Mitteilung des Instituts für Grundbau und Bodenmechanik Technische Universität Braunschweig

Heft Nr. 24

Schildvortrieb mit flüssigkeitsund erdgestützter Ortsbrust

von Dr.-Ing. Thomas Krause

Braunschweig 1987

Zusammenfassung

Für den Tunnelbau in nicht standfesten Böden unterhalb des Grundwasserspiegels wurden in Japan, England und Deutschland Schildsysteme entwickelt, bei denen die Ortsbrust durch eine Flüssigkeit oder den abgebauten Boden in einer Abbaukammer vor der Ortsbrust gestützt wird. Die Kenntnisse über diese Schilde sind teilweise gering und einige ihrer Probleme bislang unerforscht. Die vorliegende Arbeit hat deshalb folgende Ziele:

- Überblick und Vergleich der Schildsysteme mit flüssigkeits- und erdgestützter Ortsbrust,
- 2. Untersuchungen zur Standsicherheit der Ortsbrust,
- Durchführung von Laborversuchen mit Böden höherer Durchlässigkeit zur Auswahl geeigneter Stützflüssigkeiten für den Einsatz von Schilden mit flüssigkeitsgestützter Ortsbrust.

Für den Überblick und Vergleich der verschiedenen Schildsysteme werden die Angaben in der Literatur, die Referenzlisten mehrerer Schildhersteller sowie eigene Erfahrungen von Baustellenbetreuungen und -besuchen in Europa und Japan ausgewertet und hieraus wichtige Konstruktionsmerkmale und die speziellen Probleme und Einsatzgrenzen der Schilde abgeleitet.

Die Standsicherheit der Ortsbrust ist bei den Schilden gewährleistet, wenn der angreifende Erd- und Wasserdruck mit ausreichender Sicherheit von dem steuerbaren Stützdruck aus der Flüssigkeit oder dem abgebauten Boden aufgenommen wird. Für die Berechnung des auf die Ortsbrust wirkenden Erddruckes werden zwei Berechnungsverfahren auf der Grundlage von verschiedenen Bruchkörpermodellen entwickelt und an einem Beispiel aus der Praxis überprüft.

In einem Versuchsstand wird die Situation an der Ortsbrust bei einem Schild mit flüssigkeitsgestützter Ortsbrust simuliert. Die Eignung verschiedener Suspensionen wurde untersucht, ausgedrückt durch das Eindringverhalten der Suspension in den Boden und die Luftdurchlässigkeit des mit dem Filterkuchen versiegelten Bodens. Aus den Ergebnissen der Laborversuche werden Hinweise für die Praxis bei der Auswahl geeigneter Suspensionen abgeleitet.

Summary

In Japan, England and West Germany shield machines with a face, stabilized by a fluid or the excavated soil kept inside a chamber in the front part of the shield, have been developped for unstable and water-bearing grounds. Knowledge about these shield systems is limited and some of their problems are still rested unsolved. Therefore this thesis has the following intentions:

- Summary of main features and comparison of slurry and earth pressure balanced shields,
- 2. Evaluation of methods for the determination of tunnel face stability,
- Laboratory tests with granular soils for the selection of suitable slurries for slurry shield drives.

Technical details obtained from international literature, reference lists of several shield manufacturers as well as own experience, gained during consulting and visiting tunnelling projects in Europe and Japan, are critically interpreted. Important characteristics of shield construction, special problems and the range of applicability of these shield systems are pointed out.

The effective earth and water pressure at the face have to be balanced by a sufficient, adjustable slurry or earth pressure inside the chamber. Based on different failure surfaces, two methods for support pressure determination at the face were developped and applied to the measurements taken for a particular tunnel drive.

The situation at the face of a slurry shield was simulated by a laboratory model. The suitability of different slurries was tested in this model. The slurry quality could be expressed by its depht of penetration into the soil and the air permeability of the cake, sealing the face. Based on the results of the laboratory tests recommendations are given for the selection of suitable slurries and future research.

Inhaltsverzeichnis			
Bez Lite	eichr eratui	nungen und Abkürzungen rverzeichnis	
1.	EINL	1	
	1.1	Problemstellung	1
	1.2	Ziele der Arbeit	3
	1.3	Historische Entwicklung	4
2.	DEU	JTSCHE SCHILDSYSTEME	6
	2.1	Allgemeines	6
	2.2	Aufbau der Maschinen	7
		2.2.1 Schildmantel	10
		2.2.2 Abbaugeräte	11
		2.2.3 Abbaukammer	16
		2.2.4 Meß- und Steuersystem	17
	2.3	Einsatzgrenzen	17
3.	JAP	ANISCHE SCHILDSYSTEME	20
	3.1	Allgemeines	20
	3.2	Suspensionsschilde	23
		3.2.1 Allgemeines	23
		3.2.2 Aufbau der Maschinen	24
		3.2.2.1 Schildmantel	24
		3.2.2.2 Schneidrad	25
		3.2.2.3 Meß- und Steuersystem	32
		3.2.2.4 Stützflüssigkeit	35
		3.2.3 Einsatzgrenzen	36
	3.3	Erddruckschilde	39
		3.3.1 Allgemeines	39
		3.3.2 Einteilung der Erddruckschilde	40
		3.3.3 Aufbau der Maschinen	42
		3.3.3.1 Schildmantel	42
		3.3.3.2 Schneidrad	44
		3.3.3.3 Abbaukammer	45

- | -

					Seite
			3.3.3.4 F	örderschnecke	46
			3.3.3.5 N	<i>M</i> eβ− und Steuersystem	50
		3.3.4	Einsatzgre	enzen	54
			-		
4.	VER	GLEICH	DER SCHI	ILDSYSTEME	57
5.	STA	NDSICH	ERHEIT DI	ER ORTSBRUST	62
	5.1	Erd- ı	nd Wasser	druck	62
	5.2	Stützd	ruck		68
	5.3	Rechne	erische Nac	hweise	70
		5.3.1	Übliche Be	erechnungsverfahren	71
		5.3.2	Eigene Be	rechnungsverfahren	74
		5.3.3	Vergleich	der Berechnungsverfahren	81
	5.4	Vergle	ich zwische	en den Berechnungsverfahren und den	
		Messur	igen bei ei	nem Tunnelvortrieb	84
6.	AUS	WAHL C	EEIGNETE	R STÜTZFLÜSSIGKEITEN	87
	6.1	Anford	erungen		87
	6.2	Eigene	Laborvers	uche	91
		6.2.1	Versuchss	tand	92
			6.2.1.1 Z	Zylinder	92
			6.2.1.2 D	Druckluftversorgung	94
			6.2.1.3 N	leßsystem	94
		6.2.2	Versuchsd	lurchführung	94
		6.2.3	Versuchsb	öden	95
7.	EIGE	ENE VEI	RSUCHE MI	T VERSCHIEDENEN SUSPENSIONEN	97
	7.1	Bentor	it		97
	7.2	Zusatz	mittel		98
	7.3	Physik	alische Ker	nnwerte von Bentonitsuspensionen	100
		7.3.1	Mischen de	er Suspension, Quellzeit, Meßgeräte	100
		7.3.2	Bentonitsu	uspensionen ohne Zusatzmittel	101
		7.3.3	Bentonitsu	uspensionen mit Zusatzmitteln	103
		7.3.4	Zusammen	hang der physikalischen Kennwerte	107
	7.4	Eindrii	ngverhalter	von Bentonitsuspensionen	107
		7.4.1	Bentonitsu	uspensionen ohne Zusatzmittel	109

		7.4.1.1	Vergleich der Versuche mit dem		
			horizontalen und vertikalen Modell	109	
		7.4.1.2	Zeitlicher Verlauf der Eindringung	109	
		7.4.1.3	Filterkuchen	114	
		7.4.1.4	Eindringtiefe	115	
	7.4.2	Bentonit	suspensionen mit Zusatzmitteln	122	
		7.4.2.1	CMC	123	
		7.4.2.2	Sand	125	
		7.4.2.3	Glimmer	132	
		7.4.2.4	Zement	134	
7.5	5 Luftd	urchlässig	keit des Filterkuchens bei		
	Bento	nitsuspens	sionen	134	
	7.5.1	Bentonit	suspensionen ohne Zusatzmittel	136	
	7.5.2	Bentonit	suspensionen mit Zusatzmitteln	141	
7.6	5 Tonsu	spensione	n	144	
8. FO	LGERUN	GEN AUS	DEN VERSUCHEN	148	
9. ZU	SAMMEN	FASSUNG	UND EMPFEHLUNGEN FÜR DIE PRAXIS	152	
ANLAGE 1 - 6: Zusammenstellung der in der Literatur					
		erwähnte	en Einsätze von Schilden mit		
	flüssigkeits- und erdgestützter Ortsbrust				

- 111 -

- IV -

Bezeichnungen und Abkürzungen

A Querschnittsfläche des Zylinde

- Kennwert f
 ür den Porenraum des Bodens zur Ermittlung der Eindringtiefe
- a Index für aktiven Erddruck

b Faktor zur Ermittlung der Eindringtiefe

CT Schild mit Zentralantrieb (center shaft type)

- c' Kohäsion des Bodens
- D Außendurchmesser des Tunnels

D_C Geschwindigkeitsgefälle

- D. Innendurchmesser des Tunnels
- D_c Schilddurchmesser
- DK Erddruckschild mit offenem Schneidrad
- d Durchmesser des Porenkanals im Boden
- Ap Differenzdruck
- E Erddruckkraft
- e Erddruckspannung
- f Filtratwasserabgabe
- f Druckgefälle
- G Masse des Bruchkörpers vor der Ortsbrust
- Plastizitätszahl
- IT Schild mit Mittelantrieb (intermediate type)
- H Überdeckungshöhe
- Hj Hydrojetschild
- Hy Hydroschild
- h Index für horizontal

i hydraulisches Gefälle

i, Gefälle des Luftdruckes entlang einer Stromlinie im Boden

 ${\bf k}_{\rm ab}$ – Beiwert des aktiven, horizontalen Erddruckes

k_I Durchlässigkeitsbeiwert für Luft

 $k_{1 F}$ Durchlässigkeitsbeiwert des Filterkuchens für Luft

k_w Durchlässigkeitsbeiwert für Wasser

L_s Schildlänge

I_F Eindringtiefe

- I^{*}_E bezogene Eindringtiefe
- M_T Antriebsmoment des Schneidrades
- MI Erddruckschild mit Schlamminjektion (mud injection)

Mix Mixschild

- N Anzahl der Rammschläge beim Standard Penetration Test (SPT)
- n Porenanteil des Bodens
- P gesamte Pressenkraft des Schildes
- PT Schild mit Außenantrieb (peripheral type)
- p mittlerer Stützdruck an der Ortsbrust zur Aufnahme der Erddruckkraft
- Q Luftstrommenge
- R Kurvenradius
- RV Rohrvortrieb
- r Radius des Porenkanals im Boden
- s Setzung
- Thix Thixschild
- t Zeit
- t_M Auslaufzeit aus dem Marsh-Trichter
- U Ungleichförmigkeitszahl
- V_ verdrängte Wassermenge zur Ermittlung der Eindringtiefe
- v Index für vertikal
- v_F Eindringgeschwindigkeit
- w Wassergehalt
- w_{max} Wasseraufnahme nach Enslin/Neff
- w1 Wassergehalt an der Fließgrenze
- wp Wassergehalt an der Ausrollgrenze
- WP Erddruckschild mit Suspensionsgegendruck (water pressure)

Griechische Zeichen

α Faktor zur Ermittlung des Antriebsmomentes des Schneidrades Faktor zur Ermittlung der maximalen Pressenkraft des β Schildes Wichte des feuchten Bodens γ Wichte des Bodens unter Auftrieb Y' Wichte des Wassers Yw Δ Differenz 3 Wandreibungswinkel Viskosität der Suspension n 2 Gleitflächenwinkel Dichte des Bodens ρ Trockendichte des Bodens ρd

- ρ_{F} Dichte der Suspension
- ϕ' innerer Reibungswinkel des Bodens
- σ Normalspannung
- τ Schubspannung
- τ_F Fließgrenze
- τ_G Gelstärke
- τ_{G^1} Gelstärke (Ruhezeit der Suspension 10 Minuten
- $\tau_{G^{II}}$ Anfangsgelstärke (Ruhezeit der Suspension 10 Sekunden)

Abkürzungen im Literaturverzeichnis

AFTES	Association Francaise Des Traveaux En Souterain				
ASCE	American Society of Civil Engieneers				
DGEG	Deutsche Gesellschaft für Erd- und Grundbau				
ECSMFE	European Conf. on Soil Mechanics and Foundation				
	Engineering				
ICSMFE	Int. Conf. on Soil Mechanics and Foundation Engineering				
J.	Journal				
JSCE	Japan Society of Civil Engineers				
JSMFD	J. of the Soil Mechanics and Foundations Division, \ensuremath{ASCE}				
Proc.	Proceedings				
RETC	Rapid Excavation and Tunnelling Conf.				

Literaturverzeichnis

Abe, T., Sugimoto, Y., Ishihara, K.: Development and application of environmentally acceptable new soft ground tunnelling method Proc. Int. Tunnel Symposium "Tunnelling Under Difficult Conditions", Tokyo (1978), S. 315 - 320
Anheuser, L.: Gemessene Setzungen über mit dem Hydroschild aufgefahre- nen Tunneln. Forschung + Praxis, Bd. 27 (1981a), S. 120 – 128, Alba Buchverlag, Düsseldorf
Anheuser, L.: Der Hydrojetschild Tiefbau, H. 9 (1981b), S. 631 – 634
Anheuser, L.: Hydraulically supported faces in coarse and loose soils Proc. RETC, Chikago (1983), Vol. 2, S. 925 - 938
Anheuser, L.: Der WF – Hydroschild im Rohrleitungsbau Wissenschaftliche Zeitschrift der Hochschule für Achitektur und Bauwesen, Weimar (1984a), Nr. 1/2, S. 119 – 123
Anheuser, L.: Technologie et application récentes des boucliers à boues allemands Proc. Int. Symposium "Tunnelling in Soft and Water-Bearing Grounds", AFTES, Lyon (1984b), S. 15 - 20
Atkinson, J.H., Potts, D.M.: Stability of a shallow circular tunnel in cohesionless soil Géotechnique 27 (1977), No. 2, S. 203 - 215
Babendererde, S.: Extru-Beton als Tunnelauskleidung: Erkenntnisse aus aufge- fahrenen Tunnelstrecken Forschung + Praxis, Bd. 30 (1986), S. 26 – 31, Alba Buch- verlag, Düsseldorf
Bartlett, J.V., Biggart, A.R., Triggs, R.L.: The bentonite tunnelling machine Proc. Institution of Civil Engineers, No. 54, Part 1, London (1973), S. 605 - 624
Baumer, H.: Entwicklung und Erprobung eines Thixschildprototyps für den Tunnelvortrieb Statusseminar des BMFT "Kommunale Tiefbautechnik", Willingen (1979), Sonderdruck Tiefbau, Ingenieurbau, Stras- senbau, S. 20 - 23
Becker, C., Sawinski, J.: Operational experience and development of bentonite shield tunnelling in Europe since 1975 Proc. Tunnelling '82, Institution of Mining and Metallurgy, London (1982), S. 41 - 48

- Becker, C., Sawinski, J.: Bentonite shield tunnelling in Europe Tunnels & Tunnelling, H. 1 (1983), S. 13
- Becker, C.: New developments in bentonite shield tunnelling Proc. RETC, Chikago (1983), S. 318 - 327
- Becker, C.: Galleria Aurelia Roma Europe's largest Hydroshield Proc. Int. Symposium "Tunnelling in Soft and Water-Bearing Grounds", AFTES, Lyon (1984), S. 69 - 72
- Becker, C.: Ein Schild mit anpassungsfähiger Ortsbruststützung der Mixschild Tunnelbau-Symposium BAUMA '86, Tunnelbau-Spezial (1986), S. 29 - 33
- Biggart, A.: Slurry face machine tunnelling Proc. RETC, Atlanta (1979), S. 497 - 520
- Braun, W.M.: Lyon goes underground despite its rivers Tunnels & Tunnelling, H. 5 (1985), S. 25 - 28
- Broms, B.B.; Bennermark, H.: Stability of clay at vertical openings J. of JSMFD, No. SM1 (1967), S. 71 - 94
- Chen, C.-K., Kituchi, M.: Japanese technology in Taiwanese harbour seabed shield drive Tunnels & Tunnelling, H. 12 (1984), S. 35 - 38
- Chi, B.P.C., Li, K., Ju, D.H.: Application of the shield method on soft ground tunnelling in Taiwan Proc. Int. Symposium "Tunnelling in Soft and Water-Bearing Grounds", AFTES, Lyon (1984), S. 79 - 84
- Clough, R.: Japanese break through in San Francisco Tunnels & Tunnelling, H. 10 (1983), S. 15 - 17
- Davis, E.H., Gunn, M.J., Mair, R.J., Senerivatne, H.N.: The stability of shallow tunnels and underground openings in cohesive material Géotechnique 30 (1980), No. 4, S. 397 - 416
- Diener, H.: Über den Einfluß mehrwertiger Kationen auf mit Celluloseäther stabilisierte Tonspülungen Erdöl-Zeitschrift, H. 11 (1961), S. 529 - 536
- Doi, T.: Daiba tunnel construction project on the Keiyo Line slurry shield method Tunnels and Underground, Vol. 9, No. 10 (1978), S. 15 23 (in japanisch)
- Droscha: Hydroschild für Tunnelbau in rolligen Böden Straße, Brücke, Tunnel, H. 5 (1975), S. 134 – 135

- Eber, A.: U-Bahnbau mit dem Hydroschild in Antwerpen Bauingenieur, H. 3 (1982), S. 93
- Engelmann: Die Entwicklung des Hydroschildsystems und seine Anwendung im Tunnel- und Stollenbau Tiefbau – Berufsgenossenschaft, H. 6 (1981), S. 390 – 399
- Eraud, J.: TGV Atlantique Tunnel de Villejust Proc. Int. Symposium "Tunnelling in Soft and Water-Bearing Grounds", AFTES, Lyon (1984), S. 95 - 98

Ferrand, J., Pera, J.: Le bouclier à pression de boue de la ligne D du Métro de Lyon Proc. 1st Latin American Congress of Underground Constructions, Caracas (1984), S. 397 - 399

- Ferrand, J., Bouyat, C.: Le métro de Lyon et son bouclier à pression de boue Proc. Int. Symposium "Tunnelling in Soft and Water-Bearing Grounds", AFTES, Lyon (1984), S. 21 - 27
- Fröhlich, H.: Vortrieb der Kühlwasserkanäle im Kernkraftwerk Isar 2 Tunnelbau-Symposium BAUMA '86, Tunnelbau-Spezial (1986), S. 93 - 99
- Fujita, K.: Use of slurry and earth pressure balanced shield in Japan Int. Congress on Tunnelling "Tunnel '81", Düsseldorf (1981), Bd. 1, S. 383 - 424

Gebhard, K., Magnus, W.: Schildvortrieb mit flüssigkeitsgestützter Ortsbrust und extrudierter Ortbetonröhre Int. Congress on Tunnelling "Tunnel '81", Düsseldorf (1981), Bd. 1, S. 207 – 218

Grimm, R.E.: Clay Mineralogy McGraw-Hill Book Company, New York (1968)

Haack, A., Blennemann, F.: Tunnelbedarfsvorhersage zur Abschätzung der Möglichkkeiten einer Verbesserung der Tunnelbauverfahren in technischer und wirtschaftlicher Hinsicht STUVA-Forschungsbericht 13/80

Haack, A.: Neue Entwicklungen auf dem Gebiet des Schildvortriebes Kolloquium "Angewandte Geomechanik", TU Clausthal (2.5.1980), S. 220 - 256

Hagimoto, H., Kashima, Y.: D.K. shield method Proc. Int. Symposium "Tunnelling in Soft and Water-Bearing Grounds", AFTES, Lyon (1984), S. 53 - 60

- Hama, K.: The design and construction of railway tunnel in soft, clayey alluvial soil Proc. Int. Tunnel Symposium "Tunnelling Under Difficult Conditions", Tokyo (1978), S. 151 - 156
- Harding, P.G.: Sewer boring at Sagami, Japan Tunnels & Tunnelling, H. 5 (1981), S. 40 - 41

Hashimoto, K., Takeyama, T., Kurosawa, S., Tamiya, Y.,

Fujihara, Y., Yoshikawa, T.: Tunnel excavation with the world largest slurry shield Proc. Int. Sympsoium "Tunnelling in Soft and Water-Bearing Grounds", AFTES, Lyon (1984), S. 45 - 52

Huder, J.: Stability of bentonite slurry trenches with some experiences in Swiss practice Proc. 5th ECSMFE, Madrid (1972), S. 517 - 522

Hutchinson, M.T., Daw, G.P., Shotton, P.G., James, A.N.: The properties of bentonite slurries used in diaphragm walling and their control Proc. Conf. "Diaphragm Walls & Anchorages" 18.-20.9.1974, Institution of Civil Engineers, London (1975), S. 33 -39

- Ishihara, K.: Earth pressure balanced shield method water pressure type J. of the Japan Agri-Civil Engineering Mechanization Association, (1978)
- Ishihara, K.: Earth pressure balanced shield tunnelling method: water pressure type Underground Space, Vol. 4, No. 2 (1979), S. 95 - 101
- Ishimoto, K.: Breakthrough under complicated layers by earth-pressurebalanced shield tunnelling method Proc. 1st Latin American Congress of Underground Constructions, Caracas (1984), S. 269 - 275
- Ishitani, M., Tamai, T., Takeuchi, T.: Application of earth pressure balanced shield method to saturated sand/gravel deposits Proc. 1st Latin American Congress of Underground Constructions, Caracas (1984), S. 263 - 268
- Jacob, E.: Der Bentonitschild, Technologie und erste Anwendung in Deutschland Forschung + Praxis, Bd. 19 (1976), S. 30 - 38, Alba Buchverlag, Düsseldorf
- Jacob, E.: Weiterentwicklung des Hydroschildes insbesondere Schildanlage, Fördersystem, Separiereinrichtung, Schwanzblechabdichtung Forschung + Praxis, Bd. 21 (1978), S. 50 – 54, Alba Buchverlag, Düsseldorf

- Jacob, E., Meldner, V.O.: Contractors' experience with the Hydroshield tunnelling system Proc. RETC, Atlanta (1979a), S. 467 - 477
- Jacob, E.: Der Hydrojet Schild. Eine Sonderausführung des Hydroschilds für kleine Tunneldurchmesser Int. Congress on Tunnelling "Tunnel '81", Düsseldorf (1981), Bd. 1, S. 311 – 329
- Jacob, E.: Die Weiterentwicklung des Hydroschildes Tiefbau – Berufsgenossenschaft, H. 6 (1983), S. 429 – 435
- Jacob, E.: Der Mixschild: Entwicklungsgrundsätze und erste praktische Erfahrungen Forschung + Praxis, Bd. 30, (1986), S. 20 – 25, Alba Buchverlag, Düsseldorf
- Japan Tunnelling Association: Tunnelling in Japan Tunnels & Tunnelling, H. 6 (1978), S. 19 - 22
- Japan Tunnelling Association: Katalog der Tunnelbauten in Japan Japan Tunnelling Association (1985) (in japanisch)
- Kakutani, T.: Earth pressure system shield, (1981)
- Kanematsu, T.:
 - Metro Tunnel Construction by earth pressure type shield Mass Transit Show, Singapore (1982), S. 4/1 4/15
- Karstedt, J., Ruppert, F.R.: Standsicherheitsprobleme bei der Schlitzwandbauweise Baumaschine + Bautechnik, H. 5 (1980), S. 327 - 334
- Karstedt, J.: Untersuchungen zum aktiven räumlichen Erddruck im rolligen Boden bei hydrostatischer Stützung der Erdwand Veröffentlichung d. Grundbauinst., TU Berlin, H. 10 (1982)
- Kato, S.: Tunnelling work in cobble and gravel layers using Kadei shield - high-density slurry shield machine Proc. 1st Latin American Congress of Unterground Constructions, Caracas (1984), S. 277 - 282
- Kawade, J.: Double track subway tunnel driven by slurry shield Mass Transit Show, Singapore (1982), S. 6/1 - 6/9

Kawarabata, Y .:

Present status and future plan for slurry face machine tunnelling – experiences until now and future development Proc. RETC, Atlanta (1979), S. 478 – 498

- Kawarabata, Y.: Recent advancements in slurry shield tunnelling Proc. RETC, Chikago (1983), Vol. 2, S. 299 - 317
- Knüpfer, J., Meseck, H.: Schildvortrieb bei flüssigkeitsgestützter Ortsbrust Mitt. d. Inst. f. Grundbau und Bodenmechanik, TU Braunschweig, H. 16 (1984)
- Krabbe, W.: Der Thixschild System "Holzmann" Forschung + Praxis, Bd. 23 (1980), S. 32 - 38, Alba Buchverlag, Düsseldorf
- Krabbe, W.: Schildvortrieb mit Bentonit-Suspension zur Abstützung der Ortsbrust – Der Thixschild System "Holzmann" Int. Congress on Tunnelling "Tunnel '81", Düsseldorf (1981), Bd. 1, S. 285 – 303
- Krause, Th.: Japanische Schildsysteme, Teil 1 und Teil 2 Baumaschine + Bautechnik, H. 7/8 (1986), S. 329 - 333 und H. 9 (1986), S. 383 - 385
- Kumai, F., Inoue, M.: Mud shield tunnelling for the Hikawadai section of the subway No. 8 line of the Teito Rapid Transit Authority – operation of mud shield of 10 m diameter Tekken Construction Co., (1982), unveröffentlicht
- Kurosawa, S., Yamamoto, S.: Construction cost down by total management system
- Kurosawa, S.: Earth pressure balanced shield tunnelling J. of JCD, ASCE, Vol. 107, No. CO4 (1981), S. 609 - 618
- Kurosawa, S.: Up to date state of the art of Japanese shield. The selection criteria of slurry shield and earth pressure balanced shield Proc. Int. Symposium "Tunnelling in Soft and Water-Bearing Grounds", AFTES, Lyon (1984), S. 9 - 13
- Lah, G.: Tubes poussés en terrains meubles et aquifères Proc. Int. Symposium "Tunnelling in Soft and Water-Bearing Grounds", AFTES, Lyon (1984), S. 167 - 170
- Langer, A.: Metro Linie 1 in Lille, F Tunnel, H. 4 (1986), S. 263 - 270
- Maeda, H., Hinata, Y.: Special shield tunnelling in mixed ground of tertiary and quaternary formation Proc. 1st Latin American Congress of Underground Constructions, Caracas (1984), S. 283 - 288
- Maidl, B.: Handbuch des Tunnel- und Stollenbaus, Teil 1 Verlag Glückauf, Essen (1984)

Matsushita, H.	: Earth pressure balanced shield method Proc. RETC, Atlanta (1979), S. 521 - 529
Matsushita, H.	: Earth pressure balanced shield method Tunnels & Tunnelling, H. 1/2 (1980), S. 47 - 49
Miki, G., Saito	o, T., Yamazaki, H.: The principle and field experiences of a slurry mole method for tunnelling in the soft ground Proc. 9th ICSMFE, Special Session 1, Tokyo (1977),
Miyata, K., Su	gimoto, Y.: Earth pressure balanced shield method - water pressure type J. of JSCE, Vol. 65, No. 9 (1980), S. 35 - 39
Miyazaki, H.,	Hatakeyama, T., Kanematsu, T.: Subway tunnel by earth pressure balanced shield. Excavation control and pipe transportation of muck Proc. Int. Symposium "Tunnelling in Soft and Water-Bearing Grounds", AFTES, Lyon (1984), S. 189 - 195
Miyoshi, M., H	liraide, T.: General view on shield tunnelling techniques in Japan (1984)
Möbius, Ch.H.	, Günther, T.H.: Modellversuche zur Standsicherheit flüssigkeitsgestützter Erdwände II Bautechnik, H. 8 (1977), S. 267 – 272
Möhring, K., I	^P inkernell, J., Berger, K.: Bau eines Schmutzwasserdükers der Berliner Entwässerungs- werke Tiefbau, Ingenieurbau, Straßenbau, H. 3 (1985), S. 154 – 159
Moromoto, Y.,	Tokushige, H., Hirayama, T.: Construction of sewer tunnel main crossing under a river bed with shallow overburden – Using pressurized slurry- faced shield Prov. Int. Symposium "Tunnelling in Soft and Water-Bearing Grounds", AFTES, Lyon (1984), S. 61 – 67
Mosch, K.:	Rohrvortrieb und Rohrsysteme Tiefbau, Ingenieurbau, Straßenbau, H. 6 (1983), S. 343-349
Müller-Kirchen	bauer, H.: Stability of slurry trenches in inhomogeneous subsoils Proc. 9th ICSMFE, Tokyo (1977), Vol. 2, S. 125 - 132
Müller-Kirchen	bauer, H.: Zur Herstellung von Großbohrpfählen mittels Suspensions- stützung Geotechnik, H. 1 (1978), S. 43 - 50

