Dr. Thilo Moshagen
Due date: 09.11.2018
Dr. Hanna Veselovska

# Introduction to Scientific Computing 

## Exercise 1: Equilibrium

## 13 points

Find equilibrium point for the following systems or equations and answer the question.
(a) The Lotka-Volterra equations

$$
\begin{aligned}
& \frac{d x}{d t}=\alpha x-\beta x y \\
& \frac{d y}{d t}=\delta x y-\gamma y
\end{aligned}
$$

Explain what kind of process is represented by the Lotka-Volterra equations? What is described by $\frac{d x}{d t}$ and $\frac{d y}{d t}$ ?
(b) The ordinary differential equation: $\dot{x}=\lambda x$. For what $\lambda$ is the equilibrium point stable according to the Lyapunov definition?
(c) The logistic equation: $\dot{x}=\lambda x\left(x-x_{\max }\right)$. For what $a$ is the equilibrium point (3 points) stable according to the Lyapunov definition? Sketch the vector field of the equation.
(d) The difference equation: $x_{n+1}=a x_{n}$. For what $a$ is the equilibrium point stable according to the Lyapunov definition?

Exercise 2: Transformations. Use parameter names as in brackets.
18 points
(a) Transform the following difference equation from 2 nd order to 1st order form:

$$
x_{n+1}=3 x_{n}-2 x_{n-1}+1 .
$$

(b) Having a two-mass ( $m_{1}, m_{2}$ ) two-spring ( $c_{1}, c_{2}$ ) system, sketch the system, explain the process and write down the differential equations describing the system. Transform the second order differential equations into a system of equations of first order. (10 points) (You might find it easier to choose the coordenate systems moving with the masses.)
(c) Having a damped $\left(d_{1}, d_{2}\right)$ two-mass ( $m_{1}, m_{2}$ ) two-spring $\left(c_{1}, c_{2}\right)$ system, sketch the system, explain the process and write down the differential equations describing the system. Transform the second order differential equations into a system of equation of first order. (5 points)

Exercise 3: Extreme values
5 points
Find extreme values of the function $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with

$$
u\left(x_{1}, x_{2}, x_{3}\right)=\sin x_{1}+\sin x_{2}+\sin x_{3}-\sin \left(x_{1}+x_{2}+x_{3}\right) .
$$

Are they minima, maxima or saddle points?

