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This paper presents a simple and effective formulation based on Isogeometric Analysis (IGA) and Higher-
order Shear Deformation Theory (HSDT) to investigate static, free vibration and dynamic control of
piezoelectric composite plates integrated with sensors and actuators. In the composite plates, the
mechanical displacement field is approximated according to the HSDT model using isogeometric
elements based on Non-Uniform Rational B-Spline (NURBS) basis functions. These achieve naturally
any desired degree of continuity through the choice of the interpolation order, so that the method easily
fulfills the C1-continuity requirement of the HSDT model. The electric potential is assumed to vary line-
arly through the thickness for each piezoelectric sublayer. A displacement and velocity feedback control
algorithm is used for the active control of the static deflection and of the dynamic response of the plates
through a closed-loop control with bonded or embedded distributed piezoelectric sensors and actuators.
The accuracy and reliability of the proposed method is verified by comparing its numerical predictions
with those of other available numerical approaches.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

The integration of composite plates with piezoelectric materials
to obtain active lightweight smart structures has attracted a
considerable interest for various applications such as automotive
sensors, actuators, transducers and active damping devices. Piezo-
electric materials are often used to design smart structures in
industrial, medical, military and scientific areas. One of the essen-
tial features of piezoelectric materials is their ability of transforma-
tion between mechanical energy and electric energy. Specifically,
when piezoelectric materials are deformed, electric charges are
generated, and conversely, the application of an electric field
produces mechanical deformations in the structure [1].

Due to the attractive properties of piezoelectric composite
structures, various numerical methods have been proposed to
model and simulate their behavior. For static and free vibration
analysis, Yang and Lee [2] showed that the early work on struc-
tures with piezoelectric layers, which ignored the mass and
stiffness of the layers, could lead to substantial errors in the natural
frequencies and mode shapes. Pletner and Abramovich [3] studied
a consistent technique for modeling piezolaminated shells. Hong
and Chopra [4] incorporated the piezoelectric layers as plies with
special properties into the laminate and assumed that consistent
deformations exist in the substrate and piezoelectric layers. Kim
et al. [5] validated the finite element (FE) model of a smart cantile-
ver plate through comparison with experiments. Willberg and
Gabbert [6] studied a three-dimensional piezoelectric solid model
using isogeometric finite elements. FE models for piezoelectric
composite beams and plates have been reported in Refs. [7–16].
Additionally, several other numerical methods [34–48] are promis-
ing to solve various piezoelectric structures.

For vibration control, some theories integrated with various
numerical methods have been proposed and can be generally clas-
sified into two categories, namely, the analytical methods and the
equivalent single-layer theories. In the framework of analytical
methods, smart beams with embedded or surface distributed
piezoelectric sensors and actuators were initially investigated in
Refs. [17,18]. Tzou and Tseng [19] developed a piezoelectric thin
hexahedron solid element for analysis of plates and shells with
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Fig. 1. Configuration of a piezoelectric laminated composite plate.
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distributed piezoelectric sensors and actuators. The three most
popular equivalent single-layer theories are the Classical Lamina-
tion Theory (CLT), the First-order Shear Deformation Theory
(FSDT), and the Higher-order Shear Deformation Theory (HSDT).

In the CLT, which is based on the assumptions of Kirchhoff’s
plate theory, the interlaminar shear deformation is neglected. Fol-
lowing this framework, Hwang and Park [20] and Lam et al. [7]
introduced control algorithms based on classical negative velocity
feedback control and the FE method which were formulated based
on the discrete Kirchhoff quadrilateral element or the rectangular
plate bending element. Liu et al. [21,22] studied the active vibra-
tion control of beams and plates containing distributed sensors
and actuators. In these works, the formulation of vibration control
simulation was based on the classical plate theory and the Radial
Point Interpolation Method (RPIM).

In the FSDT, a constant transverse shear deformation is
assumed through the entire thickness of the laminate and hence
stress-free boundary conditions are violated at the top and bottom
surfaces of the panel. Using this theory, Liew et al. [23] applied the
element-free Galerkin method to laminated composite beams and
plates with piezoelectric patches. Milazzo and Orlando [24] stud-
ied free vibration analysis of smart laminated thick composite
plates. Phung-Van et al. [25] extended the cell-based smoothed
discrete shear gap method to static, free vibration and control of
piezoelectric composite plates. Some FE formulations based on
FSDT for analysis of smart laminated plates and shells were studied
in Refs. [26–28].

In both CLT and FSDT theories, a shear correction factor is
required to ensure the stability of the solution. In order to improve
the accuracy of transverse shear stresses and to avoid the introduc-
tion of shear correction factors, the HSDT based on the FE method
has been proposed to study piezoelectric plates [29–31]. In this
theory, quadratic, cubic or higher-order variations of surface-
parallel displacements are assumed through the entire thickness
of the piezoelectric composite plate to model the behavior of the
structure. It is worth mentioning that the HSDT requires at least
C1-continuity of generalized displacements due to the presence
of their second-order derivatives in the stiffness formulation. This
is a source of difficulty in standard finite elements featuring C0

inter-element continuity.
This paper aims at further contributing to the dynamic analysis

of piezoelectric composite plates using an isogeometric approach
based on Non-Uniform B-Spline (NURBS) basis functions. In partic-
ular, we show that a HSDT formulation fulfilling C1-continuity
requirements is easily achieved in the framework of isogeometric
analysis.

