Ansatz and thus derive two separate ODEs

= =" = A, with A € R

/ g
(4 points)
The ansatz is:
u= f(t)g(z)

uy = f(t)g(z) and ugz, = f(t)g" (2)

Substituting these in the given PDE, we get the two ODEs:

f
ODEl: = =A
/

(b) Solve both ODEs subject to the boundary conditions to get an infinite number of par-
ticular solutions of the PDE. You may assume that the separation—constant A < 0. Write
down the general solution of the PDE without regard to the initial conditions as a sum

(superposition) of all particular solutions.

Solve
g’ —Ag=0

if we look for the function g(x) in the form:

g(z) =e



AN — A =0
Dividing both sides by e**, we get to the characteristic equation:

AN —A=0

A A
2 _ _
)\——62 A=+ 2

where A is a complex number when A < 0 assumed:

C—=A
)\ = :i:l CT
And thus the solution has the form:

. f—a . /=A
g(x):CleZV ZE 4 Che VET

Or in different form:

g(z) = Bj cos (\/ _C;lx> + By sin (1 / _C;lx)

To apply the Neumann boundary conditions, we need the derivative of the solution:

ou _ 2f(0(@) _ ;(, 09(a)
Ox Ox Ox
0 |—A [—A [—A —A
!((]9(;) =-B C—Zsin ( cQ:r) + By C—QCOS ( 621’)
8'& . .. . . /

%(0, t) = 0 — u(x) only gives non-trivial solution if ¢'(0) = 0
%(m t) = 0 — u(z) only gives non-trivial solution if ¢’(7) = 0
[—A |—A [—A [—A
g,(O) = —Bl CTSiIl ( 020) —|—B2 CT COS ( 020) — B2 =0
—_———— —_———
-0 =1

And accordingly a sequence of solution for g(z) is:
gr(x) = By cos (kx)
Solving the first ODE (ODE1):

F=Af =  F(t)=Der = fu(t) = Dye~ (kO™



Consequently, one sequence of the solution from the ansatz
ur(@, 1) = fr(t)gr(x) = Cre” "™ cos (ka)

And the solution:

u(zx,t) = Zuk = Z Cre~*t cos (kx)
k=1 k=1

(12 points)

(¢c) Incorporate the initial conditions to find the exact solution of the PDE.

Applying the initial condition:
u(x,0) = cos(2x)

u(z,0) = Z Cr e F90 cog (kx) = Z Cisin (kx) =cos(2z) > Cy=1, C;=0 fori#2
k=1 =1 k=1

(4 points)



