Introduction to Scientific Computing Linear Algebra

Exercise 1: *Vector spaces*

- (a) Prove that the set Π_n of all real polynomials of degree not exceeding *n*, form a vector space. How do the zero element and identity element look like? (3 points)
- (b) Prove that the set of real polynomials of degree *n* does not form a vector space.
- (c) Let C be a set of all bounded functions f: [a,b] → ℝ. How can one define the addition and multiplication on C to make C a vector space? Prove that according to your definition the set C is a vector space.

Exercise 2: Norms, eigenvalues and eigenvectors

- (a) Given the vector $\mathbf{x} = (1, 2, 2)$ find both \mathbf{L}^p -norm, for p = 1, 2, and $\|\mathbf{x}\|_{\infty}$. (2 points)
- (b) Given the matrix $A = \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$ find $||A||_1$, $||A||_{\infty}$, eigenvalues and eigenvectors of *A*.
- (c) Given the matrix B = $\begin{bmatrix} 1 & 2 & -3 \\ -5 & 1 & -4 \\ 0 & -2 & 4 \end{bmatrix}$ find eigenvalues and eigenvectors of B. (5 points)

Exercise 3: Eigen decomposition

Let the linear map $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ with $\mathbf{x} \mapsto \mathbf{y} = \mathbf{C}\mathbf{x}$ be defined by the matrix $\mathbf{C} = \begin{bmatrix} 3 & -2 & 2 \\ 2 & -1 & 2 \\ 2 & -2 & 3 \end{bmatrix}$, where $\mathbf{x} = (x_1, x_2, x_3), \mathbf{y} = (y_1, y_2, y_3) \in \mathbb{R}^3$.

- (c) Compute eigenvalues of the matrix C^{-1} describing the inverse map φ^{-1} . (2 points)
- (d) Compute the matrix C^5 that determines the map φ^5 .
- (e) Compute the matrix C^{3015} that determines the map φ^{3015} . (4 points)

Winter Term 2018/19 Assignment 1 Due date: 26.10.2018

10 points

(3 points)

10 points

16 points

(4 points)

(3 points)