Technical University Braunschweig

Noemi Friedman, Ph.D., Jaroslav Vondřejc, Ph.D.

Introduction to PDEs and Numerical Methods (PDEs 1): Assignment 1 (50 points)

Exercise 1: Differential operators		$(15 \hspace{0.1in} \text{points})$
(a)	Let $f_1(x,y) = ze^x \sin(y)$. Determine $\frac{\partial f_1}{\partial x}$, $\frac{\partial f_1}{\partial y}$, $\frac{\partial f_1}{\partial z}$ and ∇f_1 .	(4 points)
(b)	Let $\mathbf{f_2}(x, y) = (xy^2, xy, \cos(z))^T$. Determine $\nabla \cdot \mathbf{f_2}$ and $\nabla \times \mathbf{f_2}$.	(4 points)

(c) Let $f_3(x, y, z) = x^2 + y^4 z$. Determine Δf_3 . (3 points)

(d) Show that $\nabla \cdot \nabla f = \Delta f$ and $\nabla \times \nabla f = 0$ for any two-times differentiable function $f: \Omega \to \mathbb{R}^3$. (4 points)

Exercise 2: Heat equation

Consider the heat equation on a bar of unit length, with parameter β^2 :

$$\frac{\partial}{\partial t}u(x,t)-\beta^2\frac{\partial^2}{\partial x^2}u(x,t)=f(x,t)$$

(a) Assume boundary conditions u(0,t) = 0, $u(\pi,t) = 0$ and the source term f(x,t) = 0. Prove that $u(x,t) = e^{-2t} \sin(x)$ can be a solution of the heat equation and specify the value of β^2 that ensures this proof. (3 points)

(b) Now assume $\beta = 1$, boundary conditions $\frac{\partial u}{\partial x}(0,t) = 0$ and $\frac{\partial u}{\partial x}(\pi,t) = 0$ and a solution $u(x,t) = (t^2 + t)\cos(x)$. What must f(x,t) look like if the heat equation should be satisfied. (3 points)

Exercise 3: Classification of differential equations

Classify (order, linear/nonlinear, stationary/instationary, homogeneous, inhomogeneous) the following differential equations:

(a)

$$\frac{\partial^3 u}{\partial x^3} + 2\frac{\partial^4 u}{\partial x^2 \partial y^2} + \frac{\partial^4 u}{\partial y^4} = 0$$

(4 points)

(9 points)

(b)

$$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} + \sin(u) = x\sin(t)$$

(6 points)

(20 points)

Exercise 4: Analytic solution to a PDE

Consider the PDE

$$u_t - c^2 u_{xx} = 0$$
 for $x \in (0, \pi)$ and $t \in (0, \infty)$

with initial and Neumann boundary conditions

$$u(x,0) = \cos(2x)$$
 $\frac{\partial u}{\partial x}(0,t) = 0,$ $\frac{\partial u}{\partial x}(\pi,t) = 0.$

(a) Do a separation–Ansatz and thus derive two separate ODEs

$$\frac{\dot{f}}{f} = c^2 \frac{g''}{g} = A, \quad \text{with } A \in \mathbb{R}$$

(4 points)

(b) Solve both ODEs subject to the boundary conditions to get an infinite number of particular solutions of the PDE. You may assume that the separation–constant A < 0. Write down the general solution of the PDE without regard to the initial conditions as a sum (superposition) of all particular solutions.

(12 points)

(c) Incorporate the initial conditions to find the exact solution of the PDE.

(4 points)