The earth pressure balanced shields: case studies, current Naitoh, K.: research, future prospects Underground Space, Vol. 8 (1984), S. 89 - 94 The development of earth pressure balanced shields in Japan Naitoh, K.: Tunnels & Tunnelling, H. 5 (1985), S. 15 - 18 Nakayama, H., Miyauchi, M.: Slurry-shield tunnelling method under high water pressure Proc. Int. Symposium "The Saftey of Underground Works", Brüssel (1980), S. 286 - 290 (Preprints) Nash, K.L.: Stability of trenches filled with fluids J. Construction Division, ASCE, (1974), S. 533 - 542 Neumann, R.: Geologie für Bauingenieure Verlag v. Wilhelm Ernst & Sohn, Berlin (1964) N.N.: Pressed muddy water shield work for drilling Haneda tunnel J. of Civil Engineering in Japan, Vol. 10 (1971), S. 27 - 30N.N.: Compressed air for Hydroshield swap Tunnels & Tunnelling, H. 4 (1979) N.N.: Kudos for Japanese on U.S. bore Engineering News Record, (16.07.1981), S. 56 - 61 N.N.: Rome rail tunnel uses largest Hydroshield Tunnels & Tunnelling, H. 9 (1981), S. 9 N.N.: Japan's TARP Tunnels & Tunnelling, H. 6 (1984), S. 9 N.N.: Slurry shield success in Mexico City Tunnels & Tunnelling, H. 12 (1984), S. 8 New generation shield for Germany's HERA N.N.: Tunnels & Tunnelling, H. 3 (1985), S. 8 N.N.: EPB shield for Anacostia river crossing Tunnels & Tunnelling, H. 3 (1985), S. 8 N.N.: Two Hydroshields destinated for Cairo... Tunnels & Tunnelling, H. 5 (1985), S. 7 N.N.: Japanese shield to break French soil Tunnels & Tunnelling, H. 9 (1985), S. 9 N.N.: Cairo receives more tunnelling hardware Tunnels & Tunnelling, H. 1 (1986), S. 11 N.N.: British tunnellers start cleaning up Cairo World Construction, H. 2 (1986), S. 14 - 18 N.N.: Four more Mixshields in the making Tunnels & Tunnelling, H. 4 (1986a), S. 9

- N.N.: Boulders bedevil slurry TBM drives Tunnels & Tunnelling, H. 5 (1986), S. 14
- N.N.: Pre Metro Antwerpen Bautechnik, H. 6 (1986), S. 209 - 210
- N.N.: Mixshield goes to work on Lille Metro Tunnels & Tunnelling, H. 7 (1986), S. 11
- Ohira, T.: A new shield tunnelling technique by using pressurized water J. of JSCE, Vol. 56, No. 4 (1971), S. 17 - 26
- Ohta, Y., Matsui, T., Matsubara, H., Akiyama, M., Baba, T.: Slurry shield method in complex formation under sea – construction of water supply tunnel under Nagoya harbour Proc. Int. Tunnel Symposium "Tunnelling Under Difficult Conditions", Tokyo (1978), S. 203 – 208
- Oitzumi, M., Matsushita, H.: Report on safe tunnel excavation by "The earth pressure balanced shield method" applied to the water-bearing stratum with cobbles under major railroads Proc. Int. Symposium "The Saftey of Underground Works", Brüssel (1980), S. 291 - 293 (Preprints)

Piaskowski, A., Kowalewski, Z.: Application of thixotropic clay suspensions for stability of vertical sides of deep trenches without strutting Proc. ICSMFE, Montreal, (1965), Vol. III, S. 526 - 529 und S. 563 - 564

- Pick, J.: Ein Ring um Rom Baumaschine + Bautechnik, H. 6 (1986), S. 286 - 290
- Renk, F.: Über die Permeability des Bodens für Luft. Forschungen auf dem Gebiet der Agrikultur Physik 2 (1879)
- Ruppert, F.R.: Bentonitsuspensionen für die Schlitzwandherstellung Tiefbau, Ingenieurbau, Straßenbau, H. 8 (1980), S. 684-686

Saito, T., Kobayashi, T.: Driving an 8.48 m diameter tunnel by use of an earth pressure balancing shield Proc. Tunnelling '79, Institution of Mining and Metallurgy, London (1979), S. 12 - 16

Sakzanami: Slurry Shields (1981) (in japanisch)

Sawada, J., Nishihira, F.: Breakthrough right under the elevated Shinkansen station by slurry shield Int. Symposium of Underground Works Man Environment, Warsaw (1983), S. 355 - 365 (Preprints) Schenck zu Schweinsberg, W. R.: Beitrag zur Beschreibung des Baugrundverhaltens beim Druckluftvortrieb Mitt. d. Franzius-Inst. f. Grund- und Wasserbau, TH Hannover, H. 19 (1961), S. 153 - 219 Schenck zu Schweinsberg, W. R., Wagner, H.: Luftverbrauch und Überdeckung beim Tunnelvortrieb mit Druckluft Bautechnik 40, H. 2 (1963), S. 41 - 47 Schneebeli, G.: La stabilité des tranchées profondes forées en présence de boue Etanchements et Foundation Spéciales, (1964) Simons, H., Ruppert, F.R.: Entwicklung geeigneter Verfahren zum Messen der physikalischen Eigenschaften von Bentonitsuspensionen auf Baustellen Mitt. d. Inst. f. Grundbau und Bodenmechanik, TU Braunschweig, H. 9 (1982) Handbook of Mining and Tunnelling Machinery Stack, B.: Chichester, New York (1982) Takahashi, H., Yamazaki, H.: Slurry shield method in Japan Proc. RETC, Las Vegas (1976), S. 261 - 277 Terzaghi, K., Jelinek, R.: Theoretische Bodenmechanik Springer Verlag, Berlin (1954) Terzaghi, K., Peck, R.B.: Die Bodenmechanik in der Baupraxis Springer Verlag, Berlin (1961) Thomson, J.: Sewer rehabilitation in Hamburg. Pipe jacking and Hydroshield tunnelling Tunnels & Tunnelling, H. 10 (1983), S. 25 - 27 Wagner, H.: Die Luftdurchlässigkeit wasserhaltiger Böden; ein Beitrag zum Unterwassertunnelbau im Druckluftverfahren Mitt. d. Franzius-Inst. f. Grundbau und Bodenmechanik, TH Hannover, H. 11 (1957) Wagner, H.: Verkehrstunnelbau, Band 1 Verlag v. Wilhelm Ernst & Sohn, Berlin (1968) Wallis, S.: Anacostia challenges America's first Japanese EPBS Tunnels & Tunnelling, H. 3 (1987), S. 27 - 30 Walsh, T., Biggart, A.R.: The bentonite tunnelling machine at Warrington Proc. Tunnelling '76, Institution of Mining and Metallurgy, London (1976), S. 209 - 218 u. S. 224 - 227

- Walz, B., Pulsfort, M.: Rechnerische Standsicherheit suspensionsgestützter Erdwände, Teil 1 und 2 Tiefbau, Ingenieurbau, Straßenbau, H. 1 (1983), S. 4 - 7 und H. 2 (1983), S. 82 - 86
- Watanabe, T.: Tunnelling by the super-large-scale slurry shield J. of JSCE, Vol. 66, No. 2 (1981), S. 24 - 31 (in japanisch)
- Watanabe, T., Yamazaki, H.: Giant size slurry shield is a success in Tokyo Tunnels & Tunnelling, H. 1/2 (1981), S. 13 - 17
- Yamamoto, S., Takeda, K.: Environmental protection in San Francisco sewer project Int. Symposium of Underground Works Man Environment, Warsaw (1983), S. 367 - 376 (Preprints)
- Yamazaki, H.: Problems of the slurry shield method and their counter measures Proc. 2nd Australien Tunnelling Conf., Melbourne (1976), S. 113 - 122
- Yokoyama, A.: Construction of Daiba tunnel in the Keiyo Linie Civil Engineering in Japan, Vol. 19 (1980), S. 91 - 100
- Yoshikawa, T., Uto, Y., Nunomura, S.: A study of shield tunnelling machine (part 1) - soil condition for pressurized slurry shield to be adapted, (1981) (in japanisch)
- Zell, S.: Tunnelbau mit dem Hydrojet Schild Beton 31, H. 5 (1981), S. 180 - 184

1. EINLEITUNG

1.1 Problemstellung

Tunnel unterhalb des Grundwasserspiegels werden seit über 100 Jahren mit Schilden unter Druckluft aufgefahren. Die Druckluft hält dem angreifenden Wasserdruck das Gleichgewicht und wirkt zusätzlich stützend auf das Korngerüst des Bodens. In Böden mit Durchlässigkeitsbeiwerten für Wasser größer als $k_w = 10^{-4}$ m/s (Fujita, 1981) ist die Anwendung des Verfahrens schwierig, weil die Luft durch die Poren des Bodens entweicht und dem Wasserdruck nicht das Gleichgewicht halten kann.

Mit dem Ausbau der Verkehrssysteme sowie der Ver- und Entsorgung in den Innenstädten werden für den Tunnelbau in nicht standfesten Böden unterhalb des Grundwasserspiegels Vortriebsverfahren benötigt, welche keine Absenkung des Grundwassers erfordern, geringe Setzungen an der Geländeoberfläche verursachen, in Böden mit höherer Durchlässigkeit einzusetzen sind und die Vortriebsmannschaft unter atmosphärischen Bedingungen arbeiten lassen. Aus diesen Anforderungen heraus wurden in Japan, England und Deutschland Schildsysteme entwickelt, bei denen die Ortsbrust durch eine Flüssigkeit oder den abgebauten Boden gestützt wird. Der in England entwickelte Schild mit flüssigkeitsgestützter Ortsbrust wurde zweimal eingesetzt und ist seitdem nicht weiterentwickelt worden. Ein umfassender Vergleich der deutschen und japanischen Schildsysteme sowie eine Auswertung der Erfahrungen, speziell mit den japanischen Schilden mit flüssigkeits- und erdgestützter Ortsbrust, liegt in der deutschen und ausländischen Literatur nicht vor. Die Probleme und Einsatzgrenzen der verschiedenen Schildsysteme sind auch aufgrund mangelnder Erfahrung häufig nicht direkt erkennbar bzw. vergleichbar.

Im Rahmen eines zweimonatigen Aufenthaltes in Japan hatte der Verfasser die Möglichkeit, die japanischen Schildsysteme direkt vor Ort zu studieren und ihre speziellen Probleme und Anwendungsgrenzen mit japanischen Ingenieuren zu erarbeiten. Diese bislang nicht dokumentierten Erfahrungen werden vorgestellt, für die Praxis wichtige Konstruktionsmerkmale und Einsatzgrenzen hieraus abgeleitet. Bei den Schilden mit flüssigkeits- oder erdgestützter Ortsbrust stehen im vorderen, abgeschotteten Bereich des Schildes die Flüssigkeit oder der abgebaute Boden unter dem Stützdruck, der mit ausreichender Sicherheit den angreifenden Erd- und Wasserdruck aufnehmen muß. Im übrigen Bereich des Tunnels herrscht atmosphärischer Druck. Der auf die Ortsbrust wirkende Erddruck ist schwierig zu bestimmen, weil er von der räumlichen Tragwirkung des Bodens vor der Ortsbrust abhängt, die u.a. von den Baugrundverhältnissen und der Geometrie des Tunnels beeinflußt wird. Der Stützdruck muß während des Vortriebes genau auf die gegebene Situation eingestellt werden, weil ein zu hoher Stützdruck Hebungen und ein zu niedriger Instabilitäten der Ortsbrust mit Senkungen der Geländeoberfläche verursachen kann.

Für die Stützung der Ortsbrust durch eine Flüssigkeit werden Suspensionen aus Wasser und Bentonit oder Ton eingesetzt. Die Suspension dringt unter dem Stützdruck mehr oder weniger weit in den Boden ein und versiegelt gleichzeitig die Ortsbrust mit einem Filterkuchen. Als Filterkuchen wird die Schicht aus Bentonit- oder Tonteilchen verstanden, die entsteht, wenn die Suspension unter dem Stützdruck an der Oberfläche der Ortsbrust in ihre Bestandteile Wasser und Bentonit oder Ton zerlegt wird. Über den Filterkuchen wird der Stützdruck auf die Ortsbrust übertragen. In grob durchlässigen Böden kann die Suspension nahezu drucklos durch die Poren im Boden abfließen, ohne einen Filterkuchen zu bilden. Der erforderliche Stützdruck kann in diesem Fall nicht aufgebaut werden. Für Böden mit höherer Durchlässigkeit ist die Auswahl geeigneter Stützflüssigkeiten bislang nicht ausreichend geklärt.

Wenn die Schildmaschine gewartet werden soll oder wenn größere Steine und Hindernisse von Hand aus der Ortsbrust entfernt werden müssen, wird die Suspension in der Abbaukammer abgepumpt und durch Druckluft ersetzt. Dieser Fall "Stützung der Ortsbrust mit Druckluft" ist einer der gefährlichsten Zustände während des Vortriebes. Die Ortsbrust ist dann nur mit dem Filterkuchen versiegelt, über den der Luftdruck zur Stützung der Ortsbrust übertragen wird. Weil die Schilde mit flüssigkeitsgestützter Ortsbrust meist in nicht standfesten Böden mit höherer Durchlässigkeit eingesetzt werden, die aufgrund der hohen Luftverluste durch Druckluft nur schwierig zu stützen sind, muß für diesen Fall der Filterkuchen möglichst luftundurchlässig sein. Untersuchungen zur Luftdurchlässigkeit des mit einem Filterkuchen versiegelten Bodens gibt es bislang nicht. In den kommenden Jahren ist ein erheblicher Bedarf an Tunnelbauwerken zu erwarten (Haack, Blennemann 1980). Es erscheint daher notwendig, die vorhandenen Schildsysteme zu vergleichen, ihre Einsatzgrenzen aufzuzeigen, sowie Untersuchungen über die Standsicherheit der Ortsbrust und die Auswahl geeigneter Stützflüssigkeiten durchzuführen.

1.2 Ziele der Arbeit

Im ersten Teil der Arbeit werden die deutschen und japanischen Schildsysteme mit flüssigkeits- und erdgestützter Ortsbrust vorgestellt. Aus der eigenen Arbeit in Deutschland und Japan werden für die Praxis wichtige Konstruktionsmerkmale und die speziellen Probleme und Einsatzgrenzen der Schilde abgeleitet.

In einem weiteren Teil werden die bislang bekannten Verfahren für die Berechnung der Standsicherheit der Ortsbrust bei Schildvortrieben untersucht. Es werden zwei eigene Berechnungsverfahren für die Ermittlung des an der Ortsbrust wirkenden Erddruckes entwickelt. Ein Verfahren beruht auf der Grundlage des räumlichen Nachweises der Standsicherheit suspensionsgestützter Erdschlitze. Für das zweite Verfahren werden verschiedene Bruchkörpermodelle zur Abschätzung der Standsicherheit der Ortsbrust entwickelt. Alle vorgeschlagenen Berechnungsverfahren sind für bindige und nichtbindige Böden geeignet. Die Verfahren werden beispielhaft an einem Tunnelvortrieb überprüft.

Im dritten Teil der Arbeit werden die Ergebnisse eigener Laborversuche mit einem Modellversuchsstand, der die Situation an der Ortsbrust simuliert, zum Eindringverhalten von Suspensionen in Böden mit höherer Durchlässigkeit sowie zur Luftdurchlässigkeit dieser mit einem Filterkuchen versiegelten Böden vorgestellt. Die Suspensionen bestehen aus Wasser und Bentonit oder Ton, denen teilweise das halbsynthetische Polymer Carboxymethylcellulose (CMC), Sand, Glimmer oder Zement zugegeben wurden.

Anhand der Berechnungen und Auswertungen werden Schlußfolgerungen gezogen, aus denen Empfehlungen für die Praxis bei der Berechnung der Standsicherheit der Ortsbrust und bei der Auswahl von geeigneten Stützflüssigkeiten für Schilde mit flüssigkeitsgestützter Ortsbrust abgeleitet werden.

- 3 -

1.3 Historische Entwicklung

Marc Brunel erfand im Jahr 1818 das Prinzip des Schildvortriebes zum Auffahren von Tunneln in nicht standfestem Gebirge, und ließ es patentieren. Für den Bau des rechteckigen Themse-Tunnels (11,4 \times 7,1 m) von 1826 bis 1842 wurde der erste Schild von Brunel eingesetzt (Bild 1).

Bild 1: Der Bau des Themse-Tunnels mit einem Schild von Brunel (Maidl, 1984)

In Böden mit höherer Durchlässigkeit ist es schwierig, die Ortsbrust durch Druckluft zu stützen. Greathead suchte deshalb ein Schildsystem, welches die Nachteile des Druckluftvortriebes vermeidet. Er schlug vor, die Ortsbrust mit Wasser zu stützen sowie den Boden innerhalb einer Arbeitskammer an der Ortsbrust mit Wasserstrahlen zu lösen und hydraulisch abzufördern (Stack, 1982). Dieses patentierte Prinzip von Greathead kann als Ursprung der Schilde mit flüssigkeitsgestützter Ortsbrust betrachtet werden (Bild 2).

Bild 2: Greatheads Idee eines Schildes mit flüssigkeitsgestützter Ortsbrust (Stack, 1982)

- 4 -

Anfang der 60er Jahre kamen von Prof. Lorenz, Berlin erste Überlegungen, statt des Wassers eine Suspension aus Wasser und Ton zu verwenden, um rollige Böden an der Ortsbrust besser stützen zu können (Jacob, 1976; Stack, 1982). Diese Idee wurde zuerst in Japan in die praktische Bauausführung umgesetzt. Der erste japanische Schild mit flüssigkeitsgestützter Ortsbrust, genannt Slurry Schild, wurde im Jahr 1967 eingesetzt, 6 Jahre bevor in Deutschland der Sammler Wilhelmsburg als erster Tunnel mit einem Hydroschild aufgefahren wurde (Bild 3).

In England wurde ebenfalls ein Schildsystem mit flüssigkeitsgestützter Ortsbrust entwickelt und 1972 bei einem Probevortrieb in New Cross, England eingesetzt. Seit dem zweiten Einsatz beim Bau des Warrington-Tunnels ist das System nicht weiterentwickelt worden. Das englische System wird ausführlich von Bartlett et al. (1973), Walsh/Biggart (1976) und Biggart (1979) beschrieben.

Jahr	Ereignis		
1818	Erfindung des Schildvortriebes von Brunel		
1825	Beginn des Schildvortriebes unter der Themse		
1874	Wasserschild von Greathead		
1896	erster Schildvortrieb in Deutschland unter der Spree, Berlin		
1936	erster Schildvortrieb in Japan, Kanmon-Tunnel		
1961	Schild mit Druckwand und Stützung der Ortsbrust durch		
	Druckluft von der Fa. Campenon Bernard, Frankreich		
1964	Patent von Bartlett für einen Bentonitschild, England		
1967	erster Einsatz eines Slurry Schildes, Japan		
1972	erster Einsatz eines Bentonitschildes, England		
1973	erster Einsatz eines Hydroschildes, Deutschland		
1974	erster Einsatz eines Erddruckschildes, Japan		
1978	erster Einsatz eines Thixschildes, Deutschland		
1980	erster Einsatz eines Hydrojetschildes, Deutschland		

Bild 3: Historische Entwicklung der Schilde mit flüssigkeits- und erdgestützter Ortsbrust

- 5 -

2. DEUTSCHE SCHILDSYSTEME

2.1 Allgemeines

In Anlehnung an die Idee von Greatheads Schild wurden in Deutschland vier verschiedene Schildsysteme mit flüssigkeitsgestützter Ortsbrust entwickelt und patentiert (Bild 4).

System	entwickelt von	erster Einsatz
Hydroschild	Wayss & Freytag / Bade & Theelen	1973
Thixschild	Ph. Holzmann / Orenstein & Koppel	1978
Hydrojetschild	Wayss & Freytag / Bade & Theelen	1980
Mixschild	Wayss & Freytag / Herrenknecht	1985

<u>Bild 4:</u> Entwicklung der deutschen Schilde mit flüssigkeitsgestützter Ortsbrust

Mit den einzelnen Schildsystemen sind bislang unterschiedlich umfangreiche Erfahrungen gesammelt worden. Einen Überblick der bis zum Jahr 1986 abgeschlossenen, noch im Bau befindlichen sowie geplanten Projekte zeigt Bild 5.

System	Durchmesser	des Schildes	gesamte Tunnellänge	
		IIIIIX		
Hydroschild	2,25 m	10,64 m	38777 m	
Thixschild	4,18 m	7,29 m	3744 m	
Hydrojetschild	1,96 m	3,00 m	1455 m	
Mixschild	1,98 m	7,70 m	12186 m	
Summe			56162 m	

Bild 5: Spannweite der Schilddurchmesser sowie aufgefahrene und geplante Tunnelstrecken

2.2 Aufbau der Maschinen

Bei den deutschen Schilden mit flüssigkeitsgestützter Ortsbrust wird eine Suspension aus Wasser und Bentonit (Ton) in die geschlossene Abbaukammer vor der Ortsbrust gepumpt. Die Abbaukammer ist mit Ausnahme des Thixschildes im oberen Bereich durch die Tauchwand geteilt. Die Suspension dringt in den rolligen Boden ein und versiegelt gleichzeitig die Ortsbrust mit einem Filterkuchen aus Bentonit. Der Stützdruck in der Abbaukammer muß mindestens so groß sein wie die Summe aus dem angreifenden Erd- und Wasserdruck und wird mit einem Luftpolster hinter der Tauchwand in Abhängigkeit der örtlichen Verhältnisse geregelt. Der Boden wird mit einem Abbaugerät mechanisch oder hydraulisch gelöst und zusammen mit der Suspension in Rohrleitungen an die Geländeoberfläche transportiert. In einer Separieranlage wird der abgebaute Boden von der Bentonitsuspension getrennt und diese wieder in die Abbaukammer zurückgepumpt.

Die Maschinen der deutschen Systeme unterscheiden sich hauptsächlich durch die Art des Bodenabbaues an der Ortsbrust und die Anordnung des Luftpolsters. Als Abbaugerät werden ein Schneidrad, ein Cutter ähnlich wie bei einem Schwimmbagger oder Flüssigkeitsstrahlen aus Düsen eingesetzt. Das Luftpolster ist in der Abbaukammer oder in Verbindung mit der Speiseleitung (Thixschild) angeordnet (Bild 6 und 7).

Bild 6: Prinzipskizze der deutschen Schilde mit flüssigkeitsgestützter Ortsbrust

Bild 7: Geräte zum Abbau des Bodens an der Ortsbrust bei den deutschen Systemen

Der Mixschild ist eine Weiterentwicklung des Hydroschildes, bei dem das Schneidrad entlang des Umfanges angetrieben wird. Dadurch können höhere Antriebsmomente erzeugt werden und in der Mitte des Schneidrades ist ausreichend Platz für den Einbau einer Förderschnekke. Ein Mixschild kann deshalb als Hydro-, Erddruck- und Druckluftschild eingesetzt werden. Die Erprobung als Erddruckschild steht noch aus (Bild 8).

1) Wiegevorrichtung; 2) Injektionsstutzen; 3) Druckmeßdose; 4) Schneidradfelge; 5) Trommelblech; 6) Schieber

Bild 8: Schematischer Aufbau des Mixschildes als Erddruckschild (Jacob, 1986)

Die deutschen Schilde mit flüssigkeitsgestützter Ortsbrust bestehen aus folgenden wichtigen Komponenten, von denen einige im folgenden näher untersucht werden:

- 9 -

- 1. Schildmantel
- 2. Abbaugerät
- 3. Abbaukammer
- 4. Speise- und Förderkreislauf
- 5. Meß- und Steuersystem
- 6. Aufbereitungs- und Separieranlage

2.2.1 Schildmantel

Die geometrischen Abmessungen des Schildmantes sind für die Korrektur der Schildfahrt und beim Durchfahren kleiner Kurvenradien von Bedeutung. Hierzu ist ein Spalt zwischen Schildmantel und Boden erforderlich. Dieser Spalt entsteht durch die Konizität des Schildmantels und einem zusätzlichen Überschnitt mit dem Schneidrad oder einem anderen Abbauwerkzeug. Er ist ständig mit Bentonitsuspension gefüllt. Die Suspension stützt den Boden im Bereich des Spaltes und verringert gleichzeitig die Reibung zwischen Schildmantel und Boden. Dadurch ist die Störung des Bodens um den Schildmantel kleiner als bei den üblichen Schilden mit nicht flüssigkeitsgestützter Ortsbrust.

Für die Schildfahrt ist das Verhältnis der Schildlänge L_s zum Schilddurchmesser D_s wichtig. Schilde sollten ein Verhältnis L_s/D_s von im Mittel 0,75 haben, um gut manövrierfähig zu sein. Bei großen Schilddurchmessern kann das Verhältnis L_s/D_s auf 0,4 verringert, bei kleinen auf 1,0 erhöht werden (Wagner, 1968). Die Verhältnisse L_s/D_s der bislang eingesetzten deutschen Schilde mit flüssigkeitsgestützter Ortsbrust bewegen sich im Rahmen dieser Richtwerte (Bild 9). Mit ihnen wurden Kurvenradien bis zu min R = 50 m aufgefahren. Das Verhältnis des kleinsten Kurvenradius min R zum Schilddurchmesser D_s als Maß für die Manövrierfähigkeit liegt häufig zwischen 30 und 40.

<u>Bild 9</u>: Geometrische Abmessungen des Schildmantels von deutschen Schilden mit flüssigkeitsgestützter Ortsbrust (14 Schilde)

2.2.2 Abbaugeräte

Bei den bisherigen deutschen Schilden wird das <u>Schneidrad</u> zentral (Hydroschild) oder entlang des Umfanges (Mixschild) angetrieben. Es ist in der Regel offen und besteht aus mehreren Schneidarmen, die mit versetzt angeordneten Schneidzähnen bestückt sind (Bild 10). Das Schneidrad ist teilweise in Achsrichtung verschiebbar, damit die Schneidzähne ausgewechselt werden können, oder in vertikaler und horizontaler Richtung verschiebbar, um bei Kurvenfahrten einen gezielten Überschnitt zu erzeugen.

Bild 10: Schneidrad ohne Stützplatten

Das langsam drehende Schneidrad (max ~ 2 U/min) baut den durch die Suspension gestützten Boden mit den Schneidzähnen ab. Die Ortsbrust ist eine klar definierte Fläche, die durch die Schneidzähne erzeugt wird. Bei einigen Projekten wurden Schilde mit verbreiterten Schneidarmen oder zusätzlichen beweglichen Stützplatten hinter den Schneidarmen eingesetzt. Diese Maßnahmen bilden für das Personal einen zusätzlichen Schutz, wenn die Abbaukammer betreten werden muß. Während des Vortriebes sind sie ohne Bedeutung (Bild 11).