Isogeometric Analysis (IGA) has been recently proposed by
Hughes et al. [32–34] with the original objective to tightly inte-
grate Computer Aided Design (CAD) and FE analysis. IGA makes
use of the same basis functions typically used in the CAD environ-
ment (most notably NURBS or T-Splines) to describe the geometry
of the problem exactly as it is produced from CAD as well as to
approximate the solution fields for the analysis. In addition to ful-
fill the original goal, isogeometric basis functions have been shown
to deliver significant advantages for the analysis, independently
from the integration with CAD. One of their most notable features
is that they can achieve any desired degree of smoothness through
the choice of the interpolation order, as opposed to traditional FEM
where C0 inter-element continuity is normally achieved. If p is the
order of the discretization, Cp�1 inter-element continuity is
achieved when no repeated entries in the knot vectors are present.
Hence, IGA easily fulfills the C1-continuity requirements for plate
elements stemming from the HSDT, which is of interest in this
study. In the past few years, IGA has been successfully applied to
various fields and achieves the high accuracy compared to the
exact solutions. Particularly, the advantages of IGA reported in
Please cite this article in press as: P. Phung-Van et al., Comput. Mater. Sci. (20
the recent investigations [49–58] on plate and shell structures
are of our great motivation for analysis of piezoelectric structures.

This paper exploits further the advantages of a NURBS-based
isogeometric approach for static, free vibration and dynamic
control analysis of laminated composite plates integrated with
piezoelectric sensors and actuators using the HSDT theory. In the
piezoelectric composite plates, the mechanical displacement field
is approximated according to the HSDT model using C1-continuous
NURBS isogeometric elements. Thus the C1-continuity requirement
is naturally achieved by choosing at least a quadratic interpolation
with no repeated knot vector entries. The electric potential is
assumed to vary linearly through the thickness for each piezoelec-
tric sublayer. A displacement and velocity feedback algorithm is
used for active control of the static deflection and of the dynamic
response of the plates, through a closed-loop control with bonded
or embedded distributed piezoelectric sensors and actuators. The
accuracy and reliability of the method is verified by comparing
its numerical predictions with those of other available numerical
approaches.
2. Governing equations and weak form for piezoelectric
composite plates

In this section, the governing equations for piezoelectric com-
posite plates are presented and the weak form is established via
a classical variational formulation [8,9]. Fig. 1 shows the geometry
of a piezoelectric composite plate. The layers are assumed to be
perfectly bonded, elastic and orthotropic [10] with small strains
and displacements [11], and the deformation is taking place under
isothermal conditions. In addition, the piezoelectric sensors and
actuators are made of homogenous and isotropic dielectric materi-
als [12] and high electric fields as well as cyclic fields are excluded
[13]. Based on these assumptions, a linear constitutive relationship
[14] can be employed for the static and dynamic analysis of the
piezoelectric composite plates.
2.1. Linear piezoelectric constitutive equations

The linear piezoelectric constitutive equations can be expressed
as [15,25]

r

D

� �
¼ c �eT

e g

� �
e

E

� �
ð1Þ

where r and e are the stress and strain vectors; D and E are the
dielectric displacement and electric field vectors; c is the elasticity
14), http://dx.doi.org/10.1016/j.commatsci.2014.04.068
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matrix given in Section 2.3.1; e is the piezoelectric constant matrix
and g denotes the dielectric constant matrix given in Section 2.4.

In addition, the electric field vector E is related to the gradient
of the electric potential field / [19] as follows

E ¼ �grad / ð2Þ
2.2. Weak form for piezoelectric composite plates

The weak form of the governing equations for piezoelectric
structures can be derived by using Hamilton’s variational principle
[20] which can be written as

dL ¼ 0 ð3Þ

where L is the general energy functional which contains the sum-
mation of kinetic energy, strain energy, dielectric energy and exter-
nal work and is written in the following form

L ¼
Z

X

1
2
q _uT _u� 1

2
rTeþ 1

2
DT Eþ uf s � /qs

� �
dXþ

X
uT Fp

�
X

/Q p ð4Þ

where q is the mass density, u and _u are the mechanical displace-
ment and velocity; / is the electric potential; fs and Fp are the
mechanical surface loads and point loads; qs and Q p are the surface
charges and point charges.

In the variational form of Eq. (3), the mechanical displacement
field u and the electric potential field / are the unknown functions.
To solve for these unknowns numerically, it is necessary to choose
a suitable approximation for the mechanical displacement field
and the electric potential field. In the present work, isogeometric
finite elements are used to approximate the mechanical displace-
ment field of piezoelectric composite plates. Due to the above
assumptions leading to a linear constitutive relationship [14], the
formulation for each field can be defined separately.

2.3. Approximation of the mechanical displacement field

2.3.1. Governing equations for a third-order shear deformation theory
model

According to the third-order shear deformation theory pro-
posed by Reddy [59], the displacements of an arbitrary point in
the plate are expressed by

uðx; y; zÞ ¼ u0 þ zbx þ cz3ðbx þw;xÞ
vðx; y; zÞ ¼ v0 þ zby þ cz3ðby þw;yÞ; ð�t=2 6 z 6 t=2Þ
wðx; y; zÞ ¼ w0

ð5Þ

where t is the thickness of the plate; c = 4/3t2 and the variables
u0 = [u0 v0]T, w0 and b = [bx by]T are the membrane displacements,
the deflection of the mid-plane and the rotations of the mid-plane
around y-axis and x-axis, respectively.

