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6 Attachment 
 
6.1 Additions to Chapter 2.1 
 
6.1.1 Derivation of the equation (Equation 4) 
 
In a random sample of size n, k values are WS and n-k values are OOS. If the 
probability of a WS result is equal to γ, then the possible values for k a binomial 
distribution with the parameters γ and n. The probability of k WS results among n 
values is: 
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is the binomial coefficient n over k. 
 
The null hypothesis γ ≤ γ0 is to be tested against the alternative γ > γ0 for a given γ0 in 
respect of the error probability α. This is done by specifying a threshold k0. If the 
observed k ≥ k0. then the null hypothesis is rejected, otherwise it is accepted. 
 
The probability for the rejection of the null hypothesis, if γ = γ0 or is smaller, should 
equal α at the most. The following must thus apply for the threshold k0: 
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The smallest whole number k0 for which this condition is true, is the sought threshold. 
 
For values n that are not too small (nγ0 (1 - γ0) > 1 is to apply) the binomial distribution 
can be approximated via a normal distribution with the mean value nγ0 and the 
variance nγ0 (1 - γ0). The condition for k0 is thus as follows: 
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k n1
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    (Equation 4.4) 

 
where Φ(.) represents the standard normal distribution. From this it follows that k0 is 
the smallest whole number for which the following is true: 

0 0 1 0k n z n (1−α≥ γ + γ − γ0 ) ,   (Equation 4.5) 
 
where z1-α is the (1-α) quantile of the standard normal distribution. 
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In order to achieve the test power 1-β for a value γ1 > γ0. n must be high enough  for 
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to be true for the k0 conforming to the condition cited above. With the normal 
approximation this condition is as follows: 
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From this it follows that n is the smallest whole number for which the following is true: 
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6.1.2 Calculation of the limits for the confidence interval 
(Compare Chapter 2.1.2) 
 
Of n independent random-sample values, k are WS and n - k are OOS. To be found 
are confidence intervals with the reliability 1-α for the probability γ of WS results. 
 
The lower limit γmin of a one-sided upper confidence interval for γ with a reliability 1-α 
(i.e. of an interval that contains the actual value of γ with a probability 1-α) must fulfill 
the following condition: For γ=γmin, the probability for k or more WS results among n 
values is not greater than α; i.e.: 
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   (Equation 7.1)

  
 
This means that for values γ that are either equal to γmin or even smaller, k or more 
WS results among n values at a maximum can be expected with a probability α. If 
one asserts for such a result that γ is greater than γmin, one can maximally err with the 
probability α and be right with the reliability 1-α. 
 
Accordingly, the following must be true for the upper limit γmax of a one-sided lower 
confidence interval for γ with the reliability 1-α: 
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By means of the (1-α) quantiles F1-α, df1. df2 of the central F-distribution with df1 and 
df2 degrees of freedom, the two limits can be exactly calculated. The following 
applies: 
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The quantiles of the central F-distribution are cited in many publications of statistical 
tables (e.g. Dokumenta Geigy #) and can be found in statistical program systems 
such as SAS or SPSS as function macros. 
 
 
6.1.3 Derivation of the equation k=n+1-(l+r) 
(Compare Chapter 2.1.3) 
 
Given is a random sample x1. x2. ... xn of n independent and identically distributed 
values. The random-sample values are once arranged from the smallest to the 
greatest value and a second time from the greatest to the smallest. The rank of a 
value s in the order from the smallest to the greatest value is referred to as 'left' rank l 
and the rank in the order from the greatest to the smallest value as 'right rank r. The 
random-sample value with the left rank l is designated as x[l] and the random-sample 
value with the right rank r is designated as (r). The question is, how great is the 
probability (the percentage in the total population) γ for values that are greater than 
x[l] and smaller than or equal to x(r), i.e. that lie between l-smallest and r-greatest 
random-sample value? 
 