<u>Bild 11</u>: Schneidrad mit verbreiterten Schneidarmen (Foto der Fa. Hochtief AG, Essen)

Das Antriebsmoment des Schneidrades ist klein, weil es ausschließlich zum Abbau des Bodens mit den Schneidzähnen und zur Überwindung der Reibung in den Lagern benötigt wird. Eine Korrelationsberechnung ergibt, daß die Größe des erforderlichen, maximalen Antriebsmomentes M_T mit Gl. (1) und Bild 12 näherungsweise beschrieben werden kann. Hierbei ist der Schilddurchmesser D_s in der Einheit (m) einzusetzen. Der Faktor α hängt u.a. von dem zu durchfahrenden Boden ab und ist in dichtgelagerten rolligen Böden größer als in weichen bindigen Böden.

$$M_{T} = \alpha \cdot D_{s}^{3} \quad (kNm) \tag{1}$$

<u>Bild 12</u>: Zusammenhang zwischen dem maximalen Antriebsmoment M_T des Schneidrades und dem Schilddurchmesser D_s (8 Schilde)

Beim Thixschild wird der Boden mit einem <u>Cutter</u> abgebaut. Der Cutterarm ist in der Schottwand, die die Abbaukammer abschließt, in allen Richtungen schwenkbar gelagert und zusätzlich teleskopierbar. Der Boden wird mit dem Cutter schichtweise gelöst und abgesaugt. Der Thixschild kann durch den punktförmigen Bodenabbau bei kreisförmiger und davon abweichender Tunnelgeometrie eingesetzt werden. Hindernisse werden vom Cutter freigeschnitten und mit einem Greifer aus der Abbaukammer entfernt. Mit dem teleskopierbaren Cutterarm wird die Ortsbrust eben oder als Gewölbe abgebaut, welches zusammen mit der vorgespreßten Schildschneide die räumliche Tragwirkung des Baugrundes unterstützen kann (Bild 13). Die Konstruktion des Cutters ist auf die zu erwartenden Bodenverhältnisse abzustimmen.

Für das Beseitigen von Hindernissen oder Wartungsarbeiten muß auch bei Schilden mit kleinem Durchmesser jederzeit ein ungehinderter Zugang zur Ortsbrust möglich sein. Das zentral gelagerte Schneidrad benötigt bei kleinen Schilddurchmessern viel Platz und ermöglicht den Zugang bis zu Durchmessern von etwa 2,5 m. Für kleinere Durchmesser wurde deshalb der Hydrojetschild entwickelt, der sich nur durch die Art des Bodenabbaus vom Hydroschild unterscheidet. Der Boden wird nicht mit einem Schneidrad abgebaut, sondern mit <u>Flüssigkeitsstrahlen</u> aus quer zur Vortriebsrichtung angeordneten schwenkbaren Düsen (Bild 14). Die Düsen müssen gleichmäßig beschickt werden, um eine möglichst ebene Ortsbrust zu erhalten.

Bild 14: Blick in die Abbaukammer eines Hydrojetschildes mit den schwenkbaren Düsen, der Tauchwand und dem Einlaufrechen (Prospekt der Firma Wayss & Freytag AG)

- 15 -

Die maximal erforderlichen Pressenkräfte P_s bei den Schilden werden hauptsächlich bestimmt von dem erforderlichen Stützdruck, den Spannungen an der Schildschneide, den Reibungskräften zwischen Schildmantel und Boden sowie einem Sicherheitszuschlag. Sie können mit Gl. (2) abgeschätzt werden, wenn der Schilddurchmesser D_s in der Einheit (m) eingesetzt wird.

$$P_{s} = \beta \cdot D_{s}^{2} \quad kN \tag{2}$$

Für die bislang eingesetzten Schilde liegt der Faktor β meistens zwischen 500 und 1200 (Bild 15), wobei die Werte größer als 700 den Rohrvortrieben zuzuordnen sind.

<u>Bild 15</u>: Zusammenhang zwischen den maximalen Pressenkräften P_s und dem Schilddurchmesser D_e (12 Schilde)

2.2.3 Abbaukammer

Die Abbaukammer ist vollständig mit Suspension gefüllt. Mit Ausnahme des Thixschildes ist der obere Teil der Abbaukammer durch die Tauchwand geteilt. Zwischen Druckwand und Tauchwand ist das Luftpolster für die Steuerung des Stützdruckes angeordnet. Die Tauchwand ist so tief geführt, daß auch bei bewegtem Suspensionsspiegel die Druckluft nicht durchschlagen kann (Bild 6). Die Tiefe der Abbaukammer beträgt bei kleinen Schilden etwa 1,0 m und bei großen Schilden etwa 2,5 m.

2.2.4 Meß- und Steuersystem

Damit die Ortsbrust stabil bleibt, muß der Stützdruck während des Vortriebs kontrolliert und den örtlichen Verhältnissen angepaßt werden. Die unvermeidbaren Schwankungen des Stützdruckes sollen möglichst klein sein, um die Stabilität der Ortsbrust nicht zu gefährden. Der Stützdruck und die Stützflüssigkeit sind während der Vortriebsarbeiten ständig zu kontrollieren.

Kontrolle und Steuerung des Stützdruckes

Die Höhe des Stützdruckes wird mit dem Luftpolster in der Abbaukammer oder dem Windkessel beim Thixschild gesteuert. Das kompressible Luftpolster dämpft Druckschwankungen, die durch örtliche Suspensionsverluste in höher durchlässigen Bereichen der Ortsbrust, bei plötzlichem Verschluß der Förderleitung oder ruckartigem Vorfahren des Schildes entstehen. Der Druck des Luftpolsters wird durch Ventile mit einer Genauigkeit von etwa ± 0,1 bar konstant gehalten. Der Stützdruck ist damit mehr oder weniger unabhängig von Druckschwankungen im Förderkreislauf und Schwankungen des Suspensionsspiegels hinter der Tauchwand.

Kontrolle der Stützflüssigkeit

Die laufende Überwachung der physikalischen Eigenschaften der Bentonitsuspension ist ebenso wichtig wie die Kontrolle des Stützdruckes. Die notwendigen Kontrollen der Suspension in der Speise- und Förderleitung wie auch innerhalb der Separieranlage werden im Kap. 6 näher erläutert.

2.3 Einsatzgrenzen

Die Einsatzgrenzen der Schilde mit flüssigkeitsgestützter Ortsbrust werden durch folgende Randbedingungen festgelegt:

- In jedem Fall muß sich durch eine geeignete Suspension auf der Ortsbrust ein Filterkuchen bilden, über den der erforderliche Stützdruck übertragen werden kann. Bei Böden mit höherer Durchlässigkeit ist dies schwierig und bislang nicht gelöst. Die eigenen Laborversuche (Kap. 7) sollen hierzu Hinweise für die Praxis geben.
- In Böden mit höherer Durchlässigkeit sind häufig größere Steine und andere Hindernisse anzutreffen, die unter Druckluft von Hand aus der Ortsbrust beseitigt werden müssen. Mit zunehmender Häufigkeit dieser Steine und Hindernisse wird der Vortrieb erschwert.
- Beim Abbau feinkörniger Böden muß sich das Fördergemisch aus Suspension und abgebautem Boden mit vertretbarem Aufwand separieren lassen.

Aufgrund der bislang durchgeführten Tunnelvortriebe wird versucht, den Einsatzbereich der deutschen Schildsysteme einzugrenzen. Für die Beschreibung des Baugrundes werden die Körnungslinie, der Durchlässigkeitsbeiwert des Bodens und der maximale Grundwasserdruck verwendet.

Körnungslinie

Die Grenzen der verschiedenen Böden, in denen die deutschen Systeme bislang eingesetzt wurden, sind als Körnungsband im Bild 16 dargestellt. Der Bereich mit Problemen bei der Stützung der Ortsbrust wurde gekennzeichnet. Zusätzliche Probleme ergeben sich, wenn gleichzeitig verschiedene Bodenarten an der Ortsbrust anstehen (Wechsellagerung).

Bild 16: Einsatzbereich der bislang eingesetzten deutschen Schildsysteme

Der Vortrieb in tonigen Böden bereitet Probleme, weil der Boden eventuell die Abbaukammer verklebt und die Förderleitungen verstopft. Der abgebaute Boden sollte in solchen Fällen in möglichst großen Stücken dicht hinter dem Schild aus dem Förderkreislauf entnommen werden (Anlage 1, Projekt 7). In Böden mit mehr als 20 – 30 % Schluffanteil ist ein Druckluftschild mit trockener Bodenabförderung oft wirtschaftlicher (Jacob, 1986). Am besten eignen sich schluffige Sande und Kiese, in denen die Suspensionsverluste gering sind und der Boden an der Ortsbrust schnell mit einem Filterkuchen versiegelt wird. In Kiesen und Schotterböden ist die Bildung eines Filterkuchens und die Übertragung des Stützdruckes schwierig. Gleichmäßig in der Matrix des Bodens eingelagerte Steine sind für die Vortriebsarbeiten günstiger, als locker gepackte Steinlagen. Der Einsatzbereich eines Hydrojetschildes ist enger, weil der Boden durch Flüssigkeitsstrahlen abgebaut wird. Schluffige bis kiesige Sande eignen sich für diesen Schildtyp am besten.

Durchlässigkeitsbeiwert

Der Hydroschild ist bislang in Böden eingesetzt worden, die einen Durchlässigkeitsbeiwert zwischen etwa k_w = 10^{-7} m/s und 1 m/s hatten. In der Regel sind Böden mit Durchlässigkeitsbeiwerten k_w $\geq 10^{-3}$ m/s schwierig aufzufahren.

Maximaler Grundwasserdruck

Der Förderkreislauf ist bei den Schilden mit flüssigkeitsgestützter Ortsbrust ein geschlossenes System und erlaubt theoretisch den Einsatz auch bei sehr hohen Grundwasserdrücken. Tatsächlich ist der maximal mögliche Grundwasserdruck jedoch durch die Dichtigkeit der Schildschwanzdichtung begrenzt. Bislang wurden die deutschen Systeme bis zu einem Grundwasserdruck von 2,5 bar eingesetzt (Anlage 1, Projekt 7).

3. JAPANISCHE SCHILDSYSTEME

3.1 Allgemeines

Die großen Städte in Japan liegen an den Küsten. Der Baugrund ist hauptsächlich horizontal geschichtet und besteht aus Ablagerungen der Flüsse oder des Meeres. Ein typisches Beispiel für den Aufbau des Baugrundes in Küstennähe zeigt Bild 17. Unter einer dünnen Deckschicht aus angeschwemmten Sanden stehen bis in eine Tiefe von etwa 30 m unter der Geländeoberfläche weiche, bindige Böden aus Tonen und Schluffen an, deren Mächtigkeit mit größer werdender Entfernung zur Küste abnimmt. Sie sind unterlagert von Sanden, die in größerer Tiefe in den Kiesbereich übergehen.

Bild 17: Baugrundverhältnisse in Tokio in West-Ost Richtung

Der Einsatz von Schilden begann in Japan 1936 mit dem Bau des Kanmon-Eisenbahntunnels, etwa 40 Jahre später als in Deutschland (Bild 3). In den folgenden Jahren wurden nur wenige Schilde gebaut, bis man Anfang der 60er Jahre begann, das Wasser- und Abwassersystem auszubauen. Die erforderlichen Tunnel mußten in den dichtbevölkerten Städten unterirdisch aufgefahren werden. Dieses umfangreiche Programm, verbunden mit dem verstärkten Ausbau der U-Bahn Systeme in den großen Städten, führte zu einer raschen Entwicklung verschiedener Schildsysteme. Heute stellen etwa 20 Firmen in Japan Schilde her. Bis zum Jahr 1978 wurden meist Schilde mit und ohne Druckluft eingesetzt. Der Anteil der Schilde mit flüssigkeitsgestützter Ortsbrust (Suspensionsschild, Slurry Shield (SS)) und der Schilde mit erdgestützter Ortsbrust (Erddruckschild, Earth Pressure Balanced Shield (EPBS)) war gering und betrug im Jahr 1978 nur etwa 10 % aller Schilde. In den folgenden Jahren nahm er zu und liegt heute bei über 50% (Bild 18). Die zeitliche Entwicklung des Einsatzes von Suspensions- und Erddruckschilden ist im Bild 19 dargestellt.

Bild 18: Anteil der verschiedenen Schildsysteme an den im Bau befindlichen Tunneln in den Jahren 1978 und 1984 (Japan Tunnelling Association, 1985)

Bild 19: Anzahl der produzierten Suspensions(SS)- und Erddruckschilde (EPBS) in jedem Jahr (Referenzlisten von 4 japanischen Schildherstellern)

Die Nachfrage nach Suspensions- und Erddruckschilden stieg im Zeitraum von 1976 bis 1980 jedes Jahr. Seit dem Jahr 1980 ist eine Beruhigung eingetreten, es scheint sich sogar ein Rückgang der Nachfrage abzuzeichnen. Der Anteil der Erddruckschilde nimmt gegenüber den Suspensionsschilden weiter zu, weil bei den Suspensionsschilden die Kosten und der Platzbedarf für die Separieranlage hoch sind.

Insgesamt waren im Jahr 1984 255 Suspensions- und Erddruckschilde im Einsatz. Mit der überwiegenden Anzahl der Schilde (85,1 %) wurden Wasserund Abwassertunnel aufgefahren, eine geringe Anzahl (2,4 %) wurde außerhalb von Japan eingesetzt (Bild 20).

Bild 20: Verwendungszweck der im Jahr 1984 mit Suspensions- und Erddruckschilden aufgefahrenen Tunneln (Japan Tunnelling Association, 1985)

Suspensions- und Erddruckschilde werden bei begehbaren Tunneln mit Durchmessern über 0,80 m für alle üblichen Querschnitte eingesetzt (Bild 21).

Durchmesser des Schildes

	minimal	maximal
Suspensionsschilde	1,01 m	11,22 m
Erddruckschilde	1,01 m	8,48 m

<u>Bild 21</u>: Kleinster und größter Durchmesser der Suspensions- und Erddruckschilde

3.2 Suspensionsschilde

3.2.1 Allgemeines

Das Prinzip der Suspensionsschilde ist dem der deutschen Systeme ähnlich. Eine für den anstehenden Boden geeignete Tonsuspension wird in die geschlossene Abbaukammer vor der Ortsbrust gepumpt. Die Suspension dringt in den Boden ein und versiegelt gleichzeitig die Ortsbrust mit einem Filterkuchen. Der Boden an der Ortsbrust wird mit einem sich langsam drehenden Schneidrad abgebaut. Das Schneidrad ist bis auf wenige kleine Öffnungen, durch die der Boden in die Abbaukammer fällt, geschlossen. In der Abbaukammer vermengen Mischer den abgebauten Boden mit der Tonsuspension. Das Gemisch aus Suspension und Boden wird über Rohrleitungen an die Geländeoberfläche gepumpt. In einer Separieranlage wird der Boden von der Tonsuspension getrennt und diese wieder zum Schild zurückgepumpt. Die physikalischen Eigenschaften der Tonsuspension und der Stützdruck werden ständig kontrolliert und den örtlichen Verhältnissen angepaßt (Bild 22).

Bild 22: Steuerung des Stützdruckes bei einem japanischen Suspensionsschild (schematisch)

Die ersten Ideen zu den japanischen Suspensionsschilden gehen auf das Jahr 1963 zurück (Takahasi et al., 1976), der erste Suspensionsschild wurde aber erst im Jahr 1967 in der Praxis eingesetzt. Bislang sind weit über 2.000 Schilde gebaut worden (Fujita, 1981). Der technisch beherrschbare Außendurchmesser der Schilde lag bis 1976 meist unter 5,0 m, nahm in den folgenden Jahren ständig zu und beträgt heute über 11,0 m (Bild 23).

Bild 23: Zeitliche Entwicklung des Schilddurchmessers bei den Suspensionsschilden (Referenzlisten von 5 japanischen Schildherstellern, 544 Schilde)

3.2.2 Aufbau der Maschinen

Entscheidende Unterschiede zu den bisherigen deutschen Schildsystemen sind die Konstruktion des Schneidrades, die Art der Stützflüssigkeit sowie das Meß- und Steuersystem.

3.2.2.1 Schildmantel

Bei den vollmechanischen Suspensionsschilden können die von Wagner (1968) empfohlenen geometrischen Abmessungen L_s/D_s des Schildmantels (s. Kap. 2.2.1) bei kleinen Schilddurchmessern aus Konstruktionsgründen nicht

eingehalten werden. Das Verhältnis $L_{\rm S}/D_{\rm S}$ kann auf Werte über 2,0 steigen. Eine Regressionsanalyse von 406 Schilden ergibt einen Zusammenhang, der mit der Gl. (3) und Bild 24 beschrieben werden kann:

$$L_{c}/D_{c} = 3,07 \cdot e^{-\theta,49 \cdot D} s + 0,80 (-)$$
 (3)

Die Auswertungen ergeben als kleinsten Kurvenradius der Trasse etwa 50 m und ein Verhältnis min R/D größer als 16.

<u>Bild 24</u>: Geometrische Abmessungen des Schildmantels von Suspensionsschilden (406 Schilde)

3.2.2.2 Schneidrad

Die Suspensionsschilde werden nach der Lagerung und dem Antriebssystem des Schneidrades eingeteilt in

- 1. Schild mit Zentralantrieb (center shaft type)
- 2. Schild mit Außenantrieb (peripheral oder drum type)
- 3. Schild mit Mittelantrieb (intermediate type)

und sind im Bild 25 schematisch dargestellt.

ZENTRALANTRIEB

<u>Bild 25</u>: Einteilung der Schilde nach der Lagerung und der Art des Antriebsystems des Schneidrades

Schilde mit <u>Zentralantrieb</u> sind auf Durchmesser bis etwa 7,0 m (Miyoshi/ Hiraide, 1984) begrenzt, weil mit dem zentralen Antrieb keine großen Antriebsmomente für das Schneidrad erzeugt werden können.

Bei höheren Schneidwiderständen an der Ortsbrust werden Schilde mit <u>Außenantrieb</u> gewählt. Das Schneidrad wird entlang des Umfanges gelagert und angetrieben, weshalb es hohe Drehmomente übertragen kann, wie sie bei großen Schilddurchmessern und in dicht gelagerten Sanden und Kiesen erforderlich sind. Das außen angetriebene Schneidrad ergibt ausreichend Platz im Maschinenbereich, um Brechanlagen oder Steinseparatoren einbauen zu können. Die große Länge der erforderlichen Dichtung entlang des Umfanges zwischen dem Schneidrad und der übrigen Schildkonstruktion ist dabei von Nachteil. Die Länge der Dichtung wird bei den Schilden mit <u>Mittel-</u> antrieb verringert, weil das Schneidrad nicht außen, sondern etwa in den Viertelspunkten gelagert und angetrieben wird. Diese Schilde werden in überwiegend tonigen, schluffigen Böden bei großen Schilddurchmessern eingesetzt.

Das Schneidrad ist bei allen Suspensionsschilden meist eben und fast geschlossen (Bild 26). Aus Sicherheitsgründen verzichtet man nicht auf die mechanische Stützung der Ortsbrust durch das geschlossene Schneidrad, weil die Stützung der Ortsbrust mit Tonsuspensionen, wie sie in Japan meist eingesetzt werden, schwieriger ist als mit Bentonitsuspensionen, die grundsätzlich bei den deutschen Systemen verwendet werden.

Bild 26: Schneidrad eines Suspensionsschildes

Die Frontseite des Schneidrades ist doppelreihig mit Schneidzähnen besetzt, die strahlenförmig vom Zentrum aus angeordnet sind, damit das Schneidrad in beiden Umdrehungsrichtungen arbeiten kann. Verrollungen der Maschine werden durch die Änderung der Umdrehungsrichtung des Schneidrades korrigiert. Auf beiden Seiten der Schneidzähne sind Schlitze angeordnet, durch die der abgebaute Boden in die Abbaukammer hineingefördert wird. Die Schlitze sind über die Oberfläche des Schneidrades verteilt, um den Boden möglichst gleichmäßig abzubauen (Bild 27).

ANZAHL DER SCHLITZE

Bild 27: Anzahl der Schlitze bei Suspensionsschilden

Die Öffnungsweite der Schlitze muß größer als der maximal abzufördernde Steindurchmesser sein und kann während des Vortriebes durch Schließvorrichtungen den Baugrundverhältnissen angepaßt werden. Sie beträgt im allgemeinen etwa 10-20 cm und kann in Böden mit größeren Steinen auf bis zu 40 cm ansteigen. Die Fläche der Schlitze bezogen auf die gesamte Fläche des Schneidrades beträgt in standfesten Böden bis zu 15% und kann sich in lockeren, rolligen Böden auf 40% erhöhen.

Probleme ergeben sich bei Schilden mit weitgehend geschlossenen Schneidrädern, wenn der Boden größere Steine enthält. Falls auf langen Strecken des Vortriebes grobe Kiese und Steine erwartet werden, werden häufig Diskenmeißel mit zwei oder drei Disken eingesetzt (Bild 28). Diskenmeißel sind heute theoretisch bis zu Gesteinsdruckfestigkeiten von 500 MN/m² einsetzbar, die Praxis hat jedoch gezeigt, daß die Obergrenze etwa bei 200 MN/m² liegt. Der einzelne Diskenmeißel wird meist für eine Kraft von 100 kN ausgelegt. Während des Überrollens über einen Stein treten oft hohe, stoßartige Kräfte auf, die zu einem hohen Verschleiß der Disken und Lager führen. Ein Austausch der Disken ist in der Regel nur im Bereich von Schächten möglich.

Bild 28: Flache und gewölbte Schneidräder mit Diskenmeißeln. Schilde mit gewölbten Schneidrädern können leichter durch größere Steine abgelenkt werden.

Diskenmeißel bewähren sich gut, wenn nichtbindiger, steiniger Baugrund zu durchfahren ist. Schwierigkeiten bereiten kurze Streckenabschnitte mit überwiegend bindigem Boden. Die Disken haben in diesem Fall keinen ausreichenden Widerstand, drücken sich in den Boden ein, setzten sich zu und rollen nicht mehr auf der Ortsbrust ab. In späteren, steinigen Bereichen zeigen sie dann keine Wirkung mehr. Abhilfemaßnahmen wie das Reinigen der Disken mit Hochdruckwasserstrahlen sollten vermieden werden, um die Stabilität der Ortsbrust nicht zu gefährden. Eine weitere Möglichkeit, in bindigen Bereichen die Disken in eine Nische zurückzuziehen, ist konstruktiv aufwendig und scheitert meist aus diesem Grund.

Die Größe des erforderlichen maximalen Antriebsmomentes M_T des Schneidrades hängt von der Anordnung der Schneidzähne und Schlitze, der Lagerung des Schneidrades und der Bodenart ab und kann mit GI. (1) und Bild 29 abgeschätzt werden. Die Auswertungen ergeben, daß der Faktor α aufgrund der hohen Reibung zwischen dem Boden und der geschlossenen Fläche des Schneidrades meist zwischen 6 und 15 liegt, also doppelt so hoch wie bei den deutschen Systemen. Der Faktor α ist bei Schilden mit Zentralantrieb kleiner als bei Schilden mit Außenantrieb weil die Reibungsverluste in den Lagern kleiner sind. In dicht gelagerten, rolligen Böden ist der Faktor α etwa doppelt so hoch, verglichen mit weichen, bindigen Böden.

<u>Bild 29:</u> Zusammenhang zwischen dem maximalen Antriebsmoment M_T des Schneidrades und dem Schilddurchmesser D_s bei den Suspensionsschilden (397 Schilde)

Die für den Vortrieb eines Suspensionsschildes erforderlichen Pressenkräfte P_s können mit Gl. (2) und Bild 30 bestimmt werden. Der Faktor β liegt entsprechend den deutschen Systemen meist zwischen 700 und 1200.

<u>Bild 30:</u> Zusammenhang zwischen der maximalen Pressenkraft P_s und dem Schilddurchmesser D_s bei Suspensionsschilden (397 Schilde)

Für den Vortrieb muß die Leistung der Vortriebspressen und des Antriebsmomentes für das Schneidrad ausreichend dimensioniert werden. Für fünf Vortriebe wurden die installierten Leistungen den tatsächlich während des Vortriebes benötigten maximalen und mittleren Leistungen gegenübergestellt. Der Quotient aus installierter und benötigter Leistung ergibt die vorhandene Reserve (Bild 31).

	Re	serve
	maximale	mittlere
	Le	istung
Pressenkraft P _s	1,4 - 1,8	2,5 - 4,3
Antriebmoment M _T	1,0 - 1,9	1,8 - 3,8

Bild 31: Reserve für die Pressenkraft P_s und das Antriebsmoment M_T

3.2.2.3 Meß- und Steuersystem

Bei den Suspensionsschilden hält wie bei den deutschen Systemen mit flüssigkeitsgestützter Ortsbrust der Stützdruck dem angreifenden Erd- und Wasserdruck das Gleichgewicht. Während der Vortriebsarbeiten werden der Stützdruck, die physikalischen Eigenschaften der Stützflüssigkeit sowie die abgebauten Bodenmassen ständig kontrolliert und gesteuert.

Kontrolle und Steuerung des Stützdruckes

Die Kontrolle und Steuerung des Stützdruckes unterscheidet sich von den deutschen Systemen. Der tatsächlich vorhandene Stützdruck wird mit elektrischen Aufnehmern in der Abbaukammer sowie in der Speise- und Förderleitung gemessen, an einen Rechner weitergeleitet und mit dem rechnerisch erforderlichen Stützdruck verglichen. Wenn der gemessene Stützdruck vorgegebene Grenzwerte unter- oder überschreitet, werden die Pumpen und Ventile im Suspensionskreislauf entsprechend gesteuert (Bild 22).

Der erforderliche Stützdruck wird durch Zu- und Abpumpen von Stützflüssigkeit aus der Abbaukammer verändert. Dadurch entstehen Druckänderungen, die über die nahezu inkompressible Stützflüssigkeit direkt an die Ortsbrust weitergeleitet werden. Weil das kompressible Luftpolster fehlt, ist bei den japanischen Suspensionsschilden für die Stabilität der Ortsbrust die möglichst genaue und fein dosierbare Steuerung des Stützdruckes besonders wichtig. Die Zeit zwischen dem Messen und der Änderung des Stützdruckes beträgt einige Sekunden. Dieser Zeitraum ist groß, wenn z.B. die Förderleitung plötzlich verstopft. Der Flüssigkeitsdruck in der Abbaukammer und auf die Ortsbrust steigt schnell an, weil in dem geschlossenen System keine Entspannungsmöglichkeit vorhanden ist. Diese Gefahr soll eine by-pass Leitung zwischen der Speise- und Förderleitung mit einem entsprechenden Überdruckventil mindern.

Die deutschen Systeme, bei denen der Stützdruck über ein Luftpolster gesteuert wird, haben gegenüber den japanischen hier einen Vorteil. Luft ist etwa 15.000 fach kompressibler als Wasser und dämpft deshalb die unvermeidbaren Druckstöße im Leitungssystem. Die Ansprechzeit des Gesamtsystems ist dadurch aber auch geringfügig länger.

Kontrolle der abgebauten Bodenmassen

Bei Schilden mit flüssigkeitsgestützter Ortsbrust kann die Ortsbrust nicht eingesehen werden. Das Problem, ob die Ortsbrust stabil oder instabil ist, kann nur indirekt über die Kontrolle des abgeförderten Bodens beurteilt werden. Diese Methode wird bei allen Suspensionsschilden angewendet. Die theoretisch abzubauenden Massen werden ständig mit den tatsächlich abgebauten Massen verglichen. Wenn die tatsächlich abgebauten Massen erheblich grösser als die theoretischen sind, wird der Ortsbrust Boden entzogen. Die Ortsbrust kann instabil werden und es können Setzungen an der Geländeoberfläche entstehen.

Die Berechnung der theoretisch abzubauenden Bodenmassen ist schwierig, weil die Dichte, die Lagerungsdichte und der Porenanteil des Bodens berücksichtigt werden müssen. Diese Parameter müssen aus den vorab durchgeführten Baugrunduntersuchungen abgeschätzt werden. Die tatsächlich abgebauten Bodenmassen werden über die gemessene Dichte und das Volumen der Stützflüssigkeit in der Speise- und Förderleitung berechnet. Die Dichte der Stützflüssigkeit kann durch eine Gewichtsmessung, die Messung eines Differenzdruckes in einer Rohrbrücke oder eine radiometrische Dichtemessung der Suspension im Förderkreislauf bestimmt werden.