The in-plane strains are thus expressed by the following
equation

e ¼ ½exx eyy cxy�
T ¼ e0 þ zj1 þ z3j2 ð6Þ

where

e0 ¼
u0;x

v0;y

u0;y þv0;x

264
375; j1 ¼

bx;x

by;y

bx;y þ by;x

2664
3775; j2 ¼ c

bx;x þw0;xx

by;y þw0;yy

bx;yþ by;xþ2w0;xy

2664
3775
ð7Þ

and the transverse shear strains are given by

c ¼ ½ cxz cyz �
T ¼ es þ z2js ð8Þ
Please cite this article in press as: P. Phung-Van et al., Comput. Mater. Sci. (20
with

es ¼
bx þw0;x

by þw0;y

" #
; js ¼ 3c

bx þw0;x

by þw0;y

" #
ð9Þ

In the laminated composite plate, the constitutive equation of
the kth orthotropic layer in local coordinates is derived from
Hooke’s law for plane stress as

rxx

ryy

sxy

sxz

syz

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;

ðkÞ

¼

Q11 Q 12 Q 16 0 0
Q21 Q 22 Q 26 0 0
Q61 Q 62 Q 66 0 0

0 0 0 Q 55 Q 54

0 0 0 Q 45 Q 44

26666664

37777775

ðkÞ exx

eyy

cxy

cxz

cyz

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;

ðkÞ

ð10Þ

where the material constants are given by

Q 11 ¼
E1

1� m12m21
; Q 12 ¼

m12E2

1� m12m21
; Q 22 ¼

E2

1� m12m21

Q 66 ¼ G12; Q 55 ¼ G13; Q44 ¼ G23

ð11Þ

in which E1, E2 are the Young moduli in the x and y directions,
respectively, G12, G23, G13 are the shear moduli in the x � y, y � z,
z � x planes, respectively, and mij are the Poisson’s ratios.

The laminate is usually made of several orthotropic layers with
differently oriented orthotropy directions. The stress–strain rela-
tion for the kth orthotropic lamina (with arbitrary fiber orientation
compared to the reference axes) in the global reference system is
computed by

rxx

ryy

sxy

sxz

syz

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;

ðkÞ

¼

Q11 Q 12 Q 16 0 0
Q21 Q 22 Q 26 0 0
Q61 Q 62 Q 66 0 0

0 0 0 Q 55 Q 54

0 0 0 Q 45 Q 44

26666664

37777775

ðkÞ exx

eyy

cxy

cxz

cyz

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;

ðkÞ

ð12Þ

where Qij are the transformed material constants of the kth lamina
[60].

From Hooke’s law and the linear strains given by Eqs. (6) and
(8), the stress is computed by

r ¼
rp

s

� �
¼ D 0

0 Ds

" #
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

c

e

c

� �
|ffl{zffl}

e

¼ ce ð13Þ

where rp and s are the in-plane stress component and shear stress;
D and Ds are material constant matrices given in the form of

D ¼
A B E
B D F
E F H

264
375; Ds ¼

As Bs

Bs Ds

� �
ð14Þ

in which

ðA;B;D;E;F;HÞ ¼
Z h=2

�h=2
ð1; z; z2; z3; z4; z6ÞQij dz i; j ¼ 1;2;6

ðAs;Bs;DsÞ ¼
Z h=2

�h=2
ð1; z2; z4ÞQ ij dz i; j ¼ 4;5

ð15Þ

2.3.2. A C1-continuous isogeometric composite plate formulation based
on HDST
2.3.2.1. A brief review of NURBS basis functions. A knot vector
N = {n1, n2, . . . , nn+p+1} is defined as a sequence of knot values ni 2 R,
i = 1, . . . , n + p + 1. If the first and the last knots are repeated p + 1
times, the knot vector is called open. A B-spline basis function is
C1 continuous inside a knot span and Cp�1 continuous at each
unique knot. Each repetition of a knot decreases by one the degree
of continuity at the knot.
14), http://dx.doi.org/10.1016/j.commatsci.2014.04.068
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The univariate B-spline basis functions Ni,p(n) are defined by the
Cox–De Boor recursive formula

Ni;pðnÞ ¼
n� ni

niþp � ni
Ni;p�1ðnÞ þ

niþpþ1 � n

niþpþ1 � niþ1
Niþ1;p�1ðnÞ

as p ¼ 0; Ni;0ðnÞ ¼
1 if ni 6 n < niþ1

0 otherwise

( )
ð16Þ

Bivariate B-spline basis functions are obtained as the tensor
product of univariate basis functions in two parametric dimensions
n and g associated to two knot vectors N = {n1, n2, . . . , nn+p+1} and
H = {g1, g2, . . . , gm+q+1},

Nb
I ðn;gÞ ¼ Ni;pðnÞMj;qðgÞ ð17Þ

To present exactly some curved geometries (e.g. conics) the
NURBS functions are used. Differently from the B-spline case, each
NURBS control point is associated to an additional value called
weight fI [32]. Then the NURBS functions can be expressed as

NIðn;gÞ ¼
Nb

I fIPm�n
A Nb

Aðn;gÞfA

ð18Þ

It is clear that B-spline functions are a special case of NURBS
functions obtained when the individual weights of all control
points are equal.