Since the random-sample values constitute realizations of random variables, a 
prediction for this percentage can only be made with a calculated reliability 1-α. 
Sought is the value γmin, of which it can be stated with the reliability 1-α that at a 
minimum this percentage lies between x[l] and x(r).  
 
l random-sample values are smaller than or equal to x[l] and r-1 random-sample 
values are greater than x(r). The interval x[l]<x≤x(r) thus contains k=n+1-(l+r) values. A 
lower limit of the upper confidence interval for the probability γ with which values lie 
within the interval is therefore the γmin described in Attachment 2, at a given n and 1-α 
for k=n+1-(l + r).  
 
 
6.1.4 Required size n of the random sample to determine the decision 

threshold k0 
 
The null hypothesis is rejected if of n random-sample results fewer than k0 are WS. A 
random-sample size n is required at a minimum to achieve for γ=γ1 the test power 1-β 
(i.e. to be able to expect the rejection of the null hypothesis with the probability 1-β; 
Table 6). 
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6.1.5 Lower confidence limits 
 
Lower confidence limits γmin for the probability γ of WS results in the production unit if 
of n random-sample values k are WS: 
 
A) γmin at α=20%, reliability 1-α=80%: Table 7 
 
B) γmin at α=10%, reliability 1-α=90%: Table 8 
 
C) γmin at α=5%, reliability 1-α=95%: Table 9 
 
D) γmin at α=2.5%, reliability 1-α=97.5%: Table 10 
 
 
6.1.6 Upper confidence limits 
 
Upper confidence limits γmax for the probability γ of WS results in the production unit if 
of n random-sample values k are WS: 
 
 
A) γmax at α=20%, reliability 1-α=80%: Table 11 
 
 
B) γmax at α=10%, reliability 1-α=90%: Table 12 
 
C) γmax at α=5%, reliability 1-α=95%: Table 13 
 
D) γmax at α=2.5%, reliability 1-α=97.5%: Table 14 
 
 
 
6.1.7 Value of factor 1

,n 1 nt 1γ − − . 
 
This factor is required for the calculation of the limits of tolerance intervals with 
normal distribution. For a one-sided upper tolerance interval the lower limit is: 
x -s⋅factor; for a one-sided lower interval the upper limit is: x +s⋅factor. For a two-
sided tolerance interval the limits are: x ±s⋅factor. 
The last line in the table (n=∞) indicates the quantiles zγ of the normal distribution, 
which are to be used if the mean value µ and the standard deviation σ of the total 
population are known (Table 15). 
 
 
6.1.8 Calculation of tolerance intervals for a normally distributed total 

population (addition to Chapter 2.1.3) 
 

The literature also contains formulas for tolerance intervals of normally distributed 
measurement values. Since the distribution of the measurement values in the total 
population is unknown, and it cannot be reliably assumed that the measurement 
values are distributed normally, the use of this formula for OOS problems is not 
recommended. Moreover, the method has the disadvantage that the reliability with 
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which this interval actually overlaps the percentage γ of the total population, cannot 
be stated. It is nevertheless dealt with here, as it is used in practice. 
 
A normal distribution F(x) is fully defined by the mean value µ and the standard 
deviation σ. If Φ(z) indicates the standard normal distribution with a mean value 0 
and the standard deviation 1, then it follows that: F(x)= Φ((x-µ)/σ). The quantiles ξq of 
a normal distribution can be calculated, using the quantiles zq of the standard normal 
distribution, by means of the formula: ξq=µ+zqσ. Because of the symmetry of the 
standard normal distribution around 0, it follows that: zq<0 for q<0.5, zq=0 for q=0.5 
and zq>0 for q>0.5. It further follows that: zq=-z1-q, so that it suffices to know the 
quantiles zq for q>0.5.  
 
A one-sided upper tolerance interval for normally distributed measurement values 
with a mean value µ and a standard deviation σ and containing the percentage γ 
(>0.5) of the total population, has a lower limit xu=µ-zγσ, a one-sided lower tolerance 
interval has the upper limit xo=µ+zγσ, and a two-sided tolerance interval has the lower 
limit xu=µ-z(1+γ)/2σ and the upper limit xo=µ+z(1+γ)/2σ. If µ and σ are known, the limits of 
the tolerance intervals can be calculated by means of these formulas if the quantiles 
zq are known (see Table 4, last line).  
 