Die verschiedenen Kontrollen der abgebauten Bodenmassen werden ergänzt durch die Überwachung einzelner Kenngrößen der Schildmaschine wie z.B. Andruck, Antriebsmoment und Umdrehungsgeschwindigkeit des Schneidrades. Einige Meßgrößen werden dem Schildfahrer in der Maschine angezeigt (Bild 32), alle Meßgrößen hingegen im zentralen Kontrollraum an der Geländeoberfläche (Bild 32). Der Schildfahrer ist mit dem Kontrollraum telefonisch verbunden und steuert auf dessen Anordnung die Maschine.

Bild 32: Stand des Schildfahrers

Bild 33: Zentraler Kontrollraum

Von einer automatischen Steuerung der Suspensionsschilde ist man noch weit entfernt. Die meisten gemessenen Kennwerte werden entweder über Kontrollampen oder analoge Meßinstrumente angezeigt, nur der Stützdruck wird mit Rechnern überwacht und gesteuert. Im Gegensatz zu den deutschen Systemen wird mit Rechnern ein Teil der gemessenen Daten gespeichert und bereits auf der Baustelle statistisch ausgewertet. Eine detaillierte Auswertung aller Meßwerte ist nach Abschluß der Vortriebsarbeiten möglich.

3.2.2.4 Stützflüssigkeit

Bei Tonen und tonigen Schluffen, wie sie in Japan häufiger als in Deutschland vorkommen, wird allein Wasser für die Stützung und Abförderung eingesetzt. Stützflüssigkeiten aus Wasser und Ton sind in rolligen oder schwach bindigen Böden die Regel. Der Flüssigkeitskreislauf ist bei den Suspensionsschilden aufwendiger ausgelegt als bei den deutschen Systemen. Die Suspension aus Wasser und Ton wird in der Aufbereitungsanlage mit Mischern hergestellt. Die in Deutschland häufig eingesetzten Zwangsmischer (Supratonanlage) sind in Japan unbekannt. Die gebrauchsfähige Suspension kommt in den Vorratsbehälter, der gleichzeitig mit wiederverwendbarer Suspension aus der Separieranlage beschickt wird. Die Suspension wird in der Speiseleitung zur Ortsbrust gepumpt, dort mit dem Boden vermischt und in der Förderleitung zur Geländeoberfläche zurückgepumpt. Der Durchmesser der Förderleitung ist etwa 100 mm kleiner als der Durchmesser der Speiseleitung, um den Stützdruck besser steuern zu können. In der Separieranlage werden in der 1. Stufe mit Vibrationssieben und Zyklonen die Sand- und Kiesfraktionen aus der Suspension entfernt. Ein Teil der wiederverwendbaren Suspension wird in den Vorratsbehälter gepumpt, während aus dem anderen Teil in der 2. Stufe durch Zentrifugen weitere Feinanteile separiert werden. Die verbleibende Suspension mit den feinsten Anteilen wird mit Polymeren versetzt, damit sich größere Flocken aus Tonteilchen bilden. Als Polymer wird meist das anorganische Polyaluminiumchlorid (PAC), seltener das wirkungsvollere, aber für die Umwelt schädlichere, organische Polyacrylamid verwendet. Mit Filterpressen wird die Suspension entwässert und der Ton und Schluff abtransportiert. Das trübe Wasser aus den Filterpressen wird in der 3. Stufe gefiltert, mit Kohlendioxid versetzt und im pH-Wert an die Qualität des Leitungswassers angeglichen. Aus einem nachgeschalteten Absetzbecken wird die Suspension mit höherer Dichte wiederum in die 2. Stufe gepumpt, während das restliche, weitgehend geklärte Wasser abtransportiert oder in einen Vorfluter geleitet wird (Bild 34).

Bild 34: Aufbau des Förderkreislaufes (schematisch)

3.2.3 Einsatzgrenzen

Körnungslinie

Die Einsatzgrenzen der Suspensionsschilde wurden von Yoshikawa et al. (1981) untersucht und dargestellt (Bild 35). Der angegebene Einsatzbereich entspricht etwa dem der deutschen Schildsysteme.

Bild 35: Einsatzgrenzen der Suspensionsschilde in Abhängigkeit von der Bodenart (nach Yoshikawa/Uto/Nonomura, 1981)

Zusätzlich wurden die Referenzlisten von fünf Schildherstellern statistisch ausgewertet und untersucht, wie häufig die Suspensionsschilde in den verschiedenen Bodenarten eingesetzt wurden (Bild 36). Die Auswertung bestätigte den im Bild 35 dargestellten Einsatzbereich.

Bild 36: Häufigkeit des Einsatzes von Suspensionsschilden in verschiedenen Bodenarten (Referenzlisten von 5 japanischen Schildherstellern, 214 Vortriebe)

Tone mit weicher Konsistenz sind gut abbaubar und fließen leicht durch die Öffnungen des Schneidrades in die Abbaukammer. Bei höherer Konsistenz verstopft der Ton die Öffnungen und verklebt die Abbaukammer. Kiese mit dichter bis sehr dichter Lagerung haben hohe innere Reibungswinkel und sind schwer lösbar. Zwischen der weitgehend geschlossenen Oberfläche des Schneidrades und dem anstehenden Boden entstehen große Reibungskräfte, die von dem Antriebsmoment des Schneidrades überwunden werden müssen. Suspensionsschilde können am besten in Sanden oder schluffigen Sanden mit mitteldichter Lagerung eingesetzt werden. Dabei sollte der Anteil aus Ton und Schluff kleiner als 10 % sein und die Ungleichförmigkeitszahl größer als etwa 10, damit unterhalb des Grundwassers in rolligen Böden keine Verflüssigung, verbunden mit dem Auslaufen des Bodens aus der Ortsbrust, auftritt (Moromoto et al., 1984). Bei Böden mit Steinen bis etwa 300 mm werden teilweise Separier- oder Brechanlagen installiert, die jedoch bei Schilden mit Zentralantrieb und bei gleichzeitig kleinem Schilddurchmesser schwierig einzubauen sind. Wenn größere Steine über längere Vortriebsstrecken erwartet werden, kann das Schneidrad mit Disken bestückt werden (Bild 37). Hindernisse, die nicht mit Disken, Brechern oder Steinseparatoren zerkleinert oder entfernt werden können, müssen von Hand evtl. im Schutze einer abdichtenden Baugrundinjektion oder -vereisung, aus der Ortsbrust oder der Abbaukammer entfernt werden.

Projekt-Nr.	Schilddurch-	max. Stein-	Stein/Schild-	eingesetzte	
(s.Anlagen)	messer	durchmesser	durchmesser	Geräte	
10	10,00 m	450 mm	5 %	2 Brecher	
15	2,47 m	400 mm	16 %	Disken + 1 Brecher	
16	2,68 m	200 mm	7 %	Disken + 1 Brecher	
21	1,46 m	280 mm	19 %	1 Brecher	
22	3,85 m	300 mm	8 %	1 Steinseparator	
32	5,15 m	250 mm	5 %	1 Brecher	

<u>Bild 37:</u> Bei Suspensionsschilden eingesetzte Geräte zur Hindernisbeseitigung

Durchlässigkeitsbeiwert

Die Grenze für den Einsatz eines Suspensionsschildes wird in Japan im allgemeinen bei $k_w = 10^{-4}$ m/s angenommen, in Ausnahmefällen bis zu $k_w = 10^{-2}$ m/s (Nakayama/Miyauchi, 1980). Bei Böden mit Durchlässigkeitsbeiwerten von $k_w \ge 10^{-4}$ m/s werden häufig Stützflüssigkeiten hoher Dichte ($\rho_F = 1,3 - 1,45$ t/m³) eingesetzt. Diese Suspensionen, vermischt mit dem abgebauten Boden, sind schwer pumpbar und müssen mit einer Förderschnecke aus der Abbaukammer gefördert werden. Dies ist der Übergang zu einem Erddruckschild.

Maximaler Grundwasserdruck

Die maximalen Grundwasserdrücke betrugen beim Einsatz eines Suspensionsschildes 4,3 bar (Fujita, 1981) und 3,5 bar (Ohta et al., 1978, Anlage 3, Projekt 9).

3.3 Erddruckschilde

3.3.1 Allgemeines

Bei einem Erddruckschild wird der Boden an der Ortsbrust mit einem sich langsam drehenden Schneidrad abgebaut und gelangt durch die Öffnungen im Schneidrad in die Abbaukammer. Der Stützdruck wird durch den verdichteten und mehr oder weniger flüssigen Boden in der Abbaukammer erzeugt. Er wird ständig überwacht und durch die Steuerung von mit dem Schneidrad abgebautem Boden und aus der Abbaukammer mit einer Förderschnecke abgefördertem Boden gesteuert. Der abgebaute Boden wird trokken mit Zügen oder hydraulisch in Rohrleitungen transportiert (Bild 38).

Die Erddruckschilde wurden in Japan von den Baufirmen in Zusammenarbeit mit den Schildherstellern entwickelt. Die japanische Baufirma Sato Kogyo und der Schildhersteller Ishikawajima-Harima (IHI) leisteten Pionierarbeit und entwickelten die Maschinen von den ersten Ideen um 1970 bis zum praktischen Einsatz 1974 für einen 1.900 m langen Abwassersammler in Tokio (Fujita, 1981). Erddruckschilde haben häufig firmeninterne Bezeichnungen, die Anlaß zur Verwirrung geben. International scheint sich die Bezeichnung "Earth Pressure Balanced Shield (EPBS)" durchzusetzen.

Die Voraussetzungen für den Einsatz eines Erddruckschildes sind:

- 1. Der abgebaute Boden muß ausreichend fließfähig sein, um die Ortsbrust ständig kontrolliert und vollflächig stützen zu können.
- Damit das anstehende Grundwasser nicht in den Tunnel gelangt, muß innerhalb der Förderschnecke mit dem abgebauten Boden ein wasserundurchlässiger Verschluß gebildet oder die Förderschnecke an ihrem Ende gegen den Wasserdruck gedichtet werden.

3.3.2 Einteilung der Erddruckschilde

Die heute üblichen Erddruckschilde können unterteilt werden in

- 1. Schilde mit geschlossenem Schneidrad
 - Standard Erddruckschild (EPBS)
 - Erddruckschild mit Schlamminjektion (Mud Injection EPBS)
 - Erddruckschild mit Suspensionsgegendruck (Water Pressure EPBS)
- 2. Schilde mit offenem Schneidrad

Erddruckschilde mit geschlossenem Schneidrad

Bei den Schilden mit geschlossenem Schneidrad wird der Boden durch die Zähne des Schneidrades abgebaut, fällt durch die Öffnungen des Schneidrades in die Abbaukammer und wird von dort mit einer Förderschnecke abtransportiert. Dies ist das Prinzip eines <u>Standard Erddruckschildes</u> (Bild 38). Mit ihm lassen sich Ton- und Schluffböden mit geringem Durchlässigkeitsbeiwert gut auffahren.

<u>Bild 38:</u> Erddruckschild mit geschlossenem Schneidrad (Standard Erddruckschild)

Der <u>Erddruckschild mit Schlamminjektion</u> wird in Böden mit höherem Sandoder Kiesanteil eingesetzt. Der Boden wird vor dem Schild und in der Abbaukammer z.B. mit einer Suspension hoher Dichte aus Ton und/oder Bentonit injiziert und in der Abbaukammer durch Mischarme oder eingeschweißte Knetbleche vermischt (Bild 39).

SCHNEIDRAD ABBAUKAMMER FÖRDERSCHNECKE VERSCHLUSS-SYSTEM VORTRIEBSPRESSEN AUSKI FIDUNG INJEKTIONSLEITUNGEN

Bild 39: Erddruckschild mit geschlossenem Schneidrad (Erddruckschild mit Schlamminiektion)

Böden mit hoher Durchlässigkeit und hohem Grundwasserdruck sind oft mit den beiden vorgenannten Schildsystemen nicht aufzufahren, weil sich innerhalb der Förderschnecke kein wasserundurchlässiger Verschluß bildet. Hierfür wurde der Erddruckschild mit Suspensionsgegendruck entwickelt. Dieser Schild ist wie der Standard Erddruckschild aufgebaut, jedoch wird der Grundwasserdruck durch einen entsprechenden Flüssigkeitsdruck am Ende der Förderschnecke aufgenommen. Als Flüssigkeit wird reines Wasser oder eine Tonsuspension verwendet. Um die Stabilität der Ortsbrust und die Fließfähigkeit des abgebauten Bodens zu erhöhen, kann zusätzlich in die Abbaukammer eine Ton- oder Bentonitsuspension injiziert werden. Für die Förderung des abgebauten Bodens ist ein hydraulischer Kreislauf mit entsprechender Separieranlage erforderlich (Bild 40).

- SCHNEIDRAD
- ABBAUKAMMER
- FÖRDERSCHNECKE
- VERSCHLUSS-SYSTEM
- VORTRIEBSPRESSEN
- AUSKLEIDUNG
- WASSERDRUCKBEHÄLTER

Erddruckschild mit geschlossenem Schneidrad Bild 40: (Erddruckschild mit Suspensionsgegendruck)

Erddruckschilde mit offenem Schneidrad

Die Schilde mit offenem Schneidrad gehen auf ein Patent der Firma Daiho Construction Co., Ltd. zurück, die zusammen mit der Firma Hitachi, Construction Machinery Co., Ltd. diesen Schildtyp, genannt D.K.-Schild, entwickelte. Erstmalig wurde 1976 eine Maschine mit einem Schilddurchmesser von 2,44 m in Tokio eingesetzt. Basierend auf der Idee der Firma Daiho sind von anderen Firmen ähnliche Schildtypen, z.B. Mud Pressure Shield oder Slime Shield, entwickelt worden.

Im Gegensatz zu den Erddruckschilden mit geschlossenem Schneidrad wird der Boden bereits vor dem Abbau durch einen Schneidstern gestört, aufgelockert und je nach Bodenart mit Ton und/oder Bentonitsuspension injiziert. Das angewendete Prinzip des Voreinschnittes ist etwa mit dem Kegeleinbruch beim Sprengen vergleichbar. Das Schneidrad besteht aus zahlreichen Mischarmen, die für eine intensive Durchmischung des abgebauten Bodens mit dem injizierten Material sorgen. Die Ortsbrust ist nicht wie bei den Schilden mit geschlossenem Schneidrad eine ebene, senkrechte Fläche, sondern eine konkav gekrümmte Fläche zwischen der Spitze des Schneidsterns und der Schildschneide. Diese Form ähnelt dem horizontalen Gewölbe vor dem Schild und unterstützt die Stabilität der Ortsbrust (Bild 41).

 1
 SCHNEIDRAD

 2
 ABBAUKAMMER

 3
 FÖRDERSCHNECKE

 4
 VERSCHLUSS-SYSTEM

 5
 VORTRIEBSPRESSEN

 6
 AUSKLEIDUNG

Bild 41: Erddruckschild mit offenem Schneidrad

3.3.3 Aufbau der Maschinen

3.3.3.1 Schildmantel

Erddruckschilde sind schwieriger zu steuern als Schilde mit flüssigkeitsgestützter Ortsbrust. Bei einem Schild mit flüssigkeitsgestützter Ortsbrust wirkt durch die fast reibungsfreie Suspension auf die Ortsbrust ein nahezu gleichmäßig verteilter Stützdruck, weshalb Richtungsänderungen durch entsprechende Steuerung der Pressen einfach durchgeführt werden können. Bei Erddruckschilden ist die Abbaukammer mit einem mehr oder weniger flüssigen Gemisch aus abgebautem Boden und Zusatzmitteln gefüllt. Dieses Gemisch ist reibungsbehaftet, zäh sowie kompressibel. Der Stützdruck ist weniger gleichmäßig über die Ortsbrust verteilt und macht die Steuerung schwieriger. Für die Schildsteuerung sind daher die geometrischen Abmessungen des Schildmantels bei einem Erddruckschild von erheblicher Bedeutung. Aufgrund einer Regressionsanalyse mit 110 Erddruckschilden kann der Mittelwert des Verhältnisses L_s/D_s in Abhängigkeit vom Schilddurchmesser D_s näherungsweise mit GI. (4) und Bild 42 beschrieben werden.

$$L_{-}/D_{-} = 2,74 \cdot e^{-0,47} \cdot Ds + 0,84 (-)$$
 (4)

Bild 42: Geometrische Abmessungen des Schildmantels von Erddruckschilden (110 Schilde)

3.3.3.2 Schneidrad

Bei den Erddruckschilden ist zu unterscheiden zwischen weitgehend geschlossenen und offenen Schneidrädern, die jeweils flach oder gewölbt sein können. Das Schneidrad von Erddruckschilden wird meist entlang des Umfanges gelagert und angetrieben. Die erforderlichen Antriebsmomente sind erheblich größer als bei den Suspensionschilden und können mit Gl. (1) und Bild 43 abgeschätzt werden. Der Faktor α ist abhängig von der Art des Schneidrades sowie der Bodenart und liegt meist zwischen 12 und 24.

<u>Bild 43:</u> Zusammenhang zwischen dem maximalen Antriebsmoment M_T des Schneidrades und dem Schilddurchmesser D_s (143 Schilde)

Erddruckschilde mit geschlossenem Schneidrad sowie Vortriebe in Böden mit hohem inneren Reibungswinkel oder Kohäsion erfordern einen größeren Faktor α . Bei Schilden mit offenem Schneidrad liegt der Faktor α auch in rolligen Böden selten über 13.

3.3.3.3 Abbaukammer

Die Abbaukammer muß strömungsgünstig konstruiert sein, damit sie von dem zähen Gemisch aus Boden, Wasser und Zusatzmittel vollständig ausgefüllt wird. Nur wenn die Abbaukammer vollständig gefüllt ist, kann der erforderliche Stützdruck auf der gesamten Fläche der Ortsbrust erzeugt werden. In der Praxis ist die Füllung des oberen Teiles der Abbaukammer häufig ein erhebliches Problem.

Die Fließbewegungen des Bodens in der Abbaukammer können mit einem Strömungsbild verdeutlicht werden. Bei der Konstruktion des Strömungsbildes muß die Scherfestigkeit und die Reibung des Bodens an den Wänden der Abbaukammer berücksichtigt werden. Das Strömungsbild kann mit einem Elektro-Analog-Modell, welches zur Ermittlung von Strömungsbildern reibungsfreier Flüssigkeiten eingesetzt wird, näherungsweise konstruiert werden. Für zwei unterschiedliche Anordnungen der Förderschnecke sind die Strömungsbilder ermittelt worden (Bild 44). Deutlich erkennt man in der Abbaukammer den Bereich, in dem der Boden bei einem geringen Druckgefälle nur unzureichend fließt.

Bild 44: Strömungsbilder für die Fließbewegungen des Bodens in der Abbaukammer bei konstantem Stützdruck und unterschiedlicher Anordnung der Förderschnecke. Die Strömungsbilder wurden mit einem Elektro-Analog-Modell ermittelt

3.3.3.4 Förderschnecke

Die Förderschnecke ist eines der wichtigsten Bauteile eines Erddruckschildes und hat mehrere Aufgaben zu erfüllen:

- Transport des abgebauten Bodens aus der Abbaukammer in das Innere des Tunnels,
- Mischen und Verdichten des Bodens innerhalb der Schnecke, um sie möglichst wasserundurchlässig zu machen,
- 3. Steuerung des Stützdruckes in der Abbaukammer.

Die geometrischen Abmessungen und die Leistung der Förderschnecke hängen von den Baugrundverhältnissen und der erwarteten Förderleistung ab (Bild 45).

4,0	-	11,2 m
0,3	-	1,2 m
8	-	18
8°	-	14°
10,6	-	137,0 kNm
26	-	113 m³/h
	4,0 0,3 8 10,6 26	4,0 - 0,3 - 8 - 8° - 10,6 - 26 -

Bild 45: Bereich der geometrischen Abmessungen und Leistungen von 18 untersuchten Förderschnecken. Zu den einzelnen Parametern standen jedoch nicht von allen Förderschnecken Daten zur Verfügung.

Der Boden ist mit der Schnecke aus der Abbaukammer möglichst gleichmäßig zu entnehmen, um eine weitgehend konstante Verteilung des Stützdruckes auf die Ortsbrust zu erzeugen. Bei größeren Tunnelquerschnitten sind daher mehrere Förderschnecken erforderlich (Bild 46).

<u>Bild 46:</u> Zusammenhang zwischen dem Schilddurchmesser D_s und der Leistung der Förderschnecken

Bei Erddruckschilden können nicht wie bei Suspensionsschilden Separatoren oder Brechanlagen eingebaut werden, weil die Dichte des abgeförderten Bodens zu hoch ist. Das gesamte, nicht zerkleinerte Material muß mit der Förderschnecke abtransportiert werden. Bei üblichen Förderschnecken mit mittiger Seele ist der maximal zu fördernde Steindurchmesser klein. Größere Steine bis etwa 50 cm Durchmesser können nur mit Förderschnecken ohne Seele (ribbon type), die etwa den doppelten Durchmesser des Steines haben, gefördert werden (Bild 47).

Bild 47: Förderschnecke ohne Seele (ribbon type)

Am Ende der Förderschnecke muß ein Verschlußsystem angeordnet sein, mit dem

- bei gleichbleibender Umdrehungszahl der Förderschnecke die Verdichtung des Bodens innerhalb der Schnecke gesteuert werden kann,
- beim Antreffen fließfähiger Böden der unkontrollierte Bodenentzug durch die Schnecke gestoppt werden kann,
- bei plötzlicher Wasserdurchlässigkeit der Förderschnecke die Schnecke verschlossen werden kann.

Für diese Anforderungen sind zahlreiche Verschlußsysteme entwickelt worden (Bild 48). Der <u>Schieber (gate)</u> ist bei Schilden mit kleinem Durchmesser das am häufigsten benutzte System. Er ist robust, einfach in der Anwendung und seine Öffnungsweite wird von Hand gesteuert. Eine kontrollierte Verdichtung des Bodens innerhalb der Schnecke ist nur schwer zu erreichen. Dieses System sollte überall dort eingesetzt werden, wo der Boden mindestens 20 – 40 % bindige Bestandteile aufweist. Beim <u>Klappverschluß</u> (flap gate) wird die Öffnungsweite automatisch durch den Druck des Bodens in der Schnecke gesteuert. Eine gewisse kontrollierte Verdichtung und damit geringere Wasserdurchlässigkeit innerhalb der Schnecke ist möglich.
Beim <u>Sandpfropfen (sand plug)</u> wird die Öffnungsweite in der Förderschnecke durch einen verschieblichen Kegel auf der Welle der Förderschnecke gesteuert. Es entsteht in der Förderschnecke aus dem abgebauten Boden eine regulierbare, verdichtete Zone geringerer Wasserdurchlässigkeit. Bei komplizierten Baugrundverhältnissen wird zusätzlich ein Schieber (gate) eingebaut. Die <u>Zellenradschleuse (rotary feeder)</u> setzt sich bei höheren Grundwasserdrücken immer mehr durch. Sie besteht aus 4 bis 5 einzelnen Kammern, durch die je nach Schleusengröße Steine mit einem Durchmesser von bis zu 25 cm abtransportiert werden.

Verschlußsysteme

Bild 48: Verschlußsysteme für Förderschnecken

3.3.3.5 Meß- und Steuersystem

Bei den Erddruckschilden ist die Steuerung des Stützdruckes schwierig, weil das Gemisch aus Wasser, Boden, Luft und Zusatzmitteln in der Abbaukammer kompressibel und reibungsbehaftet und deshalb häufig nicht wie bei einer reinen Flüssigkeit linear über die Fläche der Ortsbrust verteilt ist. Der angreifende Wasserdruck wird mit Porenwasserdruckaufnehmern im Schild gemessen oder über die Beobachtung des Grundwasserspiegels ermittelt.

Die Messung und Steuerung der erforderlichen Stützkräfte in der Abbaukammer wird direkt über die Erddruckkontrolle (Earth Pressure Control, Excavation Control) oder indirekt über die Massenkontrolle (Discharge Control) vorgenommen. Das Prinzip beider Methoden ist im Bild 49 dargestellt. Bei der Erddruckkontrolle wird der Erddruck in der Abbaukammer mit Druckaufnehmern gemessen. Wenn der gemessene Erddruck größer als der angreifende Erddruck ist, kann der Boden in der Abbaukammer stark verdichtet und nicht mehr ausreichend fließfähig werden. Die Abbaukammer wird dadurch verstopft. Die Vortriebsgeschwindigkeit muß in diesem Fall verringert und die Bodenabförderung gesteigert werden. Ist der gemessene Erddruck in der Abbaukammer kleiner, kann die Ortsbrust instabil werden. Die Vortriebsgeschwindigkeit muß gesteigert und die Bodenabförderung verringert werden. Die Erddruckkontrolle hat den Vorteil, "Ist-Zeit" Werte zu liefern. Der Erd- und Wasserdruck in der Abbaukammer werden ständig gemessen, mit dem rechnerisch erforderlichen Stützdruck verglichen und sofort in entsprechende Steuerbefehle für die Vortriebsgeschwindigkeit und Bodenabförderung umgesetzt.

Bild 49: Kontrollmethoden bei einem Erddruckschild

Bei der <u>Massenkontrolle</u> wird davon ausgegangen, daß der Boden vor der Ortsbrust durch den herannahenden Vortrieb nicht gestört wird und auf die Ortsbrust der Erdruhedruck wirkt. Diese Verhältnisse werden erreicht, wenn zu jedem Zeitpunkt die theoretisch abgebaute Bodenmasse mit der tatsächlich abgeförderten übereinstimmt. Die theoretisch abgebaute Masse berechnet sich aus der Geometrie des Tunnels, der Vortriebsgeschwindigkeit und den oft nur näherungsweise bekannten Bodenkennwerten. Die tatsächlich abgeförderte Bodenmasse wird aus dem Volumen und der Masse berechnet (Bild 50).

Parameter	Mögliche Meßmethoden		
Volumen	Anzahl der Umdrehungen der Förderschnecke Anzahl der gefüllten Bunkerzüge Anzahl der Kolbenhübe der Dickstoffpumpe bei einer hydraulischen Förderung		
Masse	Bandwaage hinter der Förderschnecke Waage für Bunkerzüge Wägezelle am Portalkran des Schachtes oder bei der Übergabe vom Silo zum Lkw bei der Abfuhr		

<u>Bild 50:</u> Mögliche Meßmethoden zur Kontrolle des tatsächlich abgeförderten Bodens

Mit der Massenkontrolle kann die Überprüfung der Stabilität der Ortsbrust nur näherungsweise und nicht als "Ist-Zeit"-Kontrolle durchgeführt werden, weil die Massen erst nach der Abförderung aus der Abbaukammer gemessen werden. Der Vorteil dieser Methode ist jedoch die einfache Anwendung auf der Baustelle.

Keine der beiden Kontrollmethoden ist optimal, so daß sie häufig nebeneinander angewendet und die Ergebnisse untereinander verglichen werden. Aus Sicherheitsgründen werden während des Vortriebes weitere Parameter der Schildmaschine gemessen und mit Erfahrungswerten verglichen. In fast allen Erddruckschilden bis etwa 3,0 m Durchmesser sind in der Abbaukammer meist 1 bis 2 Erddruckaufnehmer und 1 Porenwasserdruckaufnehmer eingebaut. Weitere Aufnehmer werden manchmal bei Schilden mit größerem Durchmesser und bei komplizierten Baugrundverhältnissen am Schneidrad, in der Abbaukammer oder in der Förderschnecke eingebaut.

Die Überprüfung des Füllungsgrades der Abbaukammer sowie die Bestimmung des Stützdruckes in der Abbaukammer sind besonders bei Schilden mit grösserem Durchmesser und bei komplizierten Baugrundverhältnissen wichtig. Der Füllungsgrad der Abbaukammer hängt stark von der Fließfähigkeit des abgebauten Bodens ab. Die Überprüfung des Füllungsgrades im oberen Bereich der Abbaukammer ist bislang nicht befriedigend möglich. Mechanische Sonden bewährten sich nur selten.

