PAUL SCHERRER INSTITUT

Anders Kaestner

Laboratory for Neutron Scattering and Imaging :: Paul Scherrer Institut

Neutron imaging Monitoring and quantifying water in porous media

GRK 2075 :: TU Braunschweig :: October 6th, 2017

- Introduction
- Neutron imaging
- Imaging with water
- New possibilities
- Summary

Introduction

Water is everywhere...

The role of water in construction materials

Production

Maintenance and Preservation

What is the link to imaging?

When most people hear the words Radiography and Tomography \ldots

- . . . they think about applications in hospitals
- X-rays
- Broken legs
- Head scans
- . . .

- ... and when they hear about neutrons they think about
- Something very small
- Bombs
- Nuclear power

These are not the topics of this seminar . . . but there are connections.

You can see through samples and observe processes

X-ray - Neutrons what's the difference?

Neutrons

X-rays

Period																		
1	H 3.44																	He 0.02
2	Li 3.30	Be 0.79											B 101.6	C 0.56	N 0.43	0 0.17	F 0.20	Ne 0.10
3	Na 0.09	Mg 0.15											AI 0.1	Si 0.11	P 0.12	S 0.06	Cl 1.33	Ar 0.03
4	K 0.06	Ca 0.08	Sc 2.00	Ti 0.60	V 0.72	Cr 0.54	Mn 1.21	Fe 1.19	Co 3.92	Ni 2.05	Cu 1.07	Zn 0.35	Ga 0.49	Ge 0.47	As 0.67	Se 0.73	Br 0.24	Kr 0.61
5	Rb 0.08	Sr 0.14	Y 0.27	Zr 0.29	Nb 0.40	Mo 0.52	Tc 1.76	Ru 0.58	Rh 10.88	Pd 0.78	Ag 4.04	Cd 115.1	In 7.58	Sn 0.21	Sb 0.30	Te 0.25	I 0.23	Xe 0.43
6	Cs 0.29	Ba 0.07		Hf 4.99	Ta 1.49	W 1.47	Re 6.85	Os 2.24	lr 30.46	Pt 1.46	Au 6.23	Hg 16.21	TI 0.47	Pb 0.38	Bi 0.27	Po -	At -	Rn -
7	Fr -	Ra 0.34		Rf -	Db -	Sg -	Bh -	Hs -	Mt -	Ds -	Rg -	Uub -	Uut -	Uuq -	Uup -	Uuh -	Uus -	Uuo -
Lanthanides La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm 0.52 0.14 0.41 1.87 5.72 17.147 94.58 147.90 0.93 92.42 2.25 5.48 3.53									Yb 1,40	Lu 2.75								
Actinides				Ac -	Th 0.59	Pa 8.46	U 0.82	Np 9.80	Pu 50.20	Am 2.86	Cm	Bk -	Cf -	Es -	Fm -	Md -	No	Lr -

Group →

2

17 18

16

High contrast water vs. matrix

- No contrast enhancement required.
- D2O can be used to observe diffusion and transport

Can penetrate metal containers and still see the water.

- -Strong pressure cells can be used
- Often sufficient resolution (spatial and temporal)

. . . more about this later.

AI	Н	0	С	К	Si	Са	Ν	Ti	Fe	Na
0.1	3.44	0.17	0.56	0.06	0.11	0.08	0.43	0.60	1.19	0.09

... and in particular neutron imaging?

The sensitivity to water and isotope sensitivity!

Radiography time series

[Zarebanadkouki et al., Plant and Soil Nutrition, 2013]

Tomography time series

[Kazantsev et al., Inv. Problems and Imaging, 2015]

Neutron imaging examples

Electrochemistry

Material science

Neutron imaging

Neutron imaging

Basic Principle:

Source

- Spatial domain acquisition of transmitted neutrons → Radiography
- The universal attenuation law applies

Collimator

Sample

Detector

Additional modes:

- Real-time imaging
- Stroboscopic imaging
- Tomography
- Energy selective imaging
- Grating interferometry

Radiography

Spectral imaging

Grating interferometry

Multi modality

Difference between radiography and CT

Radiography

- 2D Projection
- No depth information
- Fast acquisition

Tomography

- Volume information
- Requires multiple radiographs
- Acquisition by scanning
- Higher local contrast

Neutron sources

Neutron imaging require high fluxes - 10⁶ neutrons/cm²/s and more

Research reactors

Main process: Fission Requires: Uranium Spallation neutron sources

Main process: Spallation Requires: High energy proton beam

Neutron imaging beamlines at PSI - NEUTRA

Thermal neutrons

X-rays inline

Support for imaging with high active samples

```
FOV: 50x50mm<sup>2</sup> →300x300mm<sup>2</sup>
```


Neutron imaging beamlines at PSI - ICON

Cold neutrons X-rays oblique High resolution imaging

FOV: $5x5mm^2 \rightarrow 250x250mm^2$

Energy selective imaging Grating interferometry Diffraction imaging

Neutron imaging in the world

Imaging with water

How we measure water content...

From Beer-Lambert's law we get

$$I_{dry} = I_0 \ e^{-\Sigma_{media} I_{media} - \Sigma_{Contatiner} I_{Container}}$$

$$I_{wet} = I_0 e^{-\sum_{media} I_{media} - \sum_{H_2 0} I_{H_2 0} - \sum_{Contatiner} I_{Container}}$$

Quantifying changes – Image referencing

Scattering correction – Getting closer

Original CT slice

Corrected by QNI

[R. Hassanein, , PhD. Thesis, ETH, Zürich, 2006]

Time series of radiographs

Time series of images

Horizontal position

[PSI Summer school experiment 2013]

Salt transport in concrete

Reality

Experiment configuration

Salt transport in concrete – Imaging

0.0 +

0

20

40

3D water distribution in sand

60

time [min]

80

[P. Lehmann et al., AWR, 2008]

0.0

100

Displacement analysis

Digital Image Correlation

- Identifies small displacements using correlation
- Useful for deforming samples

New posibilities

- Many users want to ...
- measure fast
- see small details in 3D
- with a monochromatic beam

Courtesy: P. Trtik, PSI Page 30

[Kaestner et al., Solid Earth, 2015]

On-the-fly CT – High volume rates

[Zarebanadkouki et al., Physics Procedia, 2015]

D_2O uptake in a root Volume rate 1/min @ 46µm voxels

[Kaestner et al., Solid Earth, 2015]

D2O is an ideal tracer in water (contrast difference ~1:10)

High spatial resolution neutron CT

MgB2 superconducting multifilament wire, voxel size 2.7 μm

[Trtik et al., Physics Procedia, 2015]

Challenge with porous samples

What are the contributions to a pixel intensity?

Working with two modalities

Different approaches to NX-imaging :: Off-site

Neutrons

Synchrotron

Lab-based X-ray

Pros

- Different resolutions
- Optimized acquisition times
- Access to equipment (at home)

Cons

- Sample transport (sample activation etc.)
- No simultaneous acquisition
- Coordination

Different approaches to NX-imaging :: On-site

Inline

No simultaneous acquisition

Perpendicular

The perpendicular installation at ICON

Roots and soil

Neutrons

X-rays

Dynamic study of water in soil

Summary

Summarizing schematic

Wir schaffen Wissen – heute für morgen

Neutron imaging ...

- ... is a well-used tool for porous media research.
- ... has high sensitivity to fluids.
- ... method development allow new insights.

You are welcome to submit proposals: <u>https://duo.psi.ch/duo/</u> Next deadline:

Wir schaffen Wissen – heute für morgen

My thanks go to

- The Neutron Imaging activation Group, PSI
- Our user community