However, µ and σ are usually not known and are estimated by means of the 
arithmetic mean x  and the standard deviation s of the random sample. This results in 
the determination of the tolerance limit becoming uncertain. This uncertainty is 
addressed with a correction link.  
 
If only the mean value µ is replaced by x , the necessary correction can be derived 
by means of a simple consideration. With normally distributed measurement values x, 
the arithmetic mean x  is also distributed normally with the mean value µ and the 
standard deviation (standard error) σ/ n . The difference between an arbitrary 
measurement value x that is not included in the random sample and the arithmetic 
mean x , is also distributed normally with the mean value 0 and the standard 
deviation 1

n1σ + . The share of measurement values x for which the difference to the 

mean value x  is greater than z1-γ 1
n1σ +  = -zγ 1

n1σ + , is γ. This results in a lower 

limit of a one-sided upper tolerance interval for the share γ of: 1
u nx x z 1γ= − σ + . But 

σ must also be replaced by the standard deviation s of the random sample. This 
means that the quantiles zγ of the standard normal distribution are replaced by the 
quantiles tγ, n-1 of a central t-distribution with n-1 degrees of freedom (which is the 
distribution of the quotient of x  to the standard error s / n  with µ=0). Table 4 
contains, for different values of γ and n-1, the values of 1

,n 1 nt 1γ − + . 
 
The lower limit of a one-sided upper tolerance interval for the share γ is: 

1
u ,n 1 nx x s t 1γ −= − ⋅ + ,   (Equation 8a) 

The upper limit xo of a one-sided lower tolerance interval for the share γ is:  
1

u ,n 1 nx x s t 1γ −= + ⋅ +    (Equation 8b) 

The lower and upper limits of a two-sided tolerance interval for the share γ is: 
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1
u o (1 ) / 2,n 1 nx ,x x s t 1+γ −= ± ⋅ + ,  (Equation 8c) 

where the positive prefix yields xo and the negative xu. 
 
In cases 1 to 3 in Figure 3, n, x  and s are: 
 

n x  s 
5 0.4034 0.3037 
10 0.3790 0.2160 
30 0.4161 0.1937 

 
Using the factors cited in Table 15, the following tolerance intervals result: 
 
Lower limit of the one-sided upper Tolerance interval: 
 

n γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=0.95 
5 xu=0.313 xu=0.214 xu=0.090 xu=-0.107 xu=-0.306 

10 xu=0.320 xu=0.256 xu=0.179 xu=0.066 xu=-0.036 
30 xu=0.366 xu=0.312 xu=0.248 xu=0.158 xu=0.082 

 
 
Upper limit of the one-sided lower tolerance interval: 
 

n γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=0.95 
5 xo=0.493 xo=0.593 xo=0.716 xo=0.913 xo=1.113 

10 xo=0.438 xo=0.502 xo=0.579 xo=0.692 xo=0.794 
30 xo=0.466 xo=0.521 xo=0.584 xo=0.674 xo=0.751 

 
Limit of a two-sided tolerance interval: 
 

n γ 0.6 0.7 0.8 0.9 0.95 
5 xu-xo 0.090-0.716 0.007-0.799 -0.107-0.913 -0.306-1.113 -0.520-1.327
10 xu-xo 0.179-0.579 0.130-0.628 0.066-0.692 -0.036-0.794 -0.133-0.891
30 xu-xo 0.248-0.584 0.208-0.624 0.158-0.674 0.082-0.751 0.013-0.819

 
For the random sample with n=5 it is to be expected that, for example, the 
percentage 0.6 of the total population is greater than 0.09 and that the percentage 
0.7 of the total population lies between 0.007 and 0.799. Since the normal distribution 
presupposes that the value range stretches from -∞ to +∞, it is possible for negative 
lower limits or other limits outside the actual measurement range to occur. In such 
cases the tolerance interval based on the assumption of a normal distribution is not 
permissible. 
 
