Introduction to Scientific Computing Linear Algebra

Exercise 1: Vector spaces
10 points
(a) Prove that the set Π_{n} of all real polynomials of degree not exceeding n, form a vector space. How do the zero element and identity element look like?
(3 points)
(b) Prove that the set of real polynomials of degree n does not form a vector space.
(3 points)
(c) Let C be a set of all bounded functions $f:[a, b] \rightarrow \mathbb{R}$. How can one define the addition and multiplication on C to make C a vector space? Prove that according to your definition the set C is a vector space.

Exercise 2: Norms, eigenvalues and eigenvectors
10 points
(a) Given the vector $\mathbf{x}=(1,2,2)$ find both \mathbf{L}^{p}-norm, for $p=1,2$, and $\|\mathbf{x}\|_{\infty}$.
(b) Given the matrix $\mathrm{A}=\left[\begin{array}{cc}1 & 2 \\ -1 & 4\end{array}\right]$ find $\|A\|_{1},\|A\|_{\infty}$, eigenvalues and eigenvectors of A.
(3 points)
(c) Given the matrix $B=\left[\begin{array}{ccc}1 & 2 & -3 \\ -5 & 1 & -4 \\ 0 & -2 & 4\end{array}\right]$ find eigenvalues and eigenvectors of B.
(5 points)

Exercise 3: Eigen decomposition

16 points
Let the linear map $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $\mathbf{x} \mapsto \mathbf{y}=\mathrm{C} \mathbf{x}$ be defined by
the matrix $\mathbf{C}=\left[\begin{array}{lll}3 & -2 & 2 \\ 2 & -1 & 2 \\ 2 & -2 & 3\end{array}\right]$, where $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right), \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}$.
(a) Find the eigen decomposition of the matrix C .
(b) Compute the determinant of the matrix C using its eigenvalues, and find whether the linear map φ provides one to one correspondence or not.
(c) Compute eigenvalues of the matrix C^{-1} describing the inverse map φ^{-1}.
(d) Compute the matrix C^{5} that determines the map φ^{5}.
(e) Compute the matrix C^{3015} that determines the map φ^{3015}.
(4 points)