Das Messen des Erddruckes in der Abbaukammer ist schwierig, weil u.a. das starre, geschlossene Schneidrad die äußeren Kräfte teilweise abschirmt. Der erforderliche Stützdruck in der Abbaukammer weicht deshalb von dem angreifenden Erd- und Wasserdruck ab. Hierauf wird auch in der Literatur hingewiesen (Chen/Kituchi, 1984; Hagimoto/Kashima, 1984). Der Stützdruck in der Abbaukammer ist aufgrund des kompressiblen, reibungsbehafteten Bodens nicht gleichmäßig über die Ortsbrust verteilt. Besonders im Bereich der Förderschnecke fällt der Stützdruck durch die Entnahme des Bodens ab (Bild 51). Bei Schilden mit größerem Durchmesser ist es deshalb erforderlich, mehrere Förderschnecken anzuordnen.

1 FÖRDERSCHNECKE

2 FÖRDERSCHNECKEN

Bild 51: Verteilung des Stützdruckes in der Abbaukammer in Abhängigkeit von der Anzahl der Förderschnecken (schematisch) Der in der Abbaukammer gemessene Stützdruck verändert sich ständig und wird von der Stellung des Schneidrades mit seinen Öffnungen bestimmt (Bild 52).

Bild 52: Anzeige des Erddruckaufnehmers bei verschiedener Stellung des Schneidrades bei einem Erddruckschild mit geschlossenem Schneidrad (schematisch)

Bei jedem Vortrieb wird aufgrund dieser Schwierigkeiten zu Beginn eine etwa 30 - 50 m, in Ausnahmefällen über 200 m (Anlage 6, Projekt 30) lange Teststrecke angeordnet. Die Steuerung eines Erddruckschildes ist schwierig und erfordert ein hohes Maß an Erfahrung. Diese Erfahrung kann nicht durch ausgeklügelte Meßtechnik und Elektronik ersetzt sondern nur unterstützt werden.

3.3.4 Einsatzgrenzen

Körnungslinie

Gut geeignet für den Einsatz eines Erddruckschildes sind alle weichen, fließfähigen Böden, speziell sandige Schluffe. Tone und tonige Schluffe können in der Abbaukammer verkleben und dann nicht mehr abgefördert werden. Es muß Wasser zur Verflüssigung in die Abbaukammer zugegeben werden. Sande und Kiese sind oft nicht ausreichend fließfähig und bilden keinen wasserundurchlässigen Verschluß in der Förderschnecke. Der abgebaute Boden muß mit Zusatzmitteln vermischt werden. Für den wirtschaftlichen Einsatz eines Erddruckschildes sollte der Boden möglichst einen Mindestanteil an bindigen Bestandteilen von etwa 20-30 % haben (Yamamoto/ Takeda, 1983; Hagimoto/Kashima, 1984). Neben der Bodenart ist bei Sanden und Kiesen auch die Ungleichförmigkeitszahl U der Körnungslinie von Bedeutung. Gleichförmige Böden bereiten Schwierigkeiten bei der Abdichtung der Förderschnecke. Die Häufigkeit des Einsatzes von Erddruckschilden in unterschiedlichen Böden ist in Bild 53 dargestellt.

Bild 53: Häufigkeit des Einsatzes von Erddruckschilden in verschiedenen Bodenarten (Referenzlisten von 5 Schildherstellern, 93 Vortriebe)

Durchlässigkeitsbeiwert

Der Durchlässigkeitsbeiwert bestimmt die Fähigkeit des Bodens, einen wasserundurchlässigen Verschluß innerhalb der Förderschnecke zu bilden. Standard Erddruckschilde können bis zu $k_W \leq 10^{-5}$ m/s eingesetzt werden (Abe et al., 1978; Kakutani, 1981).

Wenn der Durchlässigkeitsbeiwert höher ist, muß der Boden mit Zusatzmitteln (z.B. Ton, Bentonit) vermischt werden. Dies ist das Einsatzgebiet der Erddruckschilde mit Schlamminjektion oder der Schilde mit offenem Schneidrad. In Ausnahmefällen beträgt aufgrund der eigenen Untersuchungen der maximal mögliche Durchlässigkeitsbeiwert für diese Schilde etwa k_w = $10^{-3} - 10^{-2}$ m/s (Anlage 5, Projekt 19). Eine weitere Möglichkeit bei höherer Durchlässigkeit des Bodens sind die Erddruckschilde mit Suspensionsgegendruck, die ab Durchlässigkeitsbeiwerten von k_w $\ge 10^{-5}$ m/s eingesetzt werden (Abe et al., 1978).

Maximaler Grundwaserdruck

Im Gegensatz zu den Suspensionsschilden haben die Erddruckschilde (mit Ausnahme der Erddruckschilde mit Suspensionsgegendruck) keinen geschlossenen Kreislauf für die Förderung des Bodens. Der Einsatzbereich wird durch die Schildschwanzdichtung und die Dichtung der Förderschnecke bestimmt. Bei hohem Grundwasserdruck und Böden mit höherer Durchlässigkeit ist es auch mit Zusatzmitteln nicht immer möglich, in der Fördenschnecke einen wasserundurchlässigen Verschluß zu bilden. Das Wasser kann manchmal an der Wandung der Schnecke entlang bis zum Verschlußsystem dringen und steht dort in voller Druckhöhe an. Aus diesem Grund sollte zur Sicherheit des Personals im Tunnel und wegen möglicher Probleme bei der Förderung der Einsatz eines Standard Erddruckschildes auf einen Grundwasserdruck von etwa 2,0 bar, alle anderen Schildsysteme auf etwa 3,0 bar beschränkt werden. Bei sehr hohem Druck des Grundwassers, wie z.B. unter Flüssen oder unter dem Meer, ist aus Sicherheitsgründen ein Schild mit flüssigkeitsgestützter Ortsbrust einem Erddruckschild vorzuziehen (Kurosawa, 1981).

4. VERGLEICH DER SCHILDSYSTEME

Die deutschen und japanischen Schilde mit flüssigkeitsgestützter Ortsbrust sowie die japanischen Schilde mit erdgestützter Ortsbrust sind für Tunnelvortriebe in nicht standfesten Böden unterhalb des Grundwasserspiegels entwickelt worden. Bei allen Systemen wird der an der Ortsbrust wirkende Erd- und Wasserdruck von dem Stützdruck über ein geeignetes Medium in der Abbaukammer im Gleichgewicht gehalten. Bei den Schilden mit flüssigkeitsgestützter Ortsbrust ist dieses Medium eine Suspension aus Wasser und Bentonit oder Ton, bei den Schilden mit erdgestützter Ortsbrust ist es ein mehr oder weniger flüssiges Gemisch aus dem abgebauten Boden, Wasser und geeigneten Zusatzmitteln.

Die vorhandenen Daten über den Einsatz von Schilden mit flüssigkeits- und erdgestützter Ortsbrust wurden zusammengestellt (Anlage 1 – 6) und in Abhängigkeit vom Durchlässigkeitsbeiwert k_w des Bodens dargestellt (Bild 54). Japanische und deutsche Schilde mit flüssigkeitsgestützter Ortsbrust wurden hiernach bevorzugt in Böden mit einem Durchlässigkeitsbeiwert von $k_w = 10^{-6}$ bis 10^{-2} m/s eingesetzt, die deutschen im Extremfall bis etwa $k_w = 1$ m/s.

Die mögliche Bandbreite des Durchlässigkeitsbeiwertes, bei der die verschiedenen Typen der Erddruckschilde eingesetzt werden können, ist kleiner als bei Schilden mit flüssigkeitsgestützter Ortsbrust. Die japanischen Standard Erddruckschilde wurden nur in gering durchlässigen Böden ($k_w \leq 10^{-5}$ m/s) eingesetzt. Durchlässigere Böden können nur aufgefahren werden, wenn der abgebaute Boden mit Zusatzmitteln vermischt wird. Erddruckschilde mit Suspensionsgegendruck können die Böden mit der höchsten Durchlässigkeit auffahren.

Bild 54: Einsatz der verschiedenen Schildsysteme in Böden mit unterschiedlichen Durchlässigkeitsbeiwerten

Die statistische Auswertung vorhandener Daten über die geometrischen Abmessungen des Schildmantels ergibt für die deutschen und japanischen Schilde in Abhängigkeit des Schilddurchmesser D_s jeweils ähnliche Verhältniswerte L_s/D_s (Bild 55). Mit abnehmendem Schilddurchmesser D_s steigt das Verhältnis L_s/D_s , weil für den Einbau der erforderlichen Maschinen und Geräte, wie z.B. Vortriebspressen, Antriebsmotoren, Förderschnecke und Erektor, eine Mindestlänge des Schildes erforderlich ist.

<u>Bild 55:</u> Bandbreiten der geometrischen Abmessungen des Schildmantels von Schilden mit flüssigkeits- und erdgestützter Ortsbrust

Die Unterschiede zwischen den deutschen und japanischen Schilden mit flüssigkeitsgestützter Ortsbrust liegen hauptsächlich in der Konstruktion des Schneidrades, der Zusammensetzung der Stützflüssigkeit sowie in dem Meßund Steuersystem für den Stützdruck. Bei dem deutschen Hydro- und Mixschild wird zum Abbau des Bodens ein offenes Schneidrad mit wenigen Schneidarmen eingesetzt, so daß sich nur geringe Reibungskräfte zwischen dem Schneidrad und dem Boden an der Ortsbrust ergeben. Die japanischen Schilde haben dagegen nahezu geschlossene Schneidräder. Sie benötigen hohe Antriebsmomente für das Schneidrad, um die Reibungskräfte zwischen dem Schneidrad und dem Boden zu überwinden. Bei den japanischen Schilden mit erdgestützter Ortsbrust ist die Abbaukammer mit dem zähen Gemisch aus dem abgebauten Boden, Wasser sowie den Zusatzmitteln gefüllt, das ständig durchmischt werden muß. Das erforderliche Antriebsmoment des Schneidrades ist bei gleichem Schilddurchmesser deshalb meist größer als bei den Schilden mit flüssigkeitsgestützter Ortsbrust. Für Schilde mit flüssigkeits- und erdgestützter Ortsbrust wurden die vorhandenen Daten über die erforderlichen Antriebsmomente des Schneidrades ausgewertet und im Bild 56 gegenübergestellt. Die Streubreite der erforderlichen Antriebsmomente für die verschiedenen Systeme ist darauf zurückzuführen, daß neben der Art der Stützung der Ortsbrust auch die Konstruktion des Schneidrades und die Bodenart an der Ortsbrust einen Einfluß haben.

<u>Bild 56:</u> Zusammenhang zwischen dem maximalen Antriebsmoment M_T des Schneidrades und dem Schilddurchmesser D_s für Schilde mit flüssigkeits- und erdgestützter Ortsbrust

Die deutschen und japanischen Schilde mit flüssigkeitsgestützter Ortsbrust verwenden unterschiedliche Meß- und Steuersysteme für den Stützdruck. Die deutschen Systeme setzten für die Regulierung des Stützdruckes ein kompressibles Luftpolster ein, welches Druckänderungen in der Abbaukammer und im Förderkreislauf auf einfache Art ausgleicht. Bei den japanischen Systemen ist kein kompressibles und damit dämpfendes Medium vorhanden. Die Druckänderungen im Leitungssystem werden ständig gemessen und mit elektronisch gesteuerten Pumpen und Ventilen durch Zu-und Abpumpen von Suspension möglichst genau und fein dosiert ausgeglichen.

In Deutschland ändern sich oft auf kurzer Entfernung die Bodenarten an der Ortsbrust. Bei einer Wechsellagerung sind an der Ortsbrust gleichzeitig verschiedene Bodenarten, wie z.B. stark durchlässige Sande und Kiese in der Firste und tonige Schluffe in der Sohle mit größeren Steinen in der Übergangszone, anzutreffen. Unter diesen Verhältnissen ist der Vortrieb mit flüssigkeitsgestützter Ortsbrust schwierig, weil jede Bodenart eine unterschiedliche Zusammensetzung der Suspension erfordert. Für die sichere Stützung der Sande und Kiese in der Firste ist ein höherer Anteil an Bentonit oder Ton in der Suspension notwendig als für die tonigen Schluffe (s. Kap. 7). Aufgrund ähnlicher Korngröße erschwert dieser erforderliche. erhöhte Bentonit- oder Tonanteil die Trennung der abgebauten tonigen Schluffe von der Suspension in der Separieranlage. Dieses Problem der Wechsellagerung ist sowohl bei den deutschen als auch bei den japanischen Schildsystemen vorhanden und ist nicht aus den in den Bildern 16 und 35 angegebenen Einsatzgrenzen zu erkennen. Die Beseitigung größerer Steine oder anderer Hindernisse ist bei den deutschen Schildsystemen einfacher möglich als bei den japanischen Systemen, weil die Ortsbrust nicht durch das nahezu geschlossene Schneidrad verdeckt ist. Für die japanischen Schilde wurden deshalb zahlreiche Hilfsmittel wie Disken, Steinseparatoren und Steinbrecher entwickelt.

Bei den Schilden mit erdgestützter Ortsbrust wird der abgebaute Boden zur Stützung der Ortsbrust eingesetzt, so daß eine Separieranlage nicht benötigt wird. Dies ist gegenüber den Schilden mit flüssigkeitsgestützter Ortsbrust ein großer Vorteil. Von Nachteil ist, daß in Sanden und Kiesen dem abgebauten Boden teilweise erhebliche Mengen an Zusatzmitteln wie z.B. Bentonit und Ton zugegeben werden müssen, um seine Fließfähigkeit zu erhöhen und die Förderschnecke wasserundurchlässiger zu machen. Die Zugabe von Bentonit und Ton verringert die Durchlässigkeit des abgebauten Bodens, wodurch seine für den Abtransport erforderliche Entwässerung aufwendiger wird. Außerdem ist die Tragfähigkeit des mit Bentonit und Ton vermischten, abgebauten Bodens auf der Deponie, welche befahrbar sein muß, geringer.

5. STANDSICHERHEIT DER ORTSBRUST

Bei der Berechnung der Standsicherheit der Ortsbrust sind zwei Fälle zu unterscheiden:

- Örtliches Versagen Einzelkörper oder Korngruppen dürfen nicht aus ihrem Verband in der Ortsbrust herausfallen
- Clobales Versagen Der Stützdruck in der Abbaukammer muß mit ausreichender Sicherheit dem angreifenden Erd- und Wasserdruck das Gleichgewicht halten

Das örtliche Gleichgewicht ist im Rahmen der Untersuchungen für das Schlitzwandverfahren erforscht worden. Ausführlich wird darüber z.B. von Müller-Kirchenbauer (1977) und Karstedt/Ruppert (1980) berichtet. Wenn das örtliche Gleichgewicht nicht erfüllt ist und sich weitere Körner oder Korngruppen aus der Ortsbrust lösen, kann ein globales Versagen eintreten.

ÖRTLICHES VERSAGEN

GLOBALES VERSAGEN

5.1 Erd- und Wasserdruck

Der an der Ortsbrust angreifende Wasserdruck muß in voller Höhe von dem Stützdruck aufgenommen werden. Die Bestimmung des an der Ortsbrust wirkenden zusätzlichen Erddrucks aus Bodeneigengewicht und Auflasten ist

schwieriger, weil der Erddruck von der räumlichen Tragwirkung vor der Ortsbrust und den Verformungen der Ortsbrust abhängt. Vor der Ortsbrust bildet sich ein räumlich begrenzter Erdkörper, der im ungünstigsten Fall bis zur Geländeoberfläche reichen kann. Dieser Erdkörper rutscht bei nicht ausreichender Stützung auf einer Gleitfläche in den Schild hinein. Der Erddruck kann grob näherungsweise mit dem ebenen Fall und mit der Coulomb'schen Erddrucktheorie abgeschätzt werden. Bei der Untersuchung eines nur zweidimensionalen Berechnungsmodells wird die Reibung in den Seitenflächen des räumlichen Gleitkörpers vernachlässigt. Bei der Coulomb'schen Erddrucktheorie wird zusätzlich davon ausgegangen, daß ein seitlich unbegrenzter Bodenkörper auf einer geraden Gleitfläche abrutscht, Weitere Voraussetzungen der Coulomb'schen Erddrucktheorie sind u.a., daß die Reibungskräfte in der Gleitfläche dem Coulomb'schen Reibungssatz gehorchen und die Größe der Scherfestigkeit in der Gleitfuge von der Gleitbewegung unabhängig ist. Unter Beachtung dieser groben Vereinfachungen kann für ein zweidimensionales Berechnungsmodell der auf die Ortsbrust wirkende Erddruck mit der Coulomb'schen Erddrucktheorie berechnet werden. Der Gleitkörper wird vertikal durch den darüber liegenden Boden belastet. Bei ausreichender Überdeckung kann sich über dem Schild ein Gewölbe im Boden bilden, das die Vertikalspannungen auf den Gleitkörper vermindert. Die verminderten Vertikalspannungen können z.B. mit dem Ansatz von Terzaghi/Jelinek (1954) ermittelt werden (Bild 58).

<u>Bild 58:</u> Gewölbebildung über dem Schild und Ermittlung des Erddruckes an der Ortsbrust mit dem Ansatz von Coulomb (schematisch)

Die Größe des Erddruckes ist von der Bewegung des abrutschenden Gleitkörpers abhängig. Bei größeren Verschiebungen des Körpers in den Schild wirkt der aktive Erddruck, bei geringen Verschiebungen herrscht der Erdruhedruck an der Ortsbrust (Bild 59). Die Verschiebungen des abrutschenden, räumlich begrenzten Gleitkörpers in den Schild werden beeinflußt durch seine geometrischen Abmessungen sowie durch die Verteilung des um den Wasserdruck verminderten Stützdruckes. Wenn man grob vereinfachend annimmt, daß die Ortsbrust sich etwa parallel in den Schild hinein verschiebt und es sich zusätzlich um ein ebenes Problem handelt, dann könnten die Hinweise der DIN 4085 (1982) zur Abschätzung des Erddruckes angewendet werden. In der DIN 4085 (1982) werden für den ebenen Fall für die Berechnung des Erddruckes auf starre Stützwände und Widerlager die erforderlichen Verschiebungen bei parallelen Wandbewegungen zur Weckung des aktiven und passiven Erddruckes angegeben (Bild 59). Bei der Anwendung der DIN 4085 entspräche die Wandhöhe dem Schilddurchmesser. Der aktive Erddruck an der Ortsbrust würde in diesem Fall geweckt werden, wenn sich der Boden um 1/1000 des Schilddurchmessers in den Tunnel hineinbewegt, d.h. bei einem Schild mit einem Durchmesser von 6 m wäre eine Bewegung der Ortsbrust von 6 mm erforderlich. Eine Überprüfung dieser Annahme ist bislang nicht möglich, weil keine Meßergebnisse über tatsächliche Verformungen der Ortsbrust vorliegen.

Bei einem Schildvortrieb können die Setzungen an der Geländeoberfläche aufgrund unterschiedlicher Ursachen in die drei Bereiche; vorlaufende, Hauptund nachlaufende Setzungen eingeteilt werden. Der größte Teil der vorlaufenden Setzungen entsteht durch Verschiebungen der Ortsbrust und Änderungen der Lagerungsdichte des Bodens. Die Hauptsetzungen sind oberhalb des Schildes zu beobachten und werden durch die Konizität des Schildmantels und den Steuerspalt hervorgerufen. Die nachlaufenden Setzungen entstehen durch einen verspäteten und nicht ausreichend verfüllten Ringspalt sowie durch Verformungen der Tunnelauskleidung. Wenn man in einem vereinfachten Rechenmodell annimmt, daß die vorlaufenden Setzungen ausschließlich durch eine entsprechende, volumenkonstante Verschiebung der Ortsbrust hervorrufen werden, könnten mit diesem Rechenmodell die Verschiebungen der Ortsbrust abgeschätzt werden. Dieses Rechenmodell berücksichtigt jedoch nicht nicht die Änderungen der Lagerungsdichte des Bodens, die Hebungen der Geländeoberfläche vor dem Schild ("Bugwelle") und das in Wirklichkeit nicht parallele Verschieben der Ortsbrust. Die Verschiebung der Ortsbrust würde sich aus einem Vergleich zwischen dem Volumen der Setzungsmulde an der Geländeoberfläche vor dem Schild und einer entsprechenden volumenkonstanten Verschiebung der Ortsbrust in den Schild berechnen.

Beispielhaft wurden für einen Vortrieb mit flüssigkeitsgestützter Ortsbrust in einem nichtbindigen Boden 18 Meßquerschnitte ausgewertet. Der Verlauf der Setzungen in Längsrichtung des Tunnels ist für mehrere Tage im Bild 60 dargestellt. Deutlich erkennbar sind die kleinen vorlaufenden Setzungen in der Tunnelachse von im Mittel 1,5 mm. Die Auswertung aller Meßquerschnitte ergibt, daß die Gerade zwischen dem Beginn der vorlaufenden Setzungen an der Geländeoberfläche und der Mitte der Ortsbrust mit der Tunnelachse einen Winkel von 60-70° einschließt, dies entspricht in diesem Beispiel etwa einem Winkel von 45°+2/3 ϕ '. Die vorlaufenden, Haupt- und nachlaufenden Setzungen zeigen quer zur Vortriebsrichtung in den Schnitten A, B und C den üblichen glockenförmigen Verlauf (Bild 61).

Für die vorlaufenden Setzungen wurde das Volumen der Setzungsmulde aus der Integration des Setzungsverlaufes in Längs- und Querrichtung berechnet. Unter der Annahme, daß das Volumen der Setzungsmulde einer volumenkonstanten Verschiebung des Bodens in den Schild entspricht, erhält man eine Verschiebung der Ortsbrust in den Schild von 2 mm, entsprechend

- 65 -

Bild 60: Auswertung der Setzungen in der Tunnelachse für 18 Meßquerschnitte (Längsschnitt)

QUERPROFILE

Bild 61: Auswertung der für 18 Meßquerschnitte gemittelten Setzungen in Querrichtung des Tunnels

- 67 -

1/3000 des Schilddurchmessers. Die mit diesem einfachen Rechenmodell ermittelte Verschiebung der Ortsbrust von 2 mm ist kleiner, als die in Anlehnung der DIN 4085 (1982) erforderliche Bewegung zur Weckung des aktiven Erddrucks, Unter Beachtung der groben Vereinfachungen deuten die Berechnungen bei diesem Vortrieb darauf hin, daß die Größe des angreifenden Erddrucks zwischen dem aktiven Erddruck und dem Erdruhedruck gelegen haben wird.

5.2 Stützdruck

Die Größe des Stützdruckes ist von erheblicher Bedeutung. Wenn die Summe des Stützdruckes kleiner ist als die Summe der Kräfte aus Erd- und Wasserdruck, wird die Ortsbrust nicht ausreichend gestützt und wird instabil. Ein zu hoher Stützdruck kann besonders bei geringen Überdeckungshöhen zu Hebungen der Geländeoberfläche oder Ausbläsern von Stützflüssigkeit führen.

Der Stützdruck in der Abbaukammer setzt sich bei den deutschen Systemen aus dem Druck des Luftpolsters und dem Flüssigkeitsdruck aus dem Eigengewicht der Suspension zusammen. Exemplarisch sind die Verhältnisse für den Hydroschild im Bild 62 dargestellt. Der Druck des Schneidrades auf die Ortsbrust sowie die Druckspannungen am Umfang der Schildschneide werden nicht berücksichtigt und bilden eine zusätzliche Sicherheit in der Berechnung.

WASSERDRUCK

Bild 62: Verlauf des Stützdruckes beim Hydroschild

Die Differenz aus dem Stützdruck und dem Wasserdruck steht zur Aufnahme des angreifenden Erddruckes zur Verfügung und muß auf das Korngerüst des Bodens übertragen werden. Hierbei können in Abhängigkeit des Bodens an der Ortsbrust drei verschiedene Fälle unterschieden werden (Bild 63). Bei feinkörnigen Böden filtert die Suspension an der Oberfläche der Ortsbrust ab, d.h. sie wird in ihre beiden Bestandteile Wasser und Bentonit oder Ton zerlegt. Die Poren an der Oberfläche des Bodens werden mit einer Membran aus Bentonit- oder Tonteilchen, dem Filterkuchen, verschlossen, über die der Stützdruck auf das Korngerüst übertragen wird. Das Wasser strömt durch den Filterkuchen in den Boden (Fall 1). In grobkörnigeren Böden dringt die Suspension bis zu einer bestimmten Tiefe in den Boden ein, während sich gleichzeitig ein Filterkuchen auf der Ortsbrust bildet. Der Stützdruck wird über die Schubkräfte zwischen der Suspension und dem Korngerüst des Bodens sowie über den sich bildenden Filterkuchen übertragen (Fall 2). Die Größe der Schubkräfte ist aufgrund des thixotropen Verhaltens der Suspension zeitlich veränderlich. In einer Ruhezeit, wie z.B. während der Stagnation des Eindringvorganges, nimmt die Scherfestigkeit der Suspension und damit die Größe der möglichen, übertragbaren Schubkräfte zu. Wird die Durchlässigkeit des Bodens noch höher, dringt die Suspension weit in den Boden ein, und es bildet sich keine Membran mehr. Der Stützdruck wird ausschließlich über die Schubkräfte auf das Korngerüst übertragen. Im Grenzfall werden die Schubkräfte sehr klein und die Suspension fließt nahezu drucklos in den Boden ab. Eine Stützung der Ortsbrust ist in diesem Fall nicht mehr möglich (Fall 3).

Für die Sicherheit gegen das globale Versagen der Ortsbrust muß die ausreichende Stützung möglicher Bruchkörper vor der Ortsbrust nachgewiesen werden. In dieser Berechnung dürfen nur jene stützenden Kräfte aus den Schubkräften zwischen der Suspension und dem Korngerüst des Bodens berücksichtigt werden, die innerhalb des Bruchkörpers vor der Ortsbrust wirksam sind (Bild 64). Weil die Schubkräfte außerhalb des Bruchkörpers nicht zu seiner Standsicherheit beitragen und um ebenfalls die randnahen Korngruppen an der Ortsbrust ausreichend zu stützen, muß die Eindringtiefe der Suspension in den Boden begrenzt werden.

<u>Bild 64:</u> Eindringtiefe der Suspension im Bereich der Ortsbrust. Der Bereich, der zur Standsicherheit des Bruchkörpers vor der Ortsbrust beiträgt, ist doppelt schraffiert

5.3 Rechnerische Nachweise

Für den Schildvortrieb mit flüssigkeitsgestützter Ortsbrust gibt es bislang kein allgemein anerkanntes Berechnungsverfahren, das Gleichgewicht zwischen dem Stützdruck und dem angreifenden Erd- und Wasserdruck nachzuweisen. Weil der Wasserdruck immer in voller Größe vom Stützdruck aufgenommen werden muß, werden nachfolgend Verfahren aufgezeigt, mit denen der an der Ortsbrust angreifende Erddruck berechnet werden kann. Der Anteil des Stützdruckes zur Aufnahme dieses über die Höhe der Ortsbrust gemittelten Erddruckes wird im weiteren als mittlerer Stützdruck p bezeichnet.

5.3.1 Übliche Berechnungsverfahren

Der Erddruck an der Ortsbrust kann näherungsweise mit dem ebenen Fall und mit dem Coulomb'schen Erddruckansatz unter der Annahme einer unendlich ausgedehnten, geraden Gleitfläche abgeschätzt werden. Die räumliche Gewölbewirkung über dem Schild für den Vertikaldruck und vor der Ortsbrust für den Horizontaldruck vermindert die Vertikalspannungen und kann mit dem Ansatz von Terzaghi/Jelinek (1954) berücksichtigt werden.