For comparison, those shares of γmin are cited that with a reliability of 90% can at a 
minimum be asserted for the tolerance interval formed with the smallest and greatest 
values of cases 1 to 3: 
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n xu xo γmin Reliability 
5 0.16 0.90 0.416 90% 
10 0.09 0.69 0.663 90% 
30 0.05 0.73 0.876 90% 

 
Both the width of the tolerance intervals and the size of the share γ covered by it 
differ for the two methods. In cases 2 and 3 the tolerance intervals formed with the 
smallest and greatest random-sample values are greater than the intervals formed for 
the approximately equal share γ assuming a normal distribution.  
 
For the tolerances formed in accordance with the formulas depicted above and 
assuming a normal distribution, it is not possible to state the percentage γ with 
reliability. It is only known that with frequent repeating of the method the percentage γ 
coincides in the mean with the actual share overlapped by the interval. For a 
concretely calculated interval, however, the actual share covered by this interval can 
significantly deviate from the value γ especially if the sizes of the random samples 
are small. In part because of the lack of reliability data, the tolerance intervals should 
not be calculated using the formulas cited above.  
 
The production unit can be classified as WS if the tolerance interval for a share γ>γ0 
lies completely within the specification interval. The reliability with which this 
statement is true cannot be stated precisely.   
 
 
6.2 Addition to Chapter 2.2 

Data Number and Assessment Ability of Specifications 
 
The more information is available on a data set the easier it is to arrive at decisions 
regarding: 
 
• Whether or not normal distribution is given? 
• Whether or not outliers are observed? 
• WS or OOS? 
 
In borderline cases in particular, a lot of information is needed for the evaluation. 
Here, information means: multiple measurements. Described in more detail in the 
following paragraphs is how multiple measurements affect the width of the intervals. 
Rules become apparent showing in which cases multiple measurements can indeed 
facilitate the making of decisions. 
 
In order to meet the specification, the prediction interval must not exceed the target 
value. If a specific value is not to fall below a certain value, it means that the target 
value must be smaller than the lower limit of the prediction interval: 

 

21
2,

11ˆ)(
21 nn

txxprdx gesnnusoll +⋅⋅−=< −+ σα  (Equation 5.1) 

 
By conversion one obtains the following: 
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   (Equation 5.2) 

 
If this condition is met, the examined batch conforms to specification. Equation 5.2 
expressed in words means the following: Since the distance to the target limit may be 
small, either the standard deviation must be small or the data number n must be high. 
The t-factor and the value under the root depend on the data number. This 
relationship is depicted in the following table (Table 16). 
 
Both the t-factor and the term under the root affect the size of the prediction interval. 
From n=2 to n=3, the width of the interval is halved. If n=9, the total value is smaller 
than 2. For data numbers greater than/equal to 9, this means that a distance of mean 
value and target value of 2 standard deviations suffices. For very high data numbers 
the total value does not become arbitrarily small, however. The t-distribution strives 
towards the normal distribution, the corresponding quantile of the normal distribution 
measures ca. 1.65. For very high data numbers, the root term strives towards 1. 
Therefore, the total term also strives towards 1.65. This produces an interesting 
result: If the distance between mean and target value, in relationship to the standard 
deviation ( σ̂/)( specxx − ), is smaller than 1.65, then the distance becomes too small in 
any case – and no number of multiple measurements can compensate for it. In other 
words: If mean value and target value are this close to each other, a considerable 
part of the single values will no longer meet the specification. 
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Glossary / Index of Symbols and Abbreviations 
 
α Probability of an error of the 1st kind, i.e. to discard the null hypothesis 

despite its applicability; producer risk 
β Probability of an error of the 2nd kind, i.e. to discard the alternative 

hypothesis despite its applicability; consumer risk 
γ0 Threshold value for the percentage of WS values in the production unit 

required to be reached at a minimum in order for the production unit to 
be considered to conform to specification 

Outlier (Extreme) values due to errors 
Bias Difference between the true value and the analysis result 
Total population All of the elements of a quantity to be examined, e.g. all tablets in a 

batch, number of all possible measurement values obtained by one 
method 

k0 Threshold value for the percentage of WS values in the random 
sample required to be reached at a minimum in order for the 
production unit to be considered to be within specification 