It is obvious that for p = 0 or 1 the NURBS basis functions are
identical to those of standard piecewise constant and linear finite
elements, respectively. They are different for p P 2 and impor-
tantly the present approach easily satisfies the C1 continuity
requirement stemming from the third-order shear deformation
theory.

2.3.2.2. NURBS-based novel composite plate formulation. Using the
NURBS basis functions above, the displacement field u of the plate
is approximated as

uhðn;gÞ ¼
Xm�n

I

NIðn;gÞdI ð19Þ

where dI = [u0I v0I w0I bxI bxI]T is the vector of degrees of freedom
associated with the control point I.

Substituting Eq. (19) into Eqs. (6) and (8), the in-plane and shear
strains can be rewritten as:

eT
0 jT

1 jT
2 eT

s jT
s

� �T

¼
Xm�n

A¼1
Bm

I

	 
T Bb1
I

� �T
Bb2

I

� �T
Bs0

I

� �T
Bs1

I

� �T
� �T

dI

ð20Þ

where

Bm
I ¼

NI;x 0 0 0 0

0 NI;y 0 0 0

NI;y NI;x 0 0 0

264
375; Bb1

I ¼
0 0 0 NI;x 0

0 0 0 0 NI;y

0 0 0 NI;y NI;x

264
375;

Bb2
I ¼ c

0 0 NI;xx NI;x 0

0 0 NI;yy 0 NI;y

0 0 2NI;xy NI;y NI;x

264
375; Bs0

I ¼
0 0 NI;x NI 0

0 0 NI;y 0 NI

" #
;

Bs1
I ¼ 3c

0 0 NI;x NI 0

0 0 NI;y 0 NI

" #
ð21Þ
2.4. Approximation of the electric potential field

In the present study, the electric potential field of each piezo-
electric layer is approximated by discretizing each piezoelectric
Please cite this article in press as: P. Phung-Van et al., Comput. Mater. Sci. (20
layer into finite sub-layers along the thickness direction. In each
sublayer, a linear electric potential function is assumed through
the thickness as [11]

/iðzÞ ¼ Ni
//i ð22Þ

where Ni
/ is the vector of the shape functions for the electric poten-

tial, defined through Eqs. (16) and (17) with p = 1, and /i is the vec-
tor containing the electric potentials at the top and bottom surfaces
of the i-th sublayer, /i ¼ /i�1 /i

� �
ði ¼ 1;2; . . . ;nsubÞ in which nsub

is the number of piezoelectric layers.
For each piezoelectric sublayer element, it is assumed that val-

ues of electric potentials at the same height along the thickness are
as defined in [15,20]. Hence, for each sub-layer element, the elec-
tric field E in Eq. (2) can be rewritten as

E ¼ �rNi
//i ¼ �B//i ð23Þ

Note that, for the type of piezoelectric materials considered in
this work the piezoelectric constant matrix e and the dielectric
constant matrix g of the kth orthotropic layer in the local coordi-
nate system read [11]

eðkÞ ¼
0 0 0 0 d15 0

0 0 0 d15 0 0

d31 d32 d33 0 0 0

264
375
ðkÞ

; gðkÞ ¼
p11 0 0

0 p22 0

0 0 p33

264
375
ðkÞ

ð24Þ

In addition, the laminate is usually made of several orthotropic
layers with different directions of orthotropy and consequently dif-
ferent characteristic directions for the dielectric and piezoelectric
properties. The piezoelectric constant matrix for the kth orthotro-
pic lamina in the global coordinate system is given by

eðkÞ ¼
0 0 0 0 �d15 0

0 0 0 �d15 0 0
�d31

�d32
�d33 0 0 0

264
375
ðkÞ

; gðkÞ ¼
�p11 0 0

0 �p22 0

0 0 �p33

264
375
ðkÞ

ð25Þ

where �dij and �pii are transformed material constants of the kth lam-
ina and are calculated similar to Qij in Eq. (12).

2.5. Elementary governing equation of motion

The elementary governing equation of motion can be derived by
substituting Eqs. (13), (22) and (23) into Eq. (4), and assembling
the electric potentials along the thickness. The final form of this
equation is then written in the following form

Muu 0
0 0

� � €d
€/

" #
þ

Kuu Ku/

K/u K//

� �
d
/

� �
¼

F
Q

� �
ð26Þ

where

Kuu ¼
Z

X
BT

ucBudX; Ku/ ¼
Z

X
BT

ueT B/ dX

K// ¼ �
Z

X
BT

/pB/ dX; Muu ¼
Z

X

eNT meNdX
ð27Þ

in which Bu = [Bm Bb1 Bb2 Bs0 Bs1]T; m is defined by

m ¼
I0 0 0

0 I0 0

0 0 I0

264
375 where I0 ¼

I1 I2 cI4

I2 I3 cI5

cI4 cI5 c2I7

264
375

ðI1; I2; I3; I4; I5; I7Þ ¼
Z h=2

�h=2
qð1; z; z2; z3; z4; z7Þdz

ð28Þ

and
14), http://dx.doi.org/10.1016/j.commatsci.2014.04.068
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eN ¼ N1

N2

N3

8><>:
9>=>;; N1 ¼

NI 0 0 0 0
0 NI 0 0 0
0 0 NI 0 0

264
375;

N2 ¼
0 0 0 NI 0
0 0 0 0 NI

0 0 0 0 0

264
375; N3 ¼

0 0 NI;x NI 0
0 0 NI;y 0 NI

0 0 0 0 0

264
375

ð29Þ

Substituting the second line of Eq. (26) into the first line, we
obtain the shortened form as

M€dþ Kuu þ Ku/K�1
//K/u

� �
d ¼ Fþ Ku/K�1

//Q ð30Þ
Table 1
Material properties of piezoelectric and composite materials.