Die Gleitfläche, auf der ein Erdkörper abrutscht, verläuft meist nicht gerade, sondern gekrümmt. Diese Beobachtung wird in dem Berechnungsverfahren von Murayama (Sakzanami, 1981) dadurch erfaßt, daß als Gleitfläche eine logarithmische Spirale angesetzt wird (Bild 65). Das Verfahren entspricht einer vereinfachten Böschungsbruchberechnung. Die für den Nachweis mit diesem Verfahren benötigten Größen sind im Bild 65 angegeben. Der angreifende Erddruck wird aus dem Momentengleichgewicht um den Punkt 0 mit Gl. (5) berechnet.

$$p = \frac{1}{D_{s} \cdot I_{p}} \cdot (G \cdot I_{G} + q \cdot I_{q} \cdot (I_{a} + 0.5 \cdot I_{q}) - c' \cdot \frac{r_{c}^{2} - r_{o}^{2}}{2 \cdot tan \varphi}) (kN/m^{2})$$
(5)

<u>Bild 65:</u> Berechnungsverfahren von Murayama. Bezeichnungen in Anlehnung an Sakzanami (1981)

Aus theoretischen Überlegungen und Modellversuchen wurden von Broms/ Bennermark (1967), Atkinson/Potts (1977) und Davis et al. (1980) Verfahren zur Berechnung des erforderlichen Stützdruckes an der Ortsbrust für nicht bindige und für bindige, plastische Böden entwickelt. Die entsprechenden Gleichungen zur Ermittlung des mittleren Stützdruckes p sind im Bild 66 zusammengefaßt. Für übliche Böden mit einem inneren Reibungswinkel und einer Kohäsion sind diese Berechnungsverfahren nur bedingt geeignet.

Bild 66: Übersicht der Berechnungsverfahren von Broms/Bennermark, Atkinson/Potts und Davis et al.

Autor	mittlerer Stützdruck p	Bemerkungen
Broms/Bennermark (1967)	$p > \gamma \cdot (H + \frac{p}{2}) - (6 \div 8) \cdot c_u$	Für den Schildvortrieb mit Druckluft in Ton- böden entwickelt, wenn H>4·D ist.
Atkinson/Potts (1977)	<u>lower bound:</u> $p = \frac{\mu}{\mu^2 - 1} \cdot \gamma \cdot D$ $\mu = \frac{1 + \sin t^2}{1 - \sin t^2}$ <u>upper bound:</u> $p = \frac{1}{4 \cdot \cos t^2} \left(\frac{1}{\tan t^2} + t^2 - \frac{\pi}{2} \right) \cdot \gamma \cdot D$	Für runde, im Bereich der Ortsbrust nicht aus- gekleidete Tunnel entwickelt. Gleichungen durch Modellversuche in trockenen nichtbindigen Böden überprüft. Der berechnete Stützdruck ist unabhängig von der Überdeckungshöhe H. lower bound: obere Grenze für p upper bound: untere Grenze für p
Davis/Gunn/ Mair/Seneviratne (1980)	$p = \mathcal{Y} \left\{ H + \frac{D}{2} \right\} - 4 \cdot c_{v} \sqrt{\frac{H}{D} + \frac{1}{4}}$	Für die Stützung der Ortsbrust durch Druckluft oder Stützflüssigkeiten entwickelt. Die Gleichung gilt nur für homogene, ideal elastische und plastische bindige Böden.

- 73 -

5.3.2 Eigene Berechnungsverfahren

Häufig kann beobachtet werden, wie sich schalenförmige Bruchkörper aus der Ortsbrust lösen. Sie scheren aufgrund ihres Eigengewichtes entlang einer Gleitfläche im Boden ab. Aus den anfangs örtlich begrenzten Bruchkörpern können in Böden mit geringerer Standfestigkeit größere Bruchkörper entstehen, die im ungünstigsten Fall bis zur Geländeoberfläche reichen (Bild 67).

Bild 67: Arten des Versagens der Ortsbrust (schematisch)

Der erforderliche Stützdruck muß ausreichend hoch gewählt werden und muß möglichst vorne an der Ortsbrust auf das Korngerüst des Bodens übertragen werden, damit sich mögliche schalenförmige Bruchkörper nicht aus der Ortsbrust lösen oder größere Erdkörper nicht in den Schild hineingleiten können. Für die Ermittlung der mindestens erforderlichen Kraft aus dem Stützdruck, die der rechnerischen Erd- und Wasserdruckkraft entspricht, können die schalenförmigen Bruchkörper durch einfache, kinematisch mögliche Bruchkörper idealisiert werden. Die Berechnung des Erddruckes infolge größerer Bruchkörper kann in Anlehnung an die Standsicherheitsnachweise für offene Schlitze ermittelt werden.

Schalenförmiger Bruchkörper

Wenn man unter Vernachlässigung der seitlichen Reibungsflächen mit groben ersten Näherungen zufrieden ist, kann man ebene Systeme untersuchen. Es wird vorgeschlagen, die schalenförmigen Bruchkörper an der Ortsbrust durch Bruchkörper zu idealisieren, deren Gleitfläche für den ebenen Fall vereinfachend als Halb- oder Viertelkreis und für den räumlichen Fall als Halbkugel dargestellt wird (Bild 68). Die rechnerische Standsicherheit dieser Bruchkörper ist gewährleistet, wenn die rückhaltenden Momente aus den Scherkräften und der Kohäsion in der Gleitfuge sowie aus dem Stützdruck auf den Bruchkörper größer als das antreibende Moment aus dem Eigengewicht des Bruchkörpers sind.

Bild 68: Idealisierte Bruchkörper vor der Ortsbrust. Die Gleitfläche wird im ebenen Fall als Halb- und Viertelkreis und im räumlichen Fall als Halkugel angenommen

Für einen Bruchkörper, der auf einer Gleitfläche in Form eines Halbkreises abrutscht, wird exemplarisch die Gleichung zur Berechnung des erforderli-

chen mittleren Stützdruckes p an der Ortsbrust abgeleitet. Der mittlere Stützdruck p erzeugt in der Gleitfläche, die von dem Winkel α abhängige Spannungsverteilung p • cos α (Bild 69). Hieraus ergeben sich mit dem inneren Reibungswinkel φ ' des Bodens in der Gleitfläche die Schubspannungen τ

$$\tau = p \cdot \cos \alpha \cdot \tan \varphi'$$
,

die um den Punkt O das rückhaltende Moment M (τ) erzeugen:

$$M(\tau) = 1/2 \cdot p \cdot tan \phi' \cdot D_{s}^{2}$$
.

Aus der Kohäsion in der Gleitfläche wird um den Punkt O das rückhaltende Moment M(c) berechnet:

$$N_i(c) = 1/4 \cdot \pi \cdot c' \cdot D_c^2$$
.

Das antreibende Moment M(G) aus dem Eigengewicht des Bruchkörpers um den Punkt O ermittelt sich mit der Wichte γ des Bodens zu:

$$M(G) = 1/2 \cdot \gamma \cdot D_{c}^{3}$$
.

Der Bruchkörper ist im Gleichgewicht, wenn die Bedingung

$$M(G) = M(\tau) + M(c)$$

erfüllt ist, aus der sich der mittlere Stützdruck p ergibt Gl. (6):

Halbkreis:

$$p = \frac{1}{\tan \rho^{1}} \cdot (\frac{1}{6} \cdot \gamma \cdot D_{s} - \frac{1}{2} \cdot \pi \cdot c^{1}) \quad (kN/m^{2}).$$
 (6)

Bild 69: Bruchkörper vor der Ortsbrust mit einer Gleitfläche in Form eines Halbkreises

Wenn statt des Halbkreises als Gleitfläche im ebenen Fall ein Viertelkreis oder im räumlichen Fall eine Halbkugel angenommen wird, ergeben sich die erforderlichen mittleren Stützdrücke p bei einer Drehung des Bruchkörpers jeweils um den im Bild 68 angegebenen Punkt O mit den Gl. (7) und (8):

Viertelkreis:

$$p = \frac{1}{0.5 + \tan \rho^{1}} \cdot (\frac{1}{3} \cdot \gamma \cdot D_{s} - \frac{1}{2} \cdot \pi \cdot c^{1}) \quad (kN/m^{2})$$
(7)

Halbkugel:

$$p = \frac{1}{\tan p^{1}} \cdot (\frac{1}{9} \cdot \gamma \cdot D_{S} - \frac{1}{2} \cdot \pi \cdot c^{1}) \quad (kN/m^{2})$$
(8)

Oberhalb des Grundwasserspiegels ist mit der Wichte γ des feuchten Bodens zu rechnen. Im Grundwasser ist die Wichte γ^i des Bodens unter Auftrieb und bei der Ermittlung des Stützdruckes zusätzlich der Wasserdruck anzusetzen.

Mit Zunahme der Kohäsion des Bodens verringert sich der erforderliche mittlere Stützdruck p. Die Größe der Kohäsion, ab der rechnerisch dieser Stützdruck zu Null wird, ergibt sich aus GI. (9), (10) und (11).

Halbkreis:

$$c^{i} \geq \frac{1}{3\pi} \cdot \gamma \cdot D_{s} \qquad (kN/m^{2}), \qquad (9)$$

Viertelkreis:

$$c^{I} \geq \frac{2}{3\pi} \cdot \gamma \cdot D_{s} \qquad (kN/m^{2}), \qquad (10)$$

Halbkugel:

$$c^{\prime} \geq \frac{2}{9\pi} \cdot \gamma \cdot D_{s} \qquad (kN/m^{2}).$$
(11)

Die vorgeschlagenen Berechnungsverfahren können nur für solche Böden verwendet werden, in denen sich schalenförmige Bruchkörper bilden können. Sie sind folglich nicht bei gleichförmigen, nichtbindigen Böden mit fast keinem inneren Strukturwiderstand anwendbar.

Für ein Beispiel wird der mittlere Stützdruck p in Abhängigkeit vom Schilddurchmesser D_S berechnet. Dabei wird der ebene Fall mit dem Coulomb¹schen Ansatz den Ergebnissen unter der Annahme idealisierter, schalenförmiger Bruchkörper gegenübergestellt (Bild 70). Es zeigt sich, daß vor allem im Bereich kleiner Schilddurchmesser mit den vereinfachten Bruchkörpern niedrigere mittlere Stützdrücke p berechnet werden. Dies ist ein Indiz für die Beobachtung in der Praxis, daß bei Schildvortrieben mit kleinem Durchmesser oberhalb des Grundwasserspiegels die Ortsbrust häufig ohne Zusatzmaßnahmen, also ohne Stützdruck, standsicher ist.

<u>Bild 70:</u> Mittlerer Stützdruck p in Abhängigkeit vom Schilddurchmesser D_S für den Ansatz von Coulomb sowie unter der Annahme idealisierter, schalenförmiger Bruchkörper

Keilförmiger Erdkörper

Beim Standsicherheitsnachweis von offenen Schlitzen wird davon ausgegangen, daß ein Gleitkörper, begrenzt durch die Schlitzlänge, der Geländeoberfläche und den suspensionsgefüllten Schlitz sich bilden kann. Dieser Erdkörper wird von den Schubspannungen in seinen Seitenflächen und dem Suspensionsdruck gehalten. Mehrere Autoren veröffentlichten Ansätze zur räumlichen Berechnung suspensionsgestützter Schlitze: Schneebeli (1964), Piaskowski/Kowalewski (1965), Huder (1972), Karstedt (1982), DIN 4085 (1982), DIN 4126 (1984). Der Nachweis nach DIN 4126 ist für suspensionsgestützte Schlitze heute üblich. Bei Schilden mit flüssigkeitsgestützer Ortsbrust könnte für die Berechnung des mittleren Stützdruckes p vor der Ortsbrust ein keilförmiger Erdkörper angenommen werden, der auf einer geraden Gleitfläche in den Schild hinein abrutscht und dadurch eine Erddruckkraft auf die Ortsbrust erzeugt. Diese Erddruckkraft muß von dem mittleren Stützdruck aufgenommen werden. Unterhalb des Grundwassers ist zusätzlich die Kraft aus dem Wasserdruck zu berücksichtigen. Der idealisierte Erdkörper soll flächengleich mit der Ortsbrust sein. Auf diesen Erdkörper wirkt die Vertikalspannung $\sigma_{\rm V}$ aus dem Eigengewicht des Bodens über dem Schild (Bild 71). Die Vertikalspannung kann z.B. nach dem Ansatz von Terzaghi/Jelinek (1954) abgemindert werden. Für dieses Berechnungsmodell wurde ein eigenes Rechenprogramm zur Ermittlung des mittleren Stützdruckes p entwickelt. Die Grundlagen dieses Programmes werden von Walz/Pulsfort (1983) für die Ermittlung des Erddruckes bei suspensionsgestützten Schlitzen beschrieben.

<u>Bild 71:</u> Eigener Vorschlag eines möglichen räumlichen Erdkörpers vor der Ortsbrust

Der mittlere Stützdruck p wurde für den räumlichen Fall in Abhängigkeit des Schilddurchmessers D_S und der Überdeckungshöhe H mit dem vereinfachten Ansatz eines Bruchkörpers mit einer Gleitfläche als Halbkugel und dem vorgeschlagenen keilförmigen Erdkörper berechnet (Bild 72). Die Auswertungen ergeben für Verhältnisse H/D_s größer als etwa 0,7 den kleinsten mittleren Stützdruck p mit dem Modell der Halbkugel, für H/D_s kleiner als 0,7 ergibt das Erdkörpermodell den geringsten mittleren Stützdruck p.

<u>Bild 72:</u> Mittlerer Stützdruck p in Abhängigkeit vom Schilddurchmesser D_c und der Überdeckungshöhe H

5.3.3 Vergleich der Berechnungsverfahren

Mit den verschiedenen Berechnungsverfahren wurde in einer Parameterstudie der Einfluß des Schilddurchmesser D_S, des inneren Reibungswinkels φ' und der Kohäsion c' des Bodens auf den mittleren Stützdruck p untersucht. Die Vertikalspannungen aus dem Bodeneigengewicht wurden nach dem Verfahren von Terzaghi/Jelinek (1954) abgemindert. Der Einfluß des Schilddurchmessers bei einer konstanten Überdeckungshöhe von H = 12 m ist im Bild 73 dargestellt. Mit dem ebenen Ansatz und der Coulomb'schen Erddrucktheorie sowie mit dem Verfahren von Murayama werden mittlere Stützdrücke p berechnet, die etwa doppelt so groß sind wie bei der Berechnung unter der Annahme eines keilförmigen Erdkörpers oder einer Halbkugel vor der Ortsbrust. Der Berechnungsansatz von Atkinson/Potts (1977) und die Annahme einer Halbkugel ergeben jeweils mittlere Stützdrücke p, die linear vom Durchmesser D_s abhängen.

<u>Bild 73:</u> Einfluß des Schilddurchmessers D_s auf den mittleren Stützdruck p

Der innere Reibungswinkel φ' nichtbindiger Böden liegt meistens zwischen 30° und 37,5°. Der mittlere Stützdruck p wird bei den untersuchten Verfahren bei einer Erhöhung des inneren Reibungswinkels φ' von 30° auf 37,5° um etwa 30 % vermindert (Bild 74).

Die Berechnung des mittleren Stützdruckes p bei bindigen Böden ergibt stark streuende Ergebnisse. Der Ansatz von Davis et al. (1980) ist für Tunnel in ideal elastisch-plastischen homogenen bindigen Böden entwikkelt worden. Es ergeben sich bei geringer Kohäsion hohe mittlere Stützdrücke p, weil die innere Reibung des Bodens vernachlässigt wird (Bild 75).

Bild 75: Einfluß der Kohäsion c' auf den mittleren Stützdruck p

5.4 Vergleich zwischen den Berechnungsverfahren und den Messungen bei einem Tunnelvortrieb

Die verschiedenen Verfahren zur Berechnung des mittleren Stützdruckes p werden mit einem Beispiel aus der Praxis überprüft. Der Tunnel wurde mit einem Schild von etwa 3,5 m Durchmesser mit flüssigkeitsgestützter Ortsbrust in einem Kiessand aufgefahren. Die Trasse liegt im Uferbereich eines Gewässers. Die geringste Überdeckung des Schildes betrug etwa einen Schilddurchmesser. Um im Uferbereich keine Ausbläser von Stützflüssigkeit zu verursachen, mußte der Stützdruck möglichst dem tatsächlich angreifenden Erd- und Wasserdruck entsprechen. Die Größe des Wasserdruckes war
bekannt, der Erddruck hingegen nicht. Im Bereich des Ufers tastete man sich an den tatsächlich wirkenden Erddruck heran, indem der Anteil des Stützdruckes zur Aufnahme des Erddruckes ständig verringert wurde. Die Ortsbrust wurde im Bereich des Ufers an dem Punkt A instabil (Bild 76).

Auf der gesamten Vortriebsstrecke bis zum Punkt A traten keine Probleme auf, weil der Stützdruck größer als der angreifende Erd- und Wasserdruck war. Am Punkt A entsprach der mittlere Stützdruck in der Abbaukammer etwa dem tatsächlich angreifenden Erd- und Wasserdruck, die Ortsbrust wurde instabil. Da der mittlere Stützdruck und der Wasserdruck zu jedem Zeitpunkt der Vortriebsarbeiten bekannt waren, kann hieraus für den Punkt A der tatsächlich wirkende mittlere Erddruck an der Ortsbrust ermittelt werden. Dieser wurde den mittleren, rechnerischen Stützdrücken für den Ansatz nach Coulomb und den vorgeschlagenen Verfahren unter Annahme eines keilförmigen Erdkörpers, Halb oder Viertelkreises sowie einer Halbkugel gegenübergestellt. Im Vergleich zu dem tatsächlichen Erddruck wird mit dem Ansatz von Coulomb ein etwa 3fach höherer mittleren Stützdrücke schwanken um den tatsächlich an der Ortsbrust wirkenden mittleren Erddruck.

Diese exemplarische Überprüfung läßt vermuten, daß der erforderliche mittlere Stützdruck zur Aufnahme des Erddruckes an der Ortsbrust eines Schildes mit flüssigkeitsgestützter Ortsbrust zutreffend mit den hier dargelegten eigenen Berechnungsverfahren abgeschätzt werden kann. Weitere Überprüfungen in der Praxis sind notwendig, um die zahlreichen Einflüsse auf den Erddruck, wie z.B. die Lagerungsdichte des Bodens, zu untersuchen.

Bild 76: Längsschnitt eines Vortriebes mit der Gegenüberstellung des tatsächlich in der Abbaukammer vorhandenen, mittleren Stützdruckanteils zur Aufnahme des Erddruckes und der mit verschiedenen Verfahren berechneten mittleren Stützdrücke

6. AUSWAHL GEEIGNETER STÜTZFLÜSSIGKEITEN

6.1 Anforderungen

Die Stützung eines Hohlraumes im Boden durch eine geeignete Suspension wurde von der Bohrindustrie zur Erkundung nutzbarer Bodenschätze entwickelt. Zu Beginn der Bohrtechnik bestanden die Suspensionen, genannt Bohrspülungen, aus Wasser und hatten die Aufgabe, den Meißel zu kühlen und das Bohrgut aus dem Bohrloch zu fördern. Die Dichte der Bohrspülung ist für die Förderung des Bohrgutes und die Steuerung des erforderlichen Flüssigkeitsdruckes im Bohrloch von großer Bedeutung. Sie wird z.B. durch die Zugabe von Schwerspat (Baryt) den jeweiligen Anforderungen angepaßt. Mit Fortschritt der Bohrtechnik und tieferen Bohrungen ist als weitere wichtige Aufgabe der Bohrspülung das Abdichten verschiedener Horizonte gegen das Eindringen von Gasen und Flüssigkeiten aus anderen Horizonten hinzugekommen. Heute werden für unterschiedliche Zwecke Bohrspülungen aus Gas, Wasser oder Öl eingesetzt.

Beim Schildvortrieb mit flüssigkeitsgestützter Ortsbrust hat die Bentonitoder Tonsuspension als Stütz- oder Fördermedium gleichzeitig mehrere Anforderungen zu erfüllen. Weitere Anforderungen sind die Separierbarkeit, die Unempfindlichkeit gegenüber Verunreinigungen und die Wirtschaftlichkeit (Bild 77).

Stützmedium	Fördermedium	Sonstiges	
 * Filterkuchen- bildung * Eindringung * Luftdurchlässig- keit des Filter- kuchens 	* Pumpbarkeit * Transportfähigkeit des Bodens	 * Separierung * Unempfindlichkeit gegenüber Verunrei- nigungen (Fett, Öl, org. Stoffen etc.) * Wirtschaftlichkeit 	

Bild 77: Anforderungen an die Bentonit- oder Tonsuspension

In den folgenden Kapiteln wird ausschließlich auf die erforderlichen Eigenschaften der Suspensionen als Stützmedium eingegangen. Diese Eigenschaften werden durch die physikalischen Kennwerte der Suspension, ihr Eindringverhalten in den Boden sowie die Luftdurchlässigkeit des Filterkuchens charakterisiert. Sie müssen abhängig von den örtlichen Verhältnissen einstellbar sein und sollten sich während des Einsatzes nur verändern, wenn dies bewußt geplant ist.

Die physikalischen Eigenschaften einer Suspension werden durch ihre Kennwerte Dichte, Scherfestigkeit, Fließverhalten und Stabilität beschrieben. Die Dichte ergibt sich aus dem Wasser- und Bentonit- oder Tonanteil und dem nicht abseparierten Boden. Die Dichte sollte nach oben begrenzt werden, um die Suspension wirtschaftlich pumpen zu können. Die Scherfestigkeit und das Fließverhalten werden aus dem rheologischen Verhalten abgeleitet, das durch die Viskosität ausgedrückt wird. Viskosität ist der Widerstand einer Flüssigkeit gegen eine aufgezwungene Verschiebung ihrer Volumenelemente. Für eine ideale Flüssigkeit gilt nach Newton Gl. (12) der Zusammenhang zwischen Schubspannung τ , Viskosität η und Geschwindigkeitsgefälle D_C (Bild 78):

$$\frac{x}{dx}$$

$$\frac{dx}{dx}$$

$$\frac{dx}$$

$$\tau = \eta \cdot D_{C} \quad (kN/m^2) \tag{12}$$

Bild 78: Fließverhalten einer idealen Flüssigkeit

Bei realen Flüssigkeiten wie z.B. Tonsuspensionen muß eine Anfangsschubspannung überwunden werden, um sie in Bewegung zu versetzen. Mit zunehmendem Geschwindigkeitsgefälle verringert sich bei diesen Flüssigkeiten die Viskosität (Bild 79). Diese Anfangsschubspannung wird Fließgrenze $\tau_{\rm F}$ genannt, wenn sie mit dem Pendelgerät, oder als Gelstärke $\tau_{\rm G}$ bezeichnet, wenn sie mit dem FANN-Viskosimeter gemessen wird. Es ist zwischen der Anfangsgelstärke $\tau_{\rm G}^{\rm II}$ (Ruhezeit der Suspension 10 Sekunden) und der Gelstärke $\tau_{\rm C}^{\rm I}$ (Ruhezeit der Suspension 10 Minuten) zu unterscheiden.

GESCHWINDIGKEITSGEFÄLLE DG

Reale Flüssigkeiten verhalten sich häufig thixotrop. Die Viskosität nimmt bei mechanischer Beanspruchung ab und steigt nach Beendigung der Beanspruchung während einer Ruhephase auf den Ausgangswert wieder an. Die Hysteresisfläche zwischen den beiden Kurvenästen der Fließkurve ist ein Maß für die Thixotrophie (Bild 80).

Bild 80: Thixotrophie einer realen Flüssigkeit

Die Scherfestigkeit, ausgedrückt durch die Fließgrenze τ_F und die Gelstärke $\tau_G^{"}$ bzw. $\tau_G^{'}$, sowie das Fließverhalten, ausgedrückt durch die Viskosität n oder die Auslaufzeit t_M aus dem Marsh-Trichter, werden mit verschiedenen Geräten gemessen. Bei der Auslaufzeit aus dem Marsh-Trichter gehen die Dichte, Fließgrenze und Viskosität der Suspension ein.

Suspensionen dürfen sich im Laufe der Zeit nur wenig entmischen, um ihre Stützwirkung zu behalten. Diese Eigenschaft wird Stabilität genannt und kann durch den Filterpreßversuch überprüft werden. Bei diesem Versuch wird die Suspension an einer Grenzfläche unter Druck in ihre feste und flüssige Phase zerlegt.

Die Beziehungen zwischen den physikalischen Eigenschaften einer Suspension, den entsprechenden Kennwerten sowie den erforderlichen Meßgeräten sind im Bild 81 dargestellt. Die Durchführung der Versuche wird von Simons/Ruppert (1982) eingehend beschrieben.

- 90 -

Eigenschaft	Kennwert	Meßgerät	Norm
Dichte	Dichte ρ_F	Spülungswaage Hydrometer	1 -
Scherfestigkeit	Fließgrenze τ _F Gelstärke τ _G " τ _G '	Pendelgerät Kugelharfe Rotationsviskosimeter (z.B. FANN-Gerät) Shearometer	3 2 1 1
Fließverhalten	Viskosität ŋ Auslaufzeit t _M	Rotationsviskosimeter (z.B. FANN-Gerät) Marsh-Trichter	1
Stabilität	Sedimentation Filtratwasser f	Absetzmaß im Zylinder Filterpreß∨ersuch	- 3

Normen: 1 = API RP 13B (1978); 2 = DIN 4126 (1984); 3 = DIN 4127 (1986)

Bild 81: Meßgeräte zur Ermittlung der physikalischen Eigenschaften von Suspensionen

6.2 Eigene Laborversuche

In der Praxis kann die Auswahl geeigneter Stützflüssigkeiten für einen Schildvortrieb mit flüssigkeitsgestützter Ortsbrust durch die Ergebnisse von Laborversuchen erleichtert werden, wenn die Laborversuche unter ähnlichen Randbedingungen wie bei einem Tunnelvortrieb durchgeführt wurden. Im Labor können unter kontrollierten, gleichbleibenden Randbedingungen der Einfluß der verschiedenen Parameter, wie z.B. die Bodenart, die Zusammensetzung der Suspension und der Druck, unter dem die Suspension in den Boden eindringt, und die sich hieraus abzuleitenden Beziehungen untersucht werden.

6.2.1 Versuchsstand

Die Suspension zur Stützung der Ortsbrust muß so zusammengesetzt sein, daß sie in den anstehenden Boden nur wenig eindringt und gleichzeitig rasch den Boden mit einem möglichst luftundurchlässigen Filterkuchen versiegelt. Ziel der durchgeführten Laborversuche war die Untersuchung des Eindringverhaltens von Bentonit- und Tonsuspensionen sowie die Messung des Luftdurchgangs des mit einem Filterkuchen versiegelten Bodens. Hierzu wurden mit einem Modellversuchsstand die Verhältnisse an der Ortsbrust simuliert. Bei den Versuchen wurden die Zusammensetzung der Suspension, der Differenzdruck und die Bodenarten verändert. Als Differenzdruck Δp wird bei den Laborversuchen der Druck bezeichnet, unter dem die Suspension in den Boden eindringt bzw. der Luftüberdruck, der bei der Messung des Luftdurchgangs durch den Filterkuchen eingestellt wird.

Der Modellversuchsstand ist im Bild 82 dargestellt und besteht im wesentlichen aus folgenden Teilen:

- 1. Zylinder
- 2. Druckluftversorgung
- 3. Meßsystem

6.2.1.1 Zylinder

Die Zylinder bestehen aus Plexiglas mit einer Wandstärke von 5 mm und haben einen Innendurchmesser von 19 cm und eine Höhe von 60 cm. Sie sind durch ein Schlauchsystem miteinander verbunden. Der Sand wurde mit konstanter Verdichtungsarbeit lagenweise im Zylinder in einer Höhe von etwa 35 cm eingebaut. Die Einbaudichte wurde über das gemessene, eingebaute Sandvolumen und die gewogene Einbaumasse kontrolliert. Es wurden mitteldichte bis dichte, selten lockere Lagerungsdichten erreicht. Bei den Vorversuchen zeigten sich Umläufigkeiten zwischen der glatten Wandung des Zylinders und dem eingebauten Boden. Diese Randeinflüsse wurden durch aufgeklebten Sand an der Zylinderwandung vermieden.

