Advanced Methods for ODEs and DAEs: Assignment 1

Exercise 1:

Derive the second order explicit Runge Kutta method given by Butcher table

$\begin{array}{c|ccc} 0 & 0 & 0 \\ \hline 2/3 & 2/3 & 0 \\ \hline & 1/4 & 3/4 \end{array}$

Exercise 2:

(a) In Matlab implement general explicit Runge Kutta method given matrix A, and vectors b and c. Note that in case of explicit method the matrix A is lower triangual without diagonal. (8 points)

(b) For the system of ODEs

$$\dot{x} = x + 2y$$
$$\dot{y} = 3x + 2y$$

use the previously developed method to integrate the state $\mathbf{x} = (x, y)^T$ in time interval [0, 100] given the Butcher table

0	0	0	0	0
1/2	1/2	0	0	0
1/2	0	1/2	0	0
1	0	0	1	0
	1/6	1/3	1/3	1/6

,

initial condition $\mathbf{x} = (1, 1)^T$ and the time step size h = 1.

(c) Could you estimate the order of the previously given method without computing the local error? (8 points)

Dr. Bojana Rosić

Summer Term 2017

(94	mainta)
(44	points)

(12 points)