Introduction to PDEs and Numerical Methods (PDEs 1): Assignment 1 (50 points)

Exercise 1: Differential operators
(a) Let $f_{1}(x, y)=z e^{x} \sin (y)$. Determine $\frac{\partial f_{1}}{\partial x}, \frac{\partial f_{1}}{\partial y}, \frac{\partial f_{1}}{\partial z}$ and ∇f_{1}.
(b) Let $\mathbf{f}_{\mathbf{2}}(x, y)=\left(x y^{2}, x y, \cos (z)\right)^{T}$. Determine $\nabla \cdot \mathbf{f}_{\mathbf{2}}$ and $\nabla \times \mathbf{f}_{\mathbf{2}}$.
(c) Let $f_{3}(x, y, z)=x^{2}+y^{4} z$. Determine Δf_{3}.
(d) Show that $\nabla \cdot \nabla f=\Delta f$ and $\nabla \times \nabla f=0$ for any two-times differentiable function $f: \Omega \rightarrow \mathbb{R}^{3}$.

Consider the heat equation on a bar of unit length, with parameter β^{2} :

$$
\frac{\partial}{\partial t} u(x, t)-\beta^{2} \frac{\partial^{2}}{\partial x^{2}} u(x, t)=f(x, t)
$$

(a) Assume boundary conditions $u(0, t)=0, u(\pi, t)=0$ and the source term $f(x, t)=0$. Prove that $u(x, t)=e^{-2 t} \sin (x)$ can be a solution of the heat equation and specify the value of β^{2} that ensures this proof.
(b) Now assume $\beta=1$, boundary conditions $\frac{\partial u}{\partial x}(0, t)=0$ and $\frac{\partial u}{\partial x}(\pi, t)=0$ and a solution $u(x, t)=\left(t^{2}+t\right) \cos (x)$. What must $f(x, t)$ look like if the heat equation should be satisfied.

Exercise 3: Classification of differential equations
Classify (order, linear/nonlinear, stationary/instationary, homogeneous, inhomogeneous) the following differential equations:
(a)

$$
\frac{\partial^{3} u}{\partial x^{3}}+2 \frac{\partial^{4} u}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} u}{\partial y^{4}}=0
$$

(b)

$$
\frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}+\sin (u)=x \sin (t)
$$

Exercise 4: Analytic solution to a PDE
(20 points)
Consider the PDE

$$
u_{t}-c^{2} u_{x x}=0 \quad \text { for } x \in(0, \pi) \text { and } t \in(0, \infty)
$$

with initial and Neumann boundary conditions

$$
u(x, 0)=\cos (2 x) \quad \frac{\partial u}{\partial x}(0, t)=0, \quad \frac{\partial u}{\partial x}(\pi, t)=0 .
$$

(a) Do a separation-Ansatz and thus derive two separate ODEs

$$
\frac{\dot{f}}{f}=c^{2} \frac{g^{\prime \prime}}{g}=A, \quad \text { with } A \in \mathbb{R}
$$

(b) Solve both ODEs subject to the boundary conditions to get an infinite number of particular solutions of the PDE. You may assume that the separation-constant $A<0$. Write down the general solution of the PDE without regard to the initial conditions as a sum (superposition) of all particular solutions.
(c) Incorporate the initial conditions to find the exact solution of the PDE.