Collective See total population; term according to R. v. Mises 
Confidence interval See confidence range 
Measurement range Range from the lowest measured value to the highest measured value 
n Size of the random sample 
N Size of the total population 
OOS result Out-of-specification result; result lying outside the specification limits 
Power „Test power“ of a method; indicates the certainty with which an OOS 

result is recognized as such, 1-β 
Precision Unit of measure for the spread and the congruence of the 

measurement values after the multiple performance of an analysis 
(within one measurement series) 

Production unit Production batch, lot; e.g. batch 
Range See measurement range 
Robustness Measure for the independence of the analysis results of a method after 

minor changes to the measuring system 
Random sample Measurement values obtained for a sample of the size n taken from a 

total population; x1, x2,...xn 
Test power See power 
Tolerance interval Measurement range in which a specified percentage of the total 

population can be found 
Confidence interval Range in which the (unknown) value for the actual percentage of WS 

results in the total population can be found with the probability 1-α  
Prediction interval Range in which the mean value of a future random sample will lie with 

a certain probability (1-2α)  
WS values Within-specification values; values lying within the specification limits 
 z1-α (1-α) quantile of the standard normal distribution (mean value 0, 

variance 1) 
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Table 6: Required size n of the random sample and decision threshold k0 for testing 
the null hypothesis γ>γ0 against the alternative γ≤γ0 at a given 
probability α in respect of the erroneous rejection of the null 
hypothesis 

 
Table 7: Lower confidence limits γmin for the probability γ of WS results in the 
production unit if of n random-sample values, k are WS: γmin at α=20%, reliability 1-
α=80% 
 
Table 8: As in Table 7, but γmin at α=10%, reliability 1-α=90% 
 
Table 9: As in Table 7, but γmin at α=5%, reliability 1-α=95% 
 
Table 10: As in Table 7, but γmin at α=2.5%, reliability 1-α=97,5% 
 
Table 11: Upper confidence limits γmax for the probability γ of WS results in the 
production unit if of n random-sample values, k are WS: 
γmax at α=20%, reliability 1-α=80% 
 
Table 12: As in Table 11, but γmax at α=10%, reliability 1-α=90% 
 
Table 13: As in Table 11, but γmax at α=5%, reliability 1-α=95% 
 
Table 14: As in Table 11, but γmax at α=2.5%, reliability 1-α=97.5% 
 
Table 15: Factor for calculating the limits of tolerance intervals with normal 
distribution 
 
Table 16: Correlation between the t-factor and s-value under the root and the data 
number (compare Equation 5.2; n1 = 1. n2 = n, α = 0.1) 
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Table 6: 
 

 α β n k0 

20% 20% 3 3 
10% 20% 5 4 
10% 10% 7 6 
5% 20% 8 7 
5% 10% 10 8 

γ0=0.5 
γ1=0.9 

5% 5% 11 9 
20% 20% 5 4 
10% 20% 9 8 
10% 10% 12 10 
5% 20% 13 11 
5% 10% 16 13 

γ0=0.6 
γ1=0.9 

5% 5% 19 15 
20% 20% 11 9 
10% 20% 18 16 
10% 10% 24 20 
5% 20% 26 23 
5% 10% 33 28 

γ0=0.7 
γ1=0.9 

5% 5% 39 33 
20% 20% 35 30 
10% 20% 59 52 
10% 10% 81 70 
5% 20 83 73 
5% 10% 109 95 

γ0=0.8 
γ1=0.9 

5% 5% 133 114 
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Table 7: 
 

k = Number of WS Results n 1 2 3 4 5 6 7 8 9 10 
3 0.072 0.287 0.585        
4 0.054 0.212 0.418 0.669       
5 0.044 0.169 0.327 0.510 0.725      
6 0.037 0.140 0.269 0.415 0.578 0.765     
7 0.031 0.120 0.228 0.350 0.483 0.629 0.795    
8 0.028 0.104 0.199 0.303 0.416 0.538 0.670 0.818   
9 0.024 0.093 0.176 0.268 0.366 0.471 0.582 0.702 0.836  