Properties PVDF PZT-4 PZT-G1195N T300/979 Gr/Ep

Elastic properties
E11 (GPa) 2 81.3 63.0 150 132.38
E22 (GPa) 2 81.3 63.0 9.0 10.76
E33 (GPa) 2 64.5 63.0 9.0 10.76
G12 (GPa) 1 30.6 24.2 7.1 3.61
G13 (GPa) 1 25.6 24.2 7.1 5.65
3. Active control analysis

We now consider a piezoelectric laminated composite plate
with n (n P 2) layers, as shown in Fig. 2. The top layer is a piezo-
electric actuator, denoted with the subscript a, and the bottom
layer is a piezoelectric sensor, labeled with the subscript s. In this
work, the displacement feedback control [15], which helps to gen-
erate the charge by the piezoelectric actuator, is combined with the
velocity feedback control [17–22] which can give the velocity com-
ponent by using an appropriate electronic circuit. In addition, the
consistent method [4,21] which can predict the dynamic responses
of smart piezoelectric composite plates is adopted. The constant
gains Gd and Gv of the displacement feedback control and velocity
feedback control [21] are hence used to couple the input actuator
voltage vector /a and the output sensor voltage vector /s as

/a ¼ Gd/s þ Gv _/s ð31Þ

Without the external charge Q , the generated potential on the
sensor layer can be derived from the second equation of Eq. (26) as

/s ¼ ½K
�1
//�s½K/u�sds ð32Þ

which implies that, when the plate is deformed by an external force,
the electric charges are generated in the sensor layer and are ampli-
fied through the closed loop control to be converted into the signal.
The converted signal is then sent to the distributed actuator and an
input voltage for the actuators is generated. Finally, a resultant force
arises through the converse piezoelectric effect and actively con-
trols the static response of the laminated composite plate.

The magnitude of the voltage is defined by substituting Eqs.
(31) and (32) into the second equation of Eq. (26) as

Q a ¼ ½Kuu�ada � Gd½K//�a½K
�1
//�s½K/u�sds

� Gv ½K//�a½K
�1
//�s½K/u�s _ds ð33Þ

Substituting Eqs. (32) and (33) into Eq. (30), one writes

M€dþ C _dþ K�d ¼ F ð34Þ

where

K� ¼ Kuu þ Gd½Ku/�s½K
�1
//�s½K/u�s ð35Þ
Fig. 2. A schematic diagram of a laminated plate with integrated piezoelectric
sensors and actuators.
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and C is the active damping matrix computed by

C ¼ Gv ½Ku/�a K�1
//

h i
s
½K/u�s ð36Þ

If the structural damping effect is considered, Eq. (34) can be
rewritten as

M€dþ ðCþ CRÞ _dþ K�d ¼ F ð37Þ

where CR is the Rayleigh damping matrix assumed to be a linear
combination of M and Kuu

CR ¼ aMþ bKuu ð38Þ

in which a and b are the Rayleigh damping coefficients.
For static analyses, Eq. (34) reduces to

K�d ¼ F ð39Þ
4. Numerical results

In this section, various numerical examples are performed to
demonstrate the accuracy and stability of the isogeometric formu-
lation proposed herein in comparison with some previously
adopted approaches. We first demonstrate the accuracy of the
IGA solution for the static and free vibration problems. We then
demonstrate the performance of the proposed method for the
dynamic control of plates integrated with piezoelectric sensors
and actuators. The properties of the piezoelectric composite plates,
including elastic properties, mass density, piezoelectric coefficients
and electric permittivities are given in Table 1. Note that the prop-
erties 1, 2 and 3 in Table 1 refer to the directions of axes x,y and z,
respectively.

4.1. Free vibration analysis of piezoelectric composite plates

In this section, we investigate the accuracy and efficiency of the
proposed isogeometric element for analyzing the natural frequen-
cies of the piezoelectric composite plates. We first consider a
square five-ply piezoelectric laminated composite plate [pie/0/90/
0/pie] in which pie denotes a piezoelectric layer (see Fig. 3). The
plate is simply supported and the thickness to length ratio of each
composite ply is t/a = 1/50. The laminate configuration includes
three layers of Graphite/Epoxy (Gp/Ep) with fiber orientations of
[0/90/0]. Two continuous PZT-4 piezoelectric layers of thickness
G23 (GPa) 1 25.6 24.2 2.5 5.65
m11 0.29 0.33 0.30 0.3 0.24
m23 0.29 0.43 0.30 0.3 0.24
m13 0.29 0.43 0.30 0.3 0.49

Mass density
q (kg/m3) 1800 7600 7600 1600 1578

Piezoelectric coefficients
d31 = d32 (m/V) 0.046 �1.22e�10 2.54e�10 – –
d15 (m/V) – – – – –