Bild 82: Aufbau des Modellversuchsstandes

- 93 -

6.2.1.2 Druckluftversorgung

Alle Zylinder waren an eine zentrale Druckluftversorgung angeschlossen. Mit Manometern konnte der Druck mit einer Genauigkeit von 0,002 bar gemessen werden. Die Manometer hatten einen Meßbereich von 0 - 2,5 bar.

6.2.1.3 Meßsystem

An den Zylindern war außen eine Millimetereinteilung angebracht. Während des Eindringvorganges wurden die Änderungen der Flüssigkeitsspiegel in festgelegten Zeitintervallen abgelesen. Die Eindringtiefe der Suspension wurde über den Porenanteil des Bodens berechnet und zur Kontrolle direkt an der Wandung des Zylinders abgelesen. Der aufgebrachte Differenzdruck wurde während des Eindringvorganges und der Messung des Luftdurchgangs mit den Manometern überwacht und konstant gehalten. Der Luftdurchgang wurde mit einem Durchflußmesser der Fa. Rota GmbH & Co. KG, Wehr bestimmt, der mit zwei verschiedenen Meßrohren einen Meßbereich von 25 bis 2400 l/h abdeckt.

6.2.2 Versuchsdurchführung

Die Zylinder sind untereinander durch Druckluftschläuche verbunden. In einem Zylinder wird vor jedem Versuch der zu untersuchende Boden unter weitgehend konstanten Randbedingungen eingebaut und mit Wasser gesättigt, Das Auslaufventil im Boden des Zylinders ist geschlossen. Bei dem horizontalen Modell wird die Suspension in einem separaten Zylinder gefüllt und fließt beim Aufbringen des Differenzdruckes in den Behälter mit dem eingebauten Boden. Beim vertikalen Modell wird die Suspension direkt in den Zylinder mit dem Boden eingefüllt. Das Auslaufventil des Zylinders mit dem Boden ist jeweils mit einem weiteren Zylinder verbunden, der mit Wasser gefüllt ist. Die Höhe des Wasserspiegels entspricht beim vertikalen Modell der Oberkante des Bodens und liegt beim horizontalen Modell etwa 10 cm über der Oberkante des eingebauten Bodens. Die Auslauföffnungen aller Zylinder sind durch Ventile geschlossen. Im Inneren der einzelnen Zylinder wird ein zuvor berechneter Luftüberdruck erzeugt, so daß in allen Zylindern in Höhe der Bodenoberkante bzw. beim horizontalen Modell in Höhe der Achse des eingebauten Bodens ein Druck von 0,2 bar herrscht.

Dieser Druck dient dazu, während der Versuchsdauer die unvermeidbaren Regulierungen des Luftdruckes zu erleichtern. Wenn anschließend auf die Oberfläche der Suspension ein erhöhter Luftdruck aufgebracht wird, so daß in Höhe der Bodenoberfläche der vorab gewählte Differenzdruck Δp wirkt, und die Auslaufventile geöffnet werden, beginnt die Suspension in den Boden einzudringen. Die Eindringung der Suspension wird bei konstantem Differenzdruck 60 min beobachtet.

Nach Beendigung des Eindringversuches wird die Suspension abgepumpt und der Luftdurchgang durch den mit dem Filterkuchen versiegelten Boden während einer Versuchsdauer von 120 min untersucht. Die Größe des Luftdruckes auf den Filterkuchen entspricht dem Differenzdruck beim Eindringversuch.

6.2.3 Versuchsböden

Die Laborversuche wurden mit vier getrockneten Quarzsanden und -kiesen durchgeführt, deren Körnungslinien im Bild 83 dargestellt sind. Wichtige bodenmechanische Kennwerte enthält Bild 84.

Bild 83: Körnungslinien der Versuchsböden

		Boden				
Kennwert		1	2	3	4	
Bodenart (DIN	4022)	fS,ms	mS,fs',gs'	gS,ms	fG,gs'	
d ₁₀	(mm)	0,08	0,18	0,48	2,05	
$U=d_{60}/d_{10}$	(-)	1,95	2,15	1,59	1,44	
$\rho_{\rm dmin}/\rho_{\rm dmax}$	(g/cm ³)	1,36/1,64	1,39/1,61	1,38/1,60	1,43/1,64	
n _{min} /n _{max}	(-)	0,38/0,49	0,39/0,48	0,40/0,48	0,38/0,46	
e _{min} /e _{max}	(-)	0,61/0,95	0,65/0,91	0,65/0,92	0,61/0,86	
φ' (Triaxvers.)	(°)	40	43	42,5	40,5	
k _w (gemittelt)	(m/s)	5,8.10 ⁻⁵	5,2•10 ⁻⁴	1,9•10 ⁻³	1,0.10 ⁻²	

Bild	84:	Wichtige	bodenmechanische	Kennwerte	der	Versuchsböden	

7. EIGENE VERSUCHE MIT VERSCHIEDENEN SUSPENSIONEN

7.1 Bentonit

Bentonit ist ein Ton, den man erstmals im Jahr 1888 im US-Staat Wyoming in der Nähe des Forts Benton fand, und der daher seinen Namen erhielt. Der Hauptbestandteil dieses Tones ist das Tonmineral Montmorillonit, ein Aluminiumhydrosilikat. Tone, die hauptsächlich aus Montmorillonit bestehen, werden vereinfachend als Bentonite bezeichnet. Der mineralogische Aufbau von Bentonit ist in zahlreichen Arbeiten, wie z.B. von Neumann (1964) und Grimm (1968), umfassend dargestellt. Für den Einsatz als Stützflüssigkeit sind das bodenmechanische Verhalten, die Plastizität und das Quellvermögen von Bentonit maßgebend. Diese Eigenschaften werden von dem Schichtaufbau, der Blättchenform und der großen inneren Oberfläche von bis zu 800 m²/g (Grundbautaschenbuch, Teil 1, 1980) der Tonteilchen bestimmt.

Für die Laborversuche wurde Tixoton, ein Bentonit der Fa. Südchemie AG, München, verwendet. Tixoton ist ein natürlich vorkommender Ca-Bentonit, der durch physikalische und chemische Verfahren in einen Na-Bentonit umgewandelt wird (Aktivbentonit), um ihm ein höheres Quellvermögen zu verleihen. Die Ca-Ionen in der Kristallstruktur des Montmorillonits werden hierbei durch Na-Ionen ersetzt.

Die Quelleigenschaft des Bentonits wurde durch seine Wasseraufnahme mit dem Gerät von Enslin/Neff untersucht. Die plastischen Eigenschaften, ausgedrückt durch die Konsistenzgrenzen nach Atterberg, wurden im Fließgrenzenapparat von Casagrande und durch Ausrollen bestimmt. Wichtige Ergebnisse sind im Bild 85 zusammengefaßt.

Eigenschaft	
Wassergehalt w	0,09
Fließgrenze w	3,8
Ausrollgrenze w _P	0,4
Plastizitätszahl I _P = w _L - w _P	3,4
Wasseraufnahme w _{max} (Enslin/Neff)	530 %

Bild 85: Bodenmechanische Eigenschaften von Tixoton

Bentonit besteht meist aus mehreren Tonmineralien sowie Quarz und Feldspat. Die ausgeprägt plastischen Eigenschaften und das hohe Quellvermögen werden hauptsächlich durch das Tonmineral Montmorillonit bestimmt. Die einzelnen Tonmineralanteile in dem verwendeten Bentonit wurden durch eine Röntgendiffraktometer-Untersuchung der U Kiel bestimmt. Danach enthält der Bentonit 85 % Montmorillonit, 13,5 % Illit, 1 % Kaolinit und 0,5 % Chlorit. Seine Körnung besteht zu über 80 % aus Tonfraktion.

7.2 Zusatzmittel

Böden mit hoher Durchlässigkeit sind schwierig zu stützen, weil die Suspension weit in den Boden eindringt und sich an der Ortsbrust nur schwer ein Filterkuchen bildet. Es war daher zu untersuchen, ob eine Suspension durch geeignete Zusatzmittel so verändert werden kann, daß sich ein Filterkuchen bildet und der erforderliche Stützdruck aufgebracht werden kann. Nach der Durchführung mehrerer Vorversuche wurden als Zusatzmittel CMC (Carboxymethylcellulose), Sand, Glimmer und Zement ausgewählt.

CMC

CMC ist die Abkürzung für Carboxymethylcellulose, einem halbsynthetischen, wasserlöslichen Polymer, welches aus natürlichen Stoffen (Cellulose) gewonnen wird. CMC ist in unterschiedlichen Viskositäten erhältlich. Die Zugabe von CMC verringert die Filtratwasserabgabe und erhöht die Fließeigenschaften einer Bentonitsuspension (Simons/Ruppert, 1982). Es wirkt als Schutzkolloid indem es die einzelnen Tonteilchen umhüllt und die Koagulation verhindert (Diener, 1961). Für die Laborversuche wurde das hochviskose CMC Antisol HS der Firma Wolff Walsrode AG, Walsrode eingesetzt.

Sand

Die Auswahl des Sandes (Boden 1, Bild 83) ergab sich aus den Vorversuchen sowie bodenmechanischen und baubetrieblichen Überlegungen. Es war zu vermuten, daß die Poren eines grob durchlässigen Bodens durch einen entsprechend abgestuften Sand verschlossen werden können. Die Separieranlage bei einem Tunnelvortrieb könnte in diesem Fall so eingestellt werden, daß bestimmte Sandfraktionen in der Suspension verbleiben oder ihr zugegeben werden, bevor sie zur Ortsbrust zurückgepumpt wird. Das Zusatzmittel Sand ist somit nahezu kostenlos erhältlich.

Glimmerschuppen

Um die Poren eines Bodens abzudichten, wurden drei verschiedene plättchenförmige Glimmersorten der Fa. Possehl Erzkontor GmbH, Lübeck verwendet. Die Dicke der Plättchen liegt je nach Körnung zwischen 0,0005 – 0,01 mm. Die Körnungslinien der drei Glimmersorten sind im Bild 86 dargestellt.

Bild 86: Körnungslinien der verwendeten Glimmerschuppen

Zement

Bei Böden mit sehr weiten Poren baut sich kein Filterkuchen auf. Die Suspension fließt im Boden nahezu drucklos ab. In diesem Fall ist ein Vortrieb mit einem Schild mit flüssigkeitsgestützter Ortsbrust nur möglich, wenn die Poren des Bodens vor der Ortsbrust verfüllt und der Boden verfestigt wird. Hierzu könnte eine geeignete Stützflüssigkeit auf Zementbasis mit einem erhöhten Stützdruck in den Boden vor der Ortsbrust injiziert werden. Die Festigkeit des injizierten Bodens ist so zu wählen, daß er mit dem Abbaugerät noch lösbar ist. Aufgrund der Vorversuche zeigte sich, daß es einen engen optimalen Bereich gibt, bei dem geringe Zementbeigaben die physikalischen Eigenschaften der Suspension extrem verbessern. Die entsprechenden Laborversuche wurden mit einem Zement der Klasse HOZ 35L durchgeführt.

7.3 Physikalische Kennwerte von Bentonitsuspensionen

7.3.1 Mischen der Suspension, Quellzeit, Meßgeräte

Die Suspensionen wurden mit 30 – 70 g Bentonit je 1000 cm³ Wasser angemischt, also in Konzentrationen von 3 – 7 %. Die Temperatur des Wassers, Braunschweiger Leitungswasser mit etwa 3 °dH, betrug etwa 18 – 20°C. Gemischt wurden die Suspensionen 10 Minuten bei 2890 U/min (Bild 87). Die anschließende Quellzeit bis zur Versuchsdurchführung betrug mehr als 12 Stunden. Die Zusatzmittel wurden am Ende der Quellzeit mit der Suspension vermischt. Die Massen der Zusatzmittel beziehen sich jeweils auf 1000 cm³ Bentonitsuspension.

Bild 87: Mischen der Suspension

7.3.2 Bentonitsuspensionen ohne Zusatzmittel

Die physikalischen Kennwerte der verwendeten Suspensionen sind in Abhängigkeit der Bentonitkonzentration im Bild 88 dargestellt. Mit steigender Bentonitkonzentration nehmen die Scherfestigkeit, gemessen als Fließgrenze und Gelstärke, sowie die Fließeigenschaften, gemessen als Auslaufzeit aus dem Marsh-Trichter, zu. Der Zusammenhang ist überproportional. Suspensionen mit einer Bentonitkonzentration von mehr als 60 g/l sind aufgrund der hohen Scherfestigkeit mit dem Marsh-Trichter schwierig zu messen, weil die Auslaufdüse des Trichters für diese Suspensionen zu eng ist.

Bild 88: Physikalische Kennwerte der untersuchten Bentonitsuspensionen

7.3.3 Bentonitsuspensionen mit Zusatzmitteln

Bei den Versuchen mit Zusatzmitteln betrug die Konzentration der Bentonitsuspension jeweils 50 g/l. Die Ergebnisse der physikalischen Kennwerte sind in den Bildern 89 – 91 zusammengestellt. Über die stabilisierende Wirkung des Schutzkolloides CMC ist wenig bekannt. Diener (1961) vermutet, daß die einzelnen Tonteilchen vollständig mit einem Film aus CMC umhüllt werden, der die Koagulation der Tonteilchen verhindert. Dies führt zu höherer Scherfestigkeit sowie verbesserter Fließfähigkeit. Die Zugabe von CMC entspricht damit einer Erhöhung der Bentonitkonzentration (Bild 89).

Sandzugaben(Boden 1) reagieren im Gegensatz zum CMC nicht mit der Bentonitsuspension. Das Einzelkorn des Sandes ist wesentlich größer als das der Tonteilchen. Sand wirkt deshalb ausschließlich mechanisch. Erkennbar ist dies an dem Anstieg der Auslaufzeit t_M aus dem Marsh-Trichter und an der Zunahme der Fließgrenze τ_F (Bild 90). Die erhöhte Filtratwasserabgabe f beim Filterpreßversuch ist auf die größere Durchlässigkeit des dünnen Filterkuchens infolge eingelagerter Sandkörner zurückzuführen.

Die Glimmerschuppen haben wie Sand nur eine mechanische Wirkung in der Suspension. Der Bentonitsuspension wurden Glimmerschuppen in einer Konzentration von 10 und 20 g/l zugegeben. Die Fließgrenze τ_F nimmt um 15 – 30 % zu. Die Filtratwasserabgabe f bleibt nahezu unverändert. Die Auslaufzeit t_M aus dem Marsh-Trichter ist nicht meßbar, weil die Glimmerschuppen die Auslaufdüse verstopfen.

Um den Einfluß von Zement auf die physikalischen Kennwerte zu untersuchen, wurden der Bentonitsuspension Zementanteile von 1 – 150 g/l zugefügt. Die physikalischen Kennwerte wurden direkt nach der Zugabe des Zementes gemessen (Bild 91). Nach einer Stunde Standzeit verändern sich die Werte leicht ungünstig. Die Eigenschaften der Suspensionen verschlechtern sich bei der gewählten Kombination von Bentonit und Zement deutlich ab einem Zementanteil von 10 g/l. Interessant ist der Einfluß geringer Zementanteile. Eine deutliche Verbesserung der Suspensionseigenschaften mit Ausnahme der Filtratwasserabgabe ergab sich bei einem Zementanteil von 5 g/l. Das ausgeprägte Maximum in diesem Bereich deutet auf chemische Reaktionen hin, bei denen Bentonit und Zement in einem optimalen Mischungsverhältnis zueinander stehen.

Bild 89: Physikalische Kennwerte der Bentonitsuspensionen (50 g/l) mit CMC

- 104 -

Bild 90: Physikalische Kennwerte der Bentonitsuspensionen (50 g/l) mit Sand

Bild 91: Physikalische Kennwerte der Bentonitsuspensionen (50 g/l) mit Zement

7.3.4 Zusammenhang der physikalischen Kennwerte

Aus der großen Anzahl möglicher Zusammenhänge zwischen den einzelnen physikalischen Kennwerten werden nur einige wesentliche dargestellt. Die Auslaufzeit aus dem Marsh-Trichter ist ein baustellengerechter Versuch und dient deshalb als Basis. Mit diesem Versuch wird das komplexe Fließverhalten einer Suspension beurteilt, in das die Dichte, Fließgrenze und Viskosität eingehen. Zwischen der Auslaufzeit t_M aus dem Marsh-Trichter, der Fließgrenze τ_F und der Filtratwasserabgabe f besteht ein enger Zusammenhang (Bild 92). Deutlich wird die Steigung der Viskosität durch die Zugabe von CMC. Bei gleicher Fließgrenze erhöht das CMC die Auslaufzeit aus dem Marsh-Trichter, Sand dagegen verringert die Viskosität.

7.4 Eindringverhalten von Bentonitsuspensionen

Das Eindringen einer Suspension in den Boden kann an einem idealisierten Porenkanal verdeutlicht werden (Bild 93). Die Eindringtiefe I_E ergibt sich aus dem Gleichgewicht zwischen dem Druck, mit dem die Suspension in den Porenkanal eingepreßt wird, bei den Laborversuchen ist dies der Differenzdruck Δp , und den Schubspannungen (Fließgrenze τ_F) zwischen der Suspension und Porenkanal:

 $2 \cdot \pi \cdot r \cdot \tau_{\mathsf{F}} \cdot \mathsf{I}_{\mathsf{F}} = \pi \cdot r^2 \cdot \Delta p.$

Hieraus berechnet sich die Eindringtiefe I_F zu:

$$I_{E} = \frac{\Delta p \cdot r}{2 \cdot \tau_{F}} \quad (cm) \tag{13}$$

Weitere in GI. (13) unberücksichtigte Parameter, die das Eindringverhalten einer Bentonitsuspension ohne Zusatzmittel beeinflussen, werden von Müller-Kirchenbauer (1978) und Simons/Ruppert (1982) beschrieben.

<u>Bild 92:</u> Zusammenhang zwischen der Auslaufzeit t_M aus dem Marsh-Trichter, der Fließgrenze τ_F sowie der Filtratwasserabgabe f

- 108 -

PORENKANAL

MODELL

Bild 93: Eindringung in einen idealisierten Porenkanal

7.4.1 Bentonitsuspensionen ohne Zusatzmittel

7.4.1.1 Vergleich der Versuche mit dem horizontalen und vertikalen Modell

Bei einem Schildvortrieb dringt die Suspension im wesentlichen horizontal in den Boden ein. Um diese Verhältnisse im Labor zu simulieren, wurde anfangs der mit Boden gefüllte Zylinder während des Eindringversuches liegend angeordnet (horizontales Modell). Die Durchführung der Versuche erwies sich als schwierig. Häufig führten bereits geringe Erschütterungen dazu, daß die "Ortsbrust" instabil wurde. Der Grund hierfür sind die eng gestuften, wassergesättigten Versuchsböden, die auf äußere Erschütterungen besonders empfindlich reagieren. Zahlreiche Versuche mußten wiederholt werden. Eine deutliche Verbesserung ergab die vertikale Anordnung des mit Boden gefüllten Zylinders (Bild 82). Kontrollversuche mit dem horizontalen und vertikalen Modell ergaben bei gleichen Randbedingungen und unter Beachtung der Druckverhältnisse vergleichbare Ergebnisse.

7.4.1.2 Zeitlicher Verlauf der Eindringung

Der zeitliche Verlauf der Eindringung ist für den Schildvortrieb wichtig. Der Filterkuchen an der Ortsbrust wird bei jeder Umdrehung des Schneidrades von den versetzt angeordneten Zähnen zerstört und muß anschließend möglichst rasch wiederaufgebaut werden, weil erst am Ende des Eindringvorganges der volle Stützdruck auf das Korngerüst des Bodens übertragen wird. Die Anzahl der Umdrehungen des Schneidrades in einer Minute beträgt bei kleinen Schilddurchmessern etwa 2 U/min und bei großen etwa 0,5 U/min.

Während der Vortriebsarbeiten treten Stillstände beim Einbau eines neuen Tübbingringes und bei Wartungsarbeiten an der Maschine sowie an Wochenenden auf. In diesen Zeiten ist die Abbaukammer vollständig mit Suspension gefüllt, so daß hierfür das Eindringverhalten über einen längeren Zeitraum wichtig ist. Aus diesen Gründen wurde im Versuchsstand das Eindringverhalten über einen Zeitraum von 60 min beobachtet. Ein typischer zeitlicher Verlauf der Eindringung ist im Bild 94 dargestellt.

Bild 94: Typischer zeitlicher Verlauf eines Eindringversuches

Die zeitlichen Verläufe aller Eindringversuche mit unterschiedlichen Bentonitkonzentrationen, Differenzdrücken und Böden wurden über die bezogene Eindringtiefe l_{E}^{*} miteinander verglichen (Bild 95). Die Auswertung ergibt eine Bandbreite, deren obere und untere Grenze näherungsweise durch Gl. (14) und (15) beschrieben werden können, mit l_{E}^{*} als bezogene Eindringtiefe (%) und t als Zeit (min):

obere Grenze
$$I_{E}^{*} = \frac{100 \cdot t}{1 + t}$$
 (%) (14)

Aus dem zeitlichen Verlauf der Eindringung wurde exemplarisch für drei Versuche die Eindringgeschwindigkeit der Suspension in den Boden dargestellt (Bild 96). Während die Suspension in den Boden eindringt, sind zwei Phasen zu unterscheiden. Phase 1 kennzeichnet den Beginn des Versuches. Die Suspension dringt rasch unter dem Differenzdruck in den wassergesättigten Boden ein, während sich gleichzeitig der Filterkuchen bildet. Mit zunehmendem Aufbau des Filterkuchens nimmt die Eindringgeschwindigkeit ab. Nach etwa 1-2 min ist der Filterkuchen fast vollständig aufgebaut. In der Phase 2 ist die Eindringgeschwindigkeit klein und nähert sich asymptotisch einem nahezu konstanten Wert. Dieser Wert ergibt sich aus der Art der Versuchsdurchführung, bei der das aus den Poren des Bodens verdrängte Wasser gemessen wird (s. Kap. 7.4.1.4). Nachdem der Filterkuchen vollständig aufgebaut ist, wird weitere Suspension durch den Differenz-

druck an dem Filterkuchen abgefiltert. Das dabei entstehende Filtratwasser durchströmt den Filterkuchen und den Boden und wird als zeitlich veränderliche verdrängte Wassermenge gemessen. Bei der Berechnung der Eindringtiefe aus der verdrängten Wassermenge ergibt sich hieraus rechnerisch eine Eindringtiefe, die jedoch auf den Einfluß des Filtratwassers zurückzuführen ist. Diese rechnerische Eindringtiefe ist klein und wird bei der Auswertung nicht weiter berücksichtigt.

Bild 96: Zeitlicher Verlauf der Eindringgeschwindigkeit v_F

Die größte Eindringgeschwindigkeit tritt zu Beginn des Versuches auf. Sie wird durch den Differenzdruck, den d_{10} -Wert des Bodens und die physikalischen Eigenschaften der Suspension beeinflußt (Bild 97). Der d_{10} -Wert gibt die Korngröße bei einem Siebdurchgang von 10 % an und ist Bild 83 zu entnehmen.

Bild 97: Mittlere Eindringgeschwindigkeit v_F in der ersten Minute

Für die Praxis können hieraus drei wichtige Erkenntnisse abgeleitet werden:

- Bei einem Boden, dessen Poren noch nicht mit Suspension gefüllt sind, beträgt die Eindringtiefe und damit auch der auf das Korngerüst des Bodens übertragene Stützdruck nach 1 min bereits 40 – 70 %, nach 10 min 75 – 90 % des 60 min-Wertes.
- Nach etwa 1 2 min ist der Filterkuchen fast vollständig aufgebaut, erkennbar an der zu diesem Zeitpunkt sehr kleinen Eindringgeschwindigkeit.
- 3. Die detaillierte Auswertung der Versuche, die hier im einzelnen nicht dargestellt ist, ergibt, daß der zeitliche Verlauf der Eindringung von der Konzentration der Suspension abhängt. Suspensionen mit höherer Bentonitkonzentration bauen den Filterkuchen schneller auf und erreichen früher ihren Endwert der Eindringtiefe. Ein Einfluß der Bodenart und des Differenzdruckes konnte mit den Versuchen nicht deutlich nachgewiesen werden.

7.4.1.3 Filterkuchen

Im Filterpreßversuch (DIN 4127, 1986) wird die Bildung eines Filterkuchens unter einem Filtrationsdruck von 7 ± 0,35 bar innerhalb von 7,5 min an einem feinen Filterpapier untersucht. Diese Versuchsbedingungen unterscheiden sich von den Filtrationsbedingungen an der Ortsbrust eines Schildvortriebes. Beim Schildvortrieb ist der Filtrationsdruck, der nur einen Teil des Stützdruckes ausmacht, kleiner. Außerdem filtert die Suspension nicht an einem Filterpapier, sondern an der Oberfläche des mehr oder weniger durchlässigen Bodens ab.

Der Filterkuchen an der Ortsbrust kann in einen äußeren und inneren Filterkuchen sowie eine Infiltrationszone unterteilt werden. Der innere Filterkuchen und die Infiltrationszone bilden zusammen die Eindringzone (Bild 98). In der Infiltrationszone wird das Porenwasser des Bodens durch das Filtratwasser der Suspension verdrängt.

SCHILDVORTRIEB

FILTERPRESSVERSUCH

Bild 98: Schematischer Aufbau eines Filterkuchens

Die Laborversuche zeigten, daß sich bei Böden mit geringer Durchlässigkeit, wie z.B. Boden 2, ein nur wenige Millimeter dicker äußerer Filterkuchen bildet. Die Dicke des äußeren Filterkuchens nimmt bei höherer Durchlässigkeit des Bodens, steigendem Differenzdruck sowie längerer Versuchsdauer zu.

7.4.1.4 Eindringtiefe

Für die Stützung der Ortsbrust ist die rasche Bildung des Filterkuchens sowie eine geringe Eindringtiefe wichtig. Suspensionen, die weit in den Boden eindringen, stützen die Korngruppen nahe der Ortsbrust nur unvollständig. Die Eindringtiefe sollte weiterhin aus wirtschaftlichen Gründen klein gehalten werden, um den Bentonitverbrauch zu begrenzen.

Die Eindringtiefe von Bentonitsuspensionen ohne Zusatzmittel wurde von Müller-Kirchenbauer (1978) und Simons/Ruppert (1982) für die Herstellung von Schlitzwänden untersucht. Diese Versuche wurden mit Zylindern durchgeführt, bei denen die Suspensionen nur unter ihrem Eigengewicht und Druckhöhen von wenigen Dezimetern eindrangen. Diese Versuchsanordnung ist für den Bau von Schlitzwänden mit einem Grundwasserstand nahe der Geländeoberfläche berechtigt. Bei Schilden mit flüssigkeitsgestützter Ortsbrust dringt die Suspension jedoch unter einem höheren Druck in den Boden ein. Die Modellversuche hatten daher auch das Eindringverhalten bei höheren Differenzdrücken zu klären.

Die Eindringtiefe I_E wurde indirekt über die aus den Poren des Bodens verdrängte Wassermenge V_a und den Porenanteil n des Bodens mit Gl. (16) ermittelt und entspricht damit der im Bild 98 bezeichneten Eindringzone. Zur Kontrolle wurde die Eindringtiefe auch direkt an der durchsichtigen Wandung des Zylinders abgelesen und mit den berechneten Werten verglichen.

$$I_{E} = \frac{V_{a}}{A \cdot n} (cm)$$
(16)

Insgesamt wurde in 76 Versuchen das Eindringverhalten von Bentonitsuspensionen ohne Zusatzmittel im Versuchsstand untersucht. Die Ergebnisse sind im Bild 99 angegeben.

Boden	1	2	3	4	
Anzahl der Versuche	1	27	26	9	
Bentonitkonzentration (g/I)	40	30-70	30-70	40-70	
Differenzdruck ∆p (bar)	0,5	0,1-0,5	0,1-0,5	0,1-0,3	
Eindringtiefe I _F (cm)	4,4	1,2-15,1	3,6-29,1	7,8-31,3	

Bild 99: Streubreite der Versuchsergebnisse mit Bentonitsuspensionen ohne Zusatzmittel

Das Eindringverhalten einer Suspension in den Boden hängt nicht von einem einzelnen Parameter ab, sondern von den physikalischen Eigenschaften der Suspension, dem Differenzdruck und dem Porenraum des Bodens (DIN 4126, 1984). Für die Böden 2 und 3 wird die Eindringtiefe I_E in Abhängigkeit vom Differenzdruck Δp und der Bentonitkonzentration in den (Bildern 100 und 101 dargestellt.