10 0.022 0.083 0.158 0.239 0.327 0.419 0.516 0.619 0.729 0.851 
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Table 8: 
 

k = Number of WS Results n 1 2 3 4 5 6 7 8 9 10 
3 0.035 0.196 0.464        
4 0.026 0.143 0.320 0.562       
5 0.021 0.112 0.247 0.416 0.631      
6 0.017 0.093 0.201 0.333 0.490 0.681     
7 0.015 0.079 0.170 0.279 0.404 0.547 0.720    
8 0.013 0.069 0.147 0.240 0.345 0.462 0.594 0.750   
9 0.012 0.061 0.130 0.210 0.301 0.401 0.510 0.632 0.774  

10 0.010 0.055 0.116 0.188 0.267 0.354 0.448 0.550 0.663 0.794 
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Table 9: 
 

k = Number of WS Results n 1 2 3 4 5 6 7 8 9 10 
3 0.017 0.135 0.368        
4 0.013 0.098 0.249 0.473       
5 0.010 0.076 0.189 0.343 0.549      
6 0.009 0.063 0.153 0.271 0.418 0.607     
7 0.007 0.053 0.129 0.225 0.341 0.479 0.652    
8 0.006 0.046 0.111 0.193 0.289 0.400 0.529 0.688   
9 0.006 0.041 0.098 0.169 0.251 0.345 0.450 0.571 0.717  

10 0.005 0.037 0.087 0.150 0.222 0.304 0.393 0.493 0.606 0.741 
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Table 10: 
 

k = Number of WS Results n 1 2 3 4 5 6 7 8 9 10 
3 0.008 0.094 0.292        
4 0.006 0.068 0.194 0.398       
5 0.005 0.053 0.147 0.284 0.478      
6 0.004 0.043 0.118 0.223 0.359 0.541     
7 0.004 0.037 0.099 0.184 0.290 0.421 0.590    
8 0.003 0.032 0.085 0.157 0.245 0.349 0.473 0.631   
9 0.003 0.028 0.075 0.137 0.212 0.299 0.400 0.518 0.664  

10 0.003 0.025 0.067 0.122 0.187 0.262 0.348 0.444 0.555 0.692 
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Table 11: 
 

k = Number of WS Results n 0 1 2 3 4 5 6 7 8 9 
3 0.415 0.713 0.928        
4 0.331 0.582 0.788 0.946       
5 0.275 0.490 0.673 0.831 0.956      
6 0.235 0.422 0.585 0.731 0.860 0.963     
7 0.205 0.371 0.517 0.650 0.772 0.880 0.969    
8 0.182 0.330 0.462 0.584 0.697 0.801 0.896 0.972   
9 0.164 0.298 0.418 0.529 0.634 0.732 0.824 0.907 0.976  

10 0.149 0.271 0.381 0.484 0.581 0.673 0.761 0.842 0.916 0.978 
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Table 12: 
 

k = Number of WS Results n 0 1 2 3 4 5 6 7 8 9 
3 0.536 0.804 0.965        
4 0.438 0.680 0.857 0.974       
5 0.369 0.584 0.753 0.888 0.979      
6 0.319 0.510 0.667 0.799 0.907 0.893     
7 0.280 0.453 0.596 0.721 0.830 0.921 0.985    
8 0.250 0.406 0.538 0.655 0.760 0.853 0.931 0.987   
9 0.226 0.368 0.490 0.599 0.699 0.790 0.871 0.939 0.988  

10 0.206 0.337 0.450 0.552 0.646 0.733 0.812 0.884 0.945 0.990 
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Table 13: 
 

k = Number of WS Results n 0 1 2 3 4 5 6 7 8 9 
3 0.632 0.865 0.983        
4 0.527 0.751 0.902 0.987       
5 0.451 0.657 0.811 0.924 0.990      
6 0.393 0.582 0.729 0.847 0.937 0.991     
7 0.348 0.521 0.659 0.775 0.871 0.947 0.993    
8 0.312 0.471 0.600 0.711 0.807 0.889 0.954 0.994   
9 0.283 0.429 0.550 0.655 0.749 0.831 0.902 0.959 0.994  