Electric permittivities
p11 (F/m) 0.1062e�9 1475 15.3e�9 – –
p22 (F/m) 0.1062e�9 1475 15.3e�9 – –
p33 (F/m) 0.1062e�9 1300 15.0e�9 – –
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0.1t are bonded to the upper and lower surfaces of the laminate.
Two sets of electric boundary conditions are considered for the
inner surfaces of the piezoelectric layers including: (1) a closed-
circuit condition in which the electric potential is kept zero
(grounded); and (2) an open-circuit condition in which the electric
potential remains free (zero electric displacements). The analytical
approach [62] to this problem was only available for the first nat-
ural frequency and several FE formulations [29,61] were then
adopted to obtain other natural frequencies.
Table 2
Dimensionless first natural frequency of the simply supported square piezoelectric compo

Method Meshing Degree

IGA (p = 2) (5 dofs per control point) 8 � 8 500
IGA (p = 3) (5 dofs per control point) 8 � 8 605
IGA (p = 4) (5 dofs per control point) 8 � 8 720
FE layerwise [61] 12 � 12 2208
Q9 – HSDT (11 dofs per node) [29] – –
Q9 – FSDT (5 dofs per node) [29] – –
Ref. [62]

Table 3
Convergence of five first natural frequencies of the square piezoelectric composite plate [

Meshing Method Mode sequence

Mode 1

Open circuit
5 � 5 IGA (p = 2) 240.100

IGA (p = 3) 235.700
FE layerwise [61] 276.185

9 � 9 IGA (p = 2) 235.800
IGA (p = 3) 235.300
FE layerwise [61] 261.703

13 � 13 IGA (p = 2) 235.300
IGA (p = 3) 235.200
FE layerwise [61] 259.655

Q9 – HSDT (11 dofs per node) [29] 250.497
Q9 – FSDT (5 dofs per node) [29] 245.349
Ref. [62] 245.942

Close circuit
5 � 5 IGA (p = 2) 239.500

IGA (p = 3) 235.100
FE layerwise [61] 249.860

9 � 9 IGA (p = 2) 235.600
IGA (p = 3) 235.100
FE layerwise [61] 236.833

13 � 13 IGA (p = 2) 235.200
IGA (p = 3) 235.100
FE layerwise [61] 234.533

Q9 – HSDT (11 dofs per node) [29] 230.461
Q9 – FSDT (5 dofs per node) [29] 206.304
Ref. [62] 245.941
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Table 2 shows the dimensionless first natural frequency of the
piezoelectric composite plate with meshing of 8 � 8 quadratic
(p = 2), cubic (p = 3) and quartic (p = 4) elements. The dimension-
less first natural frequency is defined as f

�
¼ x1a2=ð1000t

ffiffiffiffiqp Þ,
where x1 is the first natural frequency. In this study, the isogeo-
metric elements use the HSDT with only 5 dofs per control point
while Ref. [61] uses the layerwise theory and Ref. [29] uses HSDT
with 11 dofs per node. It is seen that the results given by the
isogeometric formulation are slightly lower than the analytical
solution [62], however the errors are less than 5%. We observe that
the isogeometric results are stable in both a closed-circuit condi-
tion and an open-circuit condition similarly to the analytical
solution [62], while those of Refs. [61,29] are very different for a
closed-circuit condition and an open-circuit condition. The better
performance of NURBS-based IGA over the conventional FE method
in the solution of the eigenvalue problem is well known and has
recently been further addressed in a comprehensive study [63].
Moreover, Table 2 shows that the results obtained using cubic
and quartic elements coincide (for the chosen mesh), which sug-
gests the use of cubic element. Furthermore, the convergence of
site plate [pie/0/90/0/pie].

s of freedom (DOFs) �f ¼ x1a2=ð10;000t
ffiffiffiffiqp Þ

Closed circuit Open circuit

235.900 236.100
235.100 235.300
235.100 235.300
234.533 256.765
230.461 250.597
206.304 245.349
245.941 245.942

pie/0/90/0/pie].

number

Mode 2 Mode 3 Mode 4 Mode 5

600.600 750.400 1027.500 1537.800
535.200 685.500 940.700 1137.591
– – – –

537.300 686.900 942.700 1095.302
529.000 680.400 933.300 1038.290
– – – –

530.500 681.500 934.900 1047.801
528.600 680.100 932.800 1035.791
– – – –

583.185 695.697 980.361 1145.410
558.988 694.196 962.017 1093.010
– – – –

599.000 749.200 1025.500 1535.101
533.700 684.300 938.800 1134.900
– – – –

536.800 686.600 942.000 1094.402
528.500 680.000 932.600 1037.300
– – – –

530.200 681.3 934.500 1047.302
528.400 679.9 932.400 1035.301

520.384 662.915 908.459 1022.091
519.444 663.336 907.636 1020.101
– – – –
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the first five natural frequencies with meshing of 5 � 5, 9 � 9 and
13 � 13 for a closed-circuit condition and an open-circuit condi-
tion is displayed in Table 3. Again, it can be seen that the isogeo-
metric results do not vary between closed- and open-circuit
conditions, unlike those of the FE layerwise approach in Ref. [61].

Finally, Fig. 4 plots the shape of the first six eigenmodes. It is
seen that these shapes reflect correctly the physical modes of the
piezoelectric composite plates as given by the analytical solution.
Fig. 5. Geometry of a piezoelectric PVDF bimorph beam.

Table 4
Static deflection of the bimorph piezoelectric beam at various locations (�10�6 m).