Bild 100: Abhängigkeit der Eindringtiefe I_E vom Differenzdruck ∆p und der Bentonitkonzentration für Boden 2

Bild 101: Abhängigkeit der Eindringtiefe I_E vom Differenzdruck ∆p und der Bentonitkonzentration für Boden 3

Als maßgebende physikalische Eigenschaft zur Berechnung der Eindringtiefe wird die Scherfestigkeit der Suspension, bei kleinen Poren des Bodens auch das Filtrationsverhalten, von Nash (1974), Hutchinson et al. (1975), Möbius/Günther (1977), Karstedt/Ruppert (1980) und der DIN 4126 (1984) betrachtet. Der Porenraum des Bodens wird bei den Autoren unterschied-lich berücksichtigt. Eine Zusammenstellung der verschiedenen Ansätze geben Simons/Ruppert (1982). Zusammenfassend kann die Eindringtiefe I_E in allgemeiner Form mit GI. (17) berechnet werden.

$$I_{E} \sim \frac{\Delta p \cdot a}{\tau}$$
 (cm) (17)

Eine Korrelationsberechnung mit allen Versuchsergebnissen bestätigt den Aufbau der GI. (17). Der beste Zusammenhang ergibt sich, wenn die Scherfestigkeit durch die Gelstärke τ_{G}' und der Porenraum durch den d₁₀-Wert des Bodens ausgedrückt werden. Die Eindringtiefe I_E ist direkt proportional dem Quotienten aus dem Differenzdruck Δp , dem d₁₀-Wert des Bodens und der Gelstärke τ_{G}' (GI. 18). Der Proportionalitätsfaktor b in GI. (18) erfaßt summarisch weitere Parameter, wie z.B. die Form des Einzelkorn und seine Beschaffenheit der Oberfläche.

$$I_{E} = b \cdot \frac{\Delta p \cdot d_{10}}{\tau_{G'}} \quad (cm)$$
 (18)

Für alle Versuche wurde der Quotient aus dem Differenzdruck Δp , dem d_{10} -Wert des Bodens und der Gelstärke τ_G' berechnet und den entsprechenden, tatsächlich im Versuch gemessenen Eindringtiefen I_E gegenübergestellt (Bild 102). Es ergibt sich ein linearer Zusammenhang, aus dem für alle Versuche der Proportionalitätsfaktor b bestimmt wurde. Die Häufigkeitsverteilung zeigt, daß der Faktor b meist zwischen 5 und 15 schwankt (Bild 102).

Im Vergleich zu Tonsuspensionen, die das Tonmineral Montmorillonit nicht enthalten, ist die Thixotropie eine der herausragenden Eigenschaften einer Bentonitsuspension. Die Differenz aus der Gelstärke τ_{G} ' und der Anfangsgelstärke τ_{G} " ist ein Maß für die Thixotropie. Anheuser (1984b) vermutet aufgrund seiner Untersuchungen nur einen untergeordneten Einfluß der Thixotropie auf das Eindringverhalten einer Bentonitsuspension. Die eigenen Versuche zeigen jedoch besonders bei geringen Differenzdrücken einen deutlichen Einfluß der Thixotrophie (Bild 103).

In der DIN 4126 (1984) wird für den Nachweis suspensionsgestützter Schlitze vorgeschlagen, die Stützkraft auf den abrutschenden Erdkörper unter Berücksichtigung des Druckgefälles f_{sO} zu berechnen.

$$f_{sO} = \frac{\Delta p}{I_E} (kN/m^3)$$
(19)

Weil bei Schilden mit flüssigkeitsgestützter Ortsbrust ebenfalls das Abrutschen eines Erdkörpers verhindert werden muß, könnte das Druckgefälle f_{sO} auch bei der Auswahl geeigneter Stützflüssigkeiten als Kenngröße dienen. Die Auswertung der Versuche zeigt, daß für jeden untersuchten Boden eine Mindestscherfestigkeit τ_{G}^{I} vorhanden sein muß, um ein erforderliches Druckgefälle f_{sO} zu erreichen (Bild 104).

<u>Bild 104:</u> Bestimmung des Druckgefälles f_{sO} für verschiedene Böden und Bentonitsuspensionen

- 120 -
Um vergleichbare Ergebnisse zu erhalten, wurde für jeden Versuch der Boden im Versuchsstand neu eingebaut. Tatsächlich wird bei einem Schildvortrieb mit dem Schneidrad meist nur der äußere und ein Teil des inneren Filterkuchens abgebaut. Die Suspension dringt folglich in einen schon bereichsweise mit Suspension getränkten Boden ein. In diesem Bereich ist die zuvor eingedrungene Suspension fast in Ruhe, d.h. Ihr Geschwindigkeitsgefälle D_C annähernd Null. Bei Bentonitsuspensionen steigt in diesem Fall die Scherfestigkeit an. Das kann an der Differenz zwischen der Anfangsgelstärke τ_{C} " und der Gelstärke τ_{C}^{+} beobachtet werden. Die bereits in den Poren des Bodens vorhandene Bentonitsuspension hat demnach eine höhere Scherfestigkeit als die frisch eindringende Suspension und setzt ihr einen erhöhten Widerstand beim Eindringen in die Porenkanäle entgegen. Es ist deshalb zu vermuten, daß die Suspension bei einem Schildvortrieb weniger tief in den teilweise mit Suspension getränkten Boden eindringt, als dies bei entsprechenden Laborversuchen mit jeweils im Versuchsstand neu eingebautem Boden beobachtet werden kann.

Zur Überprüfung dieser Vermutung wurde ein Kontrollversuch durchgeführt, bei dem in einem ersten Teilversuch die Eindringtiefe der Suspension in den frisch eingebauten Boden ermittelt wurde. Anschließend wurden in drei weiteren Teilversuchen jeweils der äußere und 4 cm des inneren Filterkuchens entfernt, um dann bei unveränderten Randbedingungen erneut die Eindringtiefen zu messen (Bild 105). Es ergaben sich für alle Teilversuche Eindringtiefen zwischen 13,8 und 15,5 cm. Unterschiede zwischen einem ungetränkten Boden (Teilversuch 1) und den Versuchen mit teilweise getränkten Böden (Teilversuch 2 bis 4) sind nicht erkennbar. Dieses Ergebnis bedeutet, daß die im Labor gemessenen Eindringtiefen in etwa auf die Verhältnisse bei einem Schildvortrieb übertragbar sind.

Bild 105: Versuch mit mehrmaliger Eindringung

7.4.2 Bentonitsuspensionen mit Zusatzmitteln

Das Eindringverhalten von Bentonitsuspensionen mit Zusatzmitteln wurde in 52 Versuchen untersucht. Als Zusatzmittel wurden CMC, Sand (Boden 1), Glimmer und Zement eingesetzt. Die in den Versuchen veränderten Parameter und die Eindringtiefen sind im Bild 106 angegeben.

		Zusatzmittel				
		СМС	Sand	Glimmer	Zement	
Anzahl der Versuche		14	29	6	3	
Boden		3,4	3,4	3,4	3	
Bentonitkonz.	(g/l)	50	50 - 60	50	50	
Zusatzmittel	(g/l)	0,5 - 2,0	5 - 500	10 - 20	1 - 100	
Differenzdruck	(bar)	0,1 - 0,5	0,1- 0,5	0,1 - 0,3	0,3	
Eindringtiefe	(cm)	3,9 - >35	2 - 31,7	18,2 - 24,7	5,3 - 23,6	

Bild 106: Übersicht der Eindringversuche mit Zusatzmitteln

7.4.2.1 CMC

Der zeitliche Verlauf der Eindringung von Bentonitsuspensionen mit CMC entspricht dem von Bentonitsuspensionen ohne Zusatzmittel. Die Suspension hat nach 1 min etwa 50 % ihrer Eindringtiefe nach 60 min erreicht.

Die Zugabe des Schutzkolloides CMC verbessert die physikalischen Eigenschaften einer Bentonitsuspension und entspricht in seiner Wirkung einer Erhöhung der Bentonitkonzentration. Die Zugabe von 2 g/l CMC zu einer Suspension mit 50 g/l Bentonit reduziert die Eindringtiefe um 32 - 57 % und entspricht damit etwa einer Erhöhung der Bentonitkonzentration von 50 auf 60 g/l. Die Verminderung der Eindringtiefe ist bei feinkörnigen Böden deutlicher zu erkennen, weil die physikalischen Eigenschaften einer Suspension, speziell ihre Scherfestigkeit, sich besonders bei engen Poren stärker auswirken (Bild 107).

<u>Bild 107:</u> Verringerung der Eindringtiefe I_E durch die Zugabe von CMC oder durch eine Erhöhung der Bentonitkonzentration

Für die beiden Suspensionen unterschiedlicher Zusammensetzung aber gleicher Eindringtiefe (60 g/l Bentonit und 50 g/l Bentonit + 2 g/l CMC) ist die Gelstärke τ_{G}^{-1} der einzige physikalische Kennwert, der für beide Suspensionen etwa gleich groß ist. Die anderen Kennwerte wie die Fließgrenze, die Auslaufzeit aus dem Marsh-Trichter und die Filtratwasserabgabe weichen stark voneinander ab (Bild 108). Dies deutet an, daß die Gelstärke τ_{G}^{-1} das Eindringverhalten am besten beschreibt (s. Kap. 7.4.1.4).

		Bentonit	Bentonit
		60 g/l	50 g/l + 2 g/l CMC
Auslaufzeit t _M	(s)	59	90
Fließgrenze T _F	(N/m^{2})	53	36
Gelstärke τ _G '	(N/m²)	30	26
Filtratwasserabgabe f	(cm ³)	12,5	7

<u>Bild 108:</u> Vergleich wichtiger physikalischer Kennwerte einer Suspension mit 60 g/l Bentonit sowie einer Suspension mit 50 g/l Bentonit und 2 g/l CMC

7.4.2.2 Sand

Es wurde untersucht, ob die Poren eines höher durchlässigen Bodens durch Feststoffe, die der Bentonitsuspension zugefügt werden, so verstopft werden können, daß die Suspension an der Ortsbrust abfiltern und einen Filterkuchen aufbauen kann. Als Feststoff wurde Sand (Boden 1) zugegeben.

Der zeitliche Verlauf der Eindringung wird durch die Zugabe von Sand verändert. Im Vergleich zu einer Bentonitsuspension ohne Zusatzmittel vermindert bei unveränderten Randbedingungen die Zugabe von Sand in den ersten zwei Minuten die Eindringgeschwindigkeit, weil die oberflächennahen Poren mit Sand verstopft werden und sich der Filterkuchen schneller aufbauen kann. Dieser Einfluß nimmt mit steigender Sandkonzentration zu (Bild 109).

<u>Bild 109:</u> Zeitlicher Verlauf der Eindringgeschwindigkeit v_E bei verschiedenen Sandkonzentrationen (Integralzeit 10 s)

Die Wirkung des zugegebenen Sandes hängt von dem Boden ab, in den die Suspension eindringt. Während bei Boden 3 bereits geringe Sandkonzentrationen die Eindringtiefe erheblich reduzieren, sind bei Boden 4 hohe Sandkonzentrationen erforderlich (Bild 110).

Die Ursache dieser unterschiedlichen Wirkung wurde näher untersucht. Am Ende von sechs Eindringversuchen wurde hierzu mit einem Ausstechzylinder aus Kunststoff (Innendurchmesser 10 cm) ein Probekörper aus dem Bereich der Eindringzone entnommen. Die Länge des Probekörpers war jeweils größer als die Eindringtiefe (Bild 111). Der mit dem Ausstechzylinder gewonnene Probekörper wurde in 2 cm dicke Scheiben zerschnitten. Aus dem Volumen und der Masse des Bodens in den einzelnen Scheiben konnte die Dichte und durch Siebung der Anteil des zugegebenen Sandes in den Poren bestimmt werden.

<u>Bild 110:</u> Verringerung der Eindringtiefe I_E durch die Zugabe von Sand (Boden 1)

<u>Bild 111:</u> Zerschneiden des mit einem Ausstechzylinder gewonnenen Probekörpers

- 127 -

Die Wirkung des zugefügten Sandes kann deutlich bei den Probekörpern beobachtet werden. Beim Boden 3 wird der Sand vollständig an der Oberfläche abgefiltert und dringt nur wenige Millimeter in die Poren des Bodens ein. Die Auswertung der Dichtebestimmungen bestätigt dies. Unterhalb des Filterkuchens ist die Dichte über die gesamte Länge der Eindringtiefe nahezu konstant, weil in den Poren kaum Sand eingelagert ist (Bild 112).

<u>Bild 112:</u> Verlauf der Dichte über die Höhe der Probekörper bei Boden 3

Im Gegensatz dazu sind bei Boden 4 die Poren so weit, daß der Sand zusammen mit der Suspension eindringt. Er verklemmt sich an den Engstellen der Porenkanäle und filtert im Bereich der Eindringzone aus (Bild 113).

Bild 113: Bodenkörper aus dem Bereich der Eindringtiefe. Der blau eingefärbte, ausgefilterte Sand lagert sich an die Körner des Bodens 4 an.

Die unterschiedliche Wirkung versandeter Suspensionen bei verschiedenen Bodenarten kann mit dem Filterkriterium erklärt werden. Nach dem Filterkriterium muß die Kornverteilung des Filtermaterials so beschaffen sein, daß von ihm keine Feinanteile in das Korngerüst des abzufilternden Bodens eindringen. Diese geometrische Bedingung wurde z.B. von Terzaghi/Peck (1961) formuliert GI. (20):

$$\frac{\mathsf{D}_{15}}{\mathsf{d}_{85}} \le 4 \tag{20}$$

d₈₅ = Korndurchmesser des abzufilternden Bodens bei 85 % Siebdurchgang (mm) Für den verwendeten Sand (Boden 1) ergibt sich in Verbindung mit Boden 3 ein Verhältnis D_{15}/d_{85} von 2,7 und mit Boden 4 von 10,3. Dies bedeutet, daß der Sand beim Boden 4 in die Poren eindringt, während er beim Boden 3 dagegen an der Oberfläche abfiltert. Die Auswertung des Filterkriteriums bestätigt die Beobachtung bei den Versuchen.

Versandete Suspensionen verringern die Eindringtiefe erheblich. Für die Auswahl des Sandes kann das Filterkriterium von Terzaghi/Peck (1961) (Gl. 20) herangezogen werden. Der Einfluß ist besonders groß, wenn die einzelnen Sandkörner nicht oder nur wenig in den Boden eindringen, wenn also das Filterkriterium erfüllt ist. In diesem Fall genügen kleinste Sandkonzentrationen, einen äußeren Filterkuchen mit geringer Durchlässigkeit aufzubauen, der die Eindringtiefe gegenüber einer Bentonitsuspension ohne Sand stark vermindert. Höhere Sandkonzentrationen sind erforderlich, wenn der Sand das Filterkriterium nicht erfüllt und die einzelnen Sandkörner in die Poren des Bodens eindringen können.

Wenn der zugegebene Sand an der Bodenoberfläche abfiltert (Boden 3), besteht der äußere Filterkuchen deutlich erkennbar aus zwei Schichten, einer Sandschicht und einer Schicht mit abgefilterter Suspension. Dringt jedoch ein Teil des Sandes zusammen mit der Suspension in den Boden ein (Boden 4), ist der äußere Filterkuchen homogener und besteht aus einem Gemisch von Sand und abgefilterter Suspension (Bild 114).

Bild 114: Aufbau des Filterkuchens bei mit Sand verunreinigten Suspensionen (schematisch)

BODEN 3

In der Praxis ist ein Sand, der an der Bodenoberfläche abfiltert und nur wenig in den Boden eindringt, vielleicht weniger geeignet, weil zwischen dem äußeren Filterkuchen und dem Boden eine Sandschicht vorhanden ist, die dazu führen könnte, daß sich der äußere Filterkuchen von der Ortsbrust löst. Dies sollte bei praktischen Anwendungen noch eingehender untersucht werden.

Die in den Versuchen mit versandeten Suspensionen ermittelten Eindringtiefen sind entsprechend Bild 102 ausgewertet worden (Bild 115). Die Zusammenhänge sind in Abhängigkeit von der Fließgrenze τ_F dargestellt, da bei versandeten Suspensionen die Gelstärke τ_G^{-1} mit dem FANN-Viskosimeter nicht gemessen werden kann. Im Vergleich zu den Suspensionen ohne Zusatzmittel streuen die Ergebnisse bei versandeten Suspensionen stärker, weil bei ihnen die Eindringtiefe nicht nur von den physikalischen Eigenschaften, sondern auch von der Abdichtung oder Verstopfung der Poren

- 131 -

BODEN 4

durch den Sand beeinflußt wird. Aus diesem Grund kann für versandete Suspensionen im Bild 115 nur ein grober Bereich angegeben werden.

<u>Bild 115:</u> Zusammenhang zwischen dem Quotienten aus dem Differenzdruck Δp, d₁₀-Wert des Bodens sowie der Fließgrenze τ_F und der Eindringtiefe I_E für Bentonitsuspensionen mit und ohne Sand

7.4.2.3 Glimmer

Als Zugabe sind ebenfalls schuppenförmige Glimmerstückchen denkbar, um die oberflächennahen Poren von höher durchlässigen Böden abzudichten. Die Wirkung der Glimmerschuppen konnte im Versuchsstand gut beobachtet werden. Die Schuppen dringen bei den Böden 3 und 4 nicht in den Boden ein, sondern legen sich plan als dünne Schicht auf dem Boden ab. Die Dicke dieser Schicht aus Glimmerschuppen ist wenige Millimeter dick und hängt von der Konzentration des Glimmers in der Suspension ab. Die Suspension filtert an der Glimmerschicht ab und baut den äußeren Filterkuchen auf, der eine hohe Konzentration an Glimmer enthält (Bild 116). Die im äußeren Filterkuchen eingelagerten Glimmerschuppen machen ihn unempfindlich ge-

genüber mechanischen Beanspruchungen. Am Ende der Versuche kann der Filterkuchen ohne zu reißen in größeren Teilen vom Boden abgehoben werden.

Bild 116: Aufbau des Filterkuchens bei Verwendung einer Suspension mit 50 g/l Bentonit und 10 g/l Glimmer 2 (Boden 4, ∆p=0,1 bar). Auf der linken Bildseite ist der Filterkuchen vom Boden abgehoben worden.

Die zugegebenen Glimmerschuppen verringern in den untersuchten Konzentrationen von 10 und 20 g/l die Eindringtiefe wenig. Ihre Wirkung ist stärker bei Böden mit gröberen Poren (Boden 4) (Bild 117).

<u>Bild 117:</u> Verminderung der Eindringtiefe I_E durch den Zusatz von Glimmerschuppen

7.4.2.4 Zement

Der überraschende Einfluß, daß geringe Zementkonzentrationen in einer Bentonitsuspension die physikalischen Kennwerte deutlich verbessern können (Bild 91), wurde im Hinblick auf das Eindringverhalten überprüft. Es wurden 3 Versuche mit einer Suspension mit 50 g/l Bentonit durchgeführt, der Zementanteile von 1, 5 und 100 g/l zugegeben wurden. Die Auswertung zeigt, daß für die Eindringtiefe der optimale Zementanteil wie bei den physikalischen Kennwerten 5 g/l beträgt (Bild 118).

<u>Bild 118:</u> Verminderung der Eindringtiefe I_E durch den Zusatz von Zement

7.5 Luftdurchlässigkeit des Filterkuchens bei Bentonitsuspensionen

Mit der Anwendung des Druckluftverfahrens im Tunnelbau begannen auch die Untersuchungen über die Luftdurchlässigkeit des Bodens. Renk (1879) legte hierzu erste Ergebnisse seiner Untersuchungen an Münchener Geröllböden vor.

Die Durchströmung eines Bodens mit Luft kann mit dem Gesetz von Darcy nach Gl. (21) berechnet werden, wenn statt des Durchlässigkeitsbeiwertes k_w für Wasser der entsprechende für Luft k_L eingesetzt wird (Schenck zu Schweinsberg/Wagner, 1963).

$$Q_{L} = k_{L} \cdot i_{L} \cdot A \quad (m^{3}/s)$$
 (21)

Die Wasserdurchlässigkeit eines Bodens kann durch einen Standardversuch der Bodenmechanik bestimmt werden. Die Luftdurchlässigkeit ist dagegen schwieriger zu bestimmen. Den Zusammenhang zwischen den Durchlässigkeitsbeiwerten k_w für Wasser und k_L für Luft untersuchte Wagner (1968). Für Temperaturen von 10-20°C ergab sich bei trockenem Boden ein etwa 55 bis 75fach größerer Durchlässigkeitsbeiwert für Luft als für Wasser (GI. (22)). Dieser Wert nimmt bei abnehmendem Korndurchmesser des Bodens zu.

$$k_1 = 55 \text{ bis } 75 \cdot k_w \text{ (m/s)}$$
 (22)

Im Versuchsstand wurden der Durchlässigkeitsbeiwert für Wasser k_w und für den trockenen Zustand der Durchlässigkeitsbeiwert für Luft k_{\perp} für die vier verwendeten Böden ermittelt (Bild 119). Die mittleren Verhältniswerte k_{\perp}/k_w sind bei feinkörnigeren Böden größer. Sie weichen damit von den Werten nach Wagner (1968) teilweise deutlich ab.

Boden	Anzahl der Versuche	k _w (m/s)	k _L (m/s)	k _L /k _w (-)
1	4	5,8 • 10 ⁻⁵	9,0 • 10^{-3}	157 <u>+</u> 1
2	5	5,2 • 10^{-4}	$3,9 \cdot 10^{-2}$	75 <u>+</u> 1
3	9	$1,9 \cdot 10^{-3}$	7,2 • 10^{-2}	38 + 2
4	3	$1.0 \cdot 10^{-2}$	$8,7 \cdot 10^{-2}$	9 + 1

Bild 119: Mittlere Durchlässigkeitsbeiwerte für Wasser und Luft der verwendeten Böden

Bei den Versuchen zur Bestimmung der Luftdurchlässigkeit des mit einem Filterkuchen versiegelten Bodens ergaben sich zu Beginn des Versuches keine Luftstrommengen. Der Filterkuchen war zu diesem Zeitpunkt luftdicht. Erst im Laufe des Versuches sind offenbar durch den Luftdruck (Differenzdruck Δp) und die gleichzeitige Austrocknung des Filterkuchens Porenkanäle entstanden, durch welche die Luft strömen kann.

7.5.1 Bentonitsuspensionen ohne Zusatzmittel

Bei den Versuchen konnten 4 typische zeitliche Verläufe des Luftdurchganges durch einen Filterkuchen beobachtet werden (Bild 120):

- Fall 1: Der Filterkuchen ist zunächst luftdicht.
- Fall 2: Nach wenigen Minuten stellt sich eine konstante Luftstrommenge ein, die durch wenige Kanäle im Filterkuchen strömt (Bild 121).
- Fall 3: Nach 10 bis 60 min entstehen durch Austrocknung des Filterkuchens neue Kanäle, so daß sich die gemessenen Luftstrommengen erheblich vergrößern.
- Fall 4: Es bilden sich ständig neue Kanäle im Filterkuchen, die eine kontinuierliche Zunahme der Luftstrommenge ergeben (Bild 122).

Für einen Schildvortrieb mit flüssigkeitsgestützter Ortsbrust sind für die zeitlich begrenzte Dauer der Stützung der Ortsbrust mit Druckluft möglichst die Fälle 1 und 2 anzustreben, um die zu installierende Leistung der Druckluftversorgung zu begrenzen.

Bild 120: Typische zeitliche Verläufe der gemessenen Luftstrommengen Q

Bild 121: Filterkuchen mit wenigen Kanälen und konstantem Luftdurchgang

Bild 122: Filterkuchen mit kontinuierlich zunehmender Luftstrommenge. Zahlreiche Kanäle haben sich nach dem Abschalten des Differenzdruckes wieder verschlossen.

<u>Bild 123:</u> Trocknungsrisse nach etwa 2 Tagen bei einem anfangs nahezu luftdichten Filterkuchen

Alle im folgenden vorgestellten Ergebnisse beziehen sich auf die gemessenen Luftstrommengen am Ende des Versuches nach 120 min. Bei einer Versuchsdauer von mehreren Stunden trocknet jeder Filterkuchen aus, es bilden sich weite Trocknungsrisse und der Luftdurchgang steigt stark an (Bild 123).

Für die Bauausführung ist ein auch für längere Zeiten möglichst luftundurchlässiger Filterkuchen wünschenswert. Die Versuche ergaben, daß hierzu die Suspension einen Mindestgehalt an Bentonit enthalten muß, der von der Bodenart und dem Differenzdruck abhängt (Bild 124).

Die pro Zeiteinheit durchströmende Luftmenge ist meist erst nach längeren Zeiträumen konstant (Bild 125). Bei den Böden 3 und 4 stellte sich bei Differenzdrücken größer als 0,3 bar keine Konstanz der Luftmenge innerhalb der Versuchsdauer von 120 min ein.

luftdichten Filterkuchen

Bild 125: Erforderliche Versuchsdauer, nach der eine konstante Luftmenge den Filterkuchen durchströmt

Die gemessenen Luftstrommengen Q_L sind für die Böden 2 und 3 in Abhängigkeit von der Bentonitkonzentration und dem Differenzdruck Δp in den Bildern 126 und 127 zusammengefaßt. Ähnliche Zusammenhänge ergaben sich für Boden 4, jedoch sind die Luftstrommengen so groß, daß im Versuchsstand die Luftstrommengen nur bis zu einem Differenzdruck Δp von 0,2 bar gemessen werden konnten.

Die statistische Auswertung zeigt, daß wie beim Eindringverhalten, der Einfluß der Bentonitsuspension auf die Luftdurchlässigkeit des Filterkuchens am besten durch die Gelstärke τ_{G}' beschrieben wird. Die Gelstärke τ_{G}' gibt somit einen Hinweis auf die Qualität des Filterkuchens. Die gemessenen Luftstrommengen aller Versuche in Abhängigkeit vom Differenzdruck Δp und der Gelstärke τ_{G}' zeigt Bild 128.

<u>Bild 126:</u> Abhängigkeit der Luftstrommenge Q_L vom Differenzdruck ∆p und der Bentonitkonzentration für Boden 2

<u>Bild 127:</u> Abhängigkeit der Luftstrommenge Q_L vom Differenzdruck Δp und der Bentonitkonzentration für Boden 3

Zusatzmittel in der Bentonitsuspension vermindern die Luftdurchlässigkeit des Filterkuchens. Ihr Einfluß ist jedoch unterschiedlich. Die Zugabe des Schutzkolloides CMC, die einer Erhöhung der Bentonitkonzentration entspricht, vermindert die Luftdurchlässigkeit bereits ab einer Konzentration von 0,5 g/l.

Wird einer Bentonitsuspension Sand zugegeben, sinkt die Luftdurchlässigkeit des Filterkuchens mit steigender Sandkonzentration. Zwischen den einzelnen Böden sind deutliche Unterschiede zu erkennen, wobei jeweils der qualitative Verlauf der gemessenen Luftstrommengen und der Eindringtiefen ähnlich ist. Der Sand (Boden 1) erfüllt bei Boden 3 das Filterkriterium von Terzaghi/Peck (1961) und filtert an der Oberfläche ab. Dies führt dazu, daß mit steigender

Sandkonzentration sich ein luftdichter Filterkuchen bildet und die Luftstrommengen schnell abfallen. Bei sehr geringen Sandkonzentrationen von 10 und 25 g/l wurden höhere Luftstrommengen als bei Suspensionen ohne Sand gemessen. Dieser Effekt wurde in Kontrollversuchen bestätigt, konnte aber nicht geklärt werden. Wenn der Sand nicht entsprechend dem Filterkriterium auf den Boden abgestimmt ist, dringt er zusammen