10 0.259 0.394 0.507 0.607 0.696 0.778 0.850 0.913 0.963 0.995 
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Table 14: 
 

k = Number of WS Results n 0 1 2 3 4 5 6 7 8 9 
3 0.708 0.906 0.992        
4 0.602 0.806 0.932 0.994       
5 0.522 0.716 0.853 0.947 0.995      
6 0.459 0.641 0.777 0.882 0.957 0.996     
7 0.410 0.579 0.710 0.816 0.901 0.963 0.996    
8 0.369 0.527 0.651 0.755 0.843 0.915 0.968 0.997   
9 0.336 0.483 0.600 0.701 0.788 0.863 0.925 0.972 0.997  

10 0.309 0.445 0.556 0.652 0.738 0.813 0.878 0.933 0.975 0.997 
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Table 15: 
 

γ n 
0.6 0.7 0.8 0.9 0.95 0.975 

2 0.3979 0.8898 1.6857 3.7694 7.7327 15.5619 
3 0.3333 0.7127 1.2247 2.1773 3.3717 4.9683 
4 0.3093 0.6534 1.0940 1.8311 2.6311 3.5581 
5 0.2966 0.6229 1.0308 1.6795 2.3353 3.0414 
6 0.2886 0.6043 0.9932 1.5941 2.1765 2.7765 
7 0.2831 0.5916 0.9682 1.5392 2.0773 2.6159 
8 0.2791 0.5824 0.9504 1.5008 2.0095 205081 
9 0.2761 0.5755 0.9370 1.4724 1.9601 2.4307 
10 0.2737 0.5700 0.9265 1.4505 1.9226 2.3726 
11 0.2718 0.5656 0.9182 1.4332 1.8931 2.3272 
12 0.2702 0.5620 0.9113 1.4191 1.8692 2.2909 
13 0.2688 0.5590 0.9056 1.4074 1.8496 2.2611 
14 0.2677 0.5564 0.9007 1.3976 1.8331 2.2362 
15 0.2667 0.5542 0.8965 1.3891 1.8191 2.2151 
16 0.2658 0.5522 0.8929 1.3819 1.8070 2.1971 
17 0.2651 0.5505 0.8897 1.3755 1.7965 2.1814 
18 0.2644 0.5490 0.8869 1.3699 1.7873 2.1676 
19 0.2638 0.5477 0.8844 1.3650 1.7791 2.1555 
20 0.2633 0.5465 0.8822 1.3605 1.7718 2.1447 
30 0.2599 0.5390 0.8683 1.3331 1.7272 2.0790 
40 0.2583 0.5353 0.8615 1.3198 1.7058 2.0478 
50 0.2573 0.5331 0.8575 1.3120 1.6932 2.0296 
60 0.2566 0.5316 0.8548 1.3068 1.6850 2.0176 
70 0.2561 0.5306 0.8529 1.3032 1.6791 2.0091 
80 0.2558 0.5298 0.8515 1.3004 1.6747 2.0029 
90 0.2555 0.5292 0.8504 1.2983 1.6714 1.9980 

100 0.2553 0.5287 0.8495 1.2966 1.6687 1.9941 
∞ 0.2534 0.5244 0.8416 1.2816 1.6449 1.9600 
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Table 16: 
 

n tα, n-1 √1+1/n t * √ 
2 6.3137 1.2247 7.7327
3 2.9200 1.1547 3.3717
4 2.3534 1.1180 2.6311
5 2.1318 1.0954 2.3353
6 2.0150 1.0801 2.1765
7 1.9432 1.0690 2.0773
8 1.8946 1.0607 2.0095
9 1.8595 1.0541 1.9601
10 1.8331 1.0488 1.9226
15 1.7613 1.0328 1.8191
20 1.7291 1.0247 1.7718
30 1.6991 1.0165 1.7272
40 1.6849 1.0124 1.7058
50 1.6766 1.0100 1.6932
60 1.6711 1.0083 1.6850
lim n→∞ 
(NV) 1.6449 1.0000 1.6449
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