Method Position

1 2 3 4 5

IGA (p = 2) 0.0138 0.0550 0.1236 0.2201 0.3443
IGA (p = 3) 0.0140 0.0552 0.1242 0.2207 0.3448
EFG [23] 0.0142 0.0555 0.1153 0.2180 0.3416
3D FE [19] 0.0136 0.0546 0.1232 0.2193 0.3410
RPIM [21] 0.0136 0.0547 0.1234 0.2196 0.3435
Analytical solution [16] 0.0140 0.0552 0.1224 0.2208 0.3451
4.2. Static analysis of piezoelectric composite plates

4.2.1. A piezoelectric bimorph beam
We now consider a piezoelectric bimorph beam with the geom-

etry, thickness and boundary condition illustrated in Fig. 5. The
beam consists of two identical PVDF uniaxial beams with opposite
polarities. The cantilever beam is modeled by five identical plate
elements. Each element has dimensions 20 � 5 � 1 mm as shown
in Fig. 5. The material properties of PVDF are given in Table 1.

Table 4 contains the deflections of the piezoelectric bimorph
beam at the specified control points (for IGA) or nodes (for the con-
ventional FE method) with meshing of 101 � 6 when a unit voltage
(1 V) is applied across the thickness of the beam. It is seen that the
present results match well the analytical solution [16] and agree
very well with those presented in Refs. [23,19,21] (which are how-
ever less accurate). When the order of the basis functions is
Fig. 4. Shape of the first six eigenmodes of a simply supported piezoelectric composite p
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increased, the accuracy improves and results coincide (for the
shown number of digits) with those of the analytical solution [16].
late; (a) Mode 1; (b) Mode 2; (c) Mode 3; (d) Mode 4; (e) Mode 5; and (f) Mode 6.
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Table 5 reports the tip deflection of the piezoelectric bimorph
beam with different input voltages. Again, results obtained with
the isogeometric formulation match well the analytical solution
[16]. Finally, Fig. 6 shows the effect of the input voltage on the
Table 5
Tip deflection of the piezoelectric bimorph beam with different input voltages
(�10�4 m).

Method Input voltage

50 V 100 V 150 V 200 V

IGA (p = 2) 0.1721 0.3443 0.5164 0.6885
IGA (p = 3) 0.1724 0.3448 0.5173 0.6897
Analytical solution [16] 0.1725 0.3451 0.5175 0.6900

Fig. 6. Deformed shape and centerline deflection of a piezoelectric bimorph beam
under different input voltages.

Fig. 7. Square piezoelectric composite plate model.

Table 6
Central control point/node deflection of the simply supported piezoelectric composite pla

Input voltage Scheme Method

CS-DSG3 [25]

0 V [pie/�45/45]s �0.6326
[pie/�45/45]as �0.6323
[pie/�30/30]as �0.6688
[pie/�15/15]as �0.7442

5 V [pie/�45/45]s �0.2863
[pie/�45/45]as �0.2801
[pie/�30/30]as �0.2957
[pie/�15/15]as �0.3259

10 V [pie/�45/45]s 0.0721
[pie/�45/45]as 0.0601
[pie/�30/30]as 0.0774
[pie/�15/15]as 0.0924
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deflection of the piezoelectric bimorph beam. It is observed that
when the input voltage becomes larger, the deflection of beam also
becomes larger, as expected.

4.2.2. A piezoelectric composite plate
We now consider a simply supported square laminated plate

(20 cm � 20 cm) subjected to a uniform load q = 100 N/m2 as
shown in Fig. 7. The plate is bonded by piezoelectric ceramics in
both the upper and lower surfaces symmetrically. The plate
consists of four composite layers and two outer piezo-layers
denoted by pie. The laminate configuration of the composite plate
is [pie/�h/h]s and [pie/�h/h]as in which subscripts ‘‘s’’ and ‘‘as’’ indi-
cate symmetric and anti-symmetric laminates, respectively, and h
is the fiber orientation angle of the layers. The thickness of the
non-piezoelectric composite plate is 1 mm and each layer has the
same thickness. The thickness of the piezo-layer is 0.1 mm. The
plate is made of T300/976 graphite/epoxy layers and the piezoce-
ramic is PZTG1195N with their material properties given in
Table 1.

Table 6 reports the central point deflection of the simply sup-
ported piezoelectric composite plate subjected to the uniform load
and different input voltages. Again, the results by the IGA agree
well with those of Refs. [21,25]. In addition, Fig. 8 shows the cen-
terline deflection. Four configurations of the composite plate with
different fiber orientation angles are investigated including [pie/
�15/15]as, [pie/�30/30]as, [pie/�45/45]as and [pie/�45/45]s. As
expected the deflection decreases for increasing input voltage.
The reason is that the input voltage induces an upward deflection
of the plate due to the piezoelectric effect. This upward contribu-
tion becomes prevalent for an input voltage of 10 V. Similar results
were obtained in Refs. [21,25].

4.3. Dynamic vibration control analysis of piezoelectric composite
plates

4.3.1. A simply supported square plate
We now consider a piezoelectric composite plate subjected to a

uniform load q = 100 N/m2 with the geometry, boundary condi-
tions and material properties specified in Section 4.2.2. The plate
consists of four composite layers and two outer piezoelectric layers
denoted by pie. The upper and lower surfaces of plate are bonded
to a piezoelectric actuator layer and to a piezoelectric sensor layer,
respectively. The stacking sequence of the composite plate is
[pie/�45/45]s.

First, we study the control of the static deflection. Fig. 9 shows
the effect of the displacement feedback control gain Gd on the sta-
tic deflection of the plate. It is seen that when the displacement
feedback control gain Gd becomes bigger, the deflections become
te subjected to a uniform load and different input voltages (�10�4 m).

RPIM [21] IGA (p = 2) IGA (p = 3)

�0.6038 �0.6343 �0.6375
�0.6217 �0.6217 �0.6239
�0.6542 �0.6593 �0.6617
�0.7222 �0.7422 �0.7452

�0.2717 �0.2799 �0.2842
�0.2717 �0.2773 �0.2817
�0.2862 �0.2923 �0.2968
�0.3134 �0.3233 �0.3283

0.0757 0.0745 0.0691
0.0604 0.0672 0.0606
0.0819 0.0749 0.0682
0.0954 0.0957 0.0886
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(a) [p/-15/15]as (b) [p/-30/30]as

(c) [p/-45/45]as (d) [p/-45/45]s

Fig. 8. Centerline deflection of a simply supported piezoelectric composite plate subjected a uniform load and different input voltages.
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smaller, similarly to what illustrated in [21]. The reason is that,
when the plate is deformed by the external load, electric charges
are generated in the sensor layer and amplified through the
closed-loop control. The converted signal is then sent to the
distributed actuator and an input voltage for the actuator is
generated. A resultant force is generated through the converse pie-
zoelectric effect and actively controls the static response of the
laminated plate.
Fig. 9. Effect of the displacement feedback control gain Gd on static deflection of a
simply supported piezoelectric composite plate subjected to a uniform load.

Please cite this article in press as: P. Phung-Van et al., Comput. Mater. Sci. (20
Next, the plate is assumed to be subjected to a harmonic load
F ¼ sinð �xtÞ applied at its central point, where �x is chose to be
the first natural angular frequency (x1) of the plate. The eigenvalue
problem is first solved with a mesh of 13 � 13 cubic B-spline ele-
ments and a value of x1 = 167.34 Hz is determined. Fig. 10 shows
the transient responses of the center point of the piezoelectric
composite plate with and without the velocity feedback gain. It
Fig. 10. Effect of the velocity feedback control gain Gv on the dynamic deflection
response of a simply supported piezoelectric composite plate subjected to a
uniform load.
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Fig. 11. (a) Circular piezoelectric composite plate model and (b) meshing of 8 � 8 cubic elements.
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can be seen that when the gain Gv is equal to zero (without con-
trol), the response decreases in time due to the structural damping.
By increasing the velocity feedback gain, the transient response is
further attenuated and the amplitude of the center point deflection
decreases faster, as expected. This is due to an increase of the
active damping as per Eq. (37).
4.3.2. A clamped circular plate
In this example, we consider a five-layer (pie/�45/45/�45/pie)

clamped circular plate of radius R = 5 dm subjected to a harmonic
point load F ¼ �xei �xt at the central point (Fig. 11a). The plate is made
of T300/976 graphite/epoxy layers and the piezoceramic is
PZTG1195N. The thickness of the non-piezoelectric composite plate
is 0.03 dm and each layer has the same thickness, the thickness of
the piezo-layer is 0.005 dm. The first natural frequency of plate is
calculated with a mesh of 8 � 8 cubic elements (Fig. 11b) and is
equal to 113.35 Hz. The effect of the frequency of the applied force
history on the deflection of the center of the plate is investigated. �x
is changed from 80 to 150, a range including the first natural angu-
lar frequency of the structure. The deflection response measured
also at the center of the plate is shown in Fig. 12. It is seen clearly
that the peak of the response occurs exactly at the value of the first
eigenfrequency. Moreover, the deflection at the center point of the
plate decreases by applying control, as expected.
Fig. 12. Dynamic deflection response of a clamped circular plate under a harmonic
point load.
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5. Conclusions

This paper presents a simple and effective approach based on
the combination of IGA and HSDT for the static, free vibration anal-
yses and dynamic control of composite plates integrated with pie-
zoelectric sensors and actuators. In the piezoelectric composite
plates, the mechanical displacement field is approximated accord-
ing to the HSDT using isogeometric elements based on NURBS and
featuring at least C1-continuity, whereas the electric potential is
assumed to vary linearly through the thickness for each piezoelec-
tric sub-layer. A displacement and velocity feedback control algo-
rithm is used for the active control of the static deflection and of
the dynamic response of the plates through a closed-loop control
with bonded or embedded distributed piezoelectric sensors and
actuators. Several numerical examples are performed to analyze
the static deflection, natural vibration mode and dynamic control
of piezoelectric laminated plates with different stacking schemes.
Through the presented formulation and numerical results, the fol-
lowing main conclusions can be drawn:

(i) Due to the use of the HSDT, the proposed method does not
require shear correction factors. The use of NURBS elements
of at least second order naturally fulfills the C1-continuity
requirement of the HSDT, thereby significantly reducing
the number of degrees of freedom per control point over
conventional finite element approaches featuring C0 inter-
element continuity.

(ii) In free vibration analyses, the predictions of the proposed
approach agree well with analytical solutions, and are more
stable (passing from closed- to open-circuit conditions) than
those of several other approaches available in the literature.

(iii) In static analyses, the predictions of the proposed approach
are more accurate than those of several other approaches
with a lower number of degrees of freedom.

(iv) In dynamic control analyses, the proposed approach delivers
predictions which appear reasonable and consistent with
the observed physical behavior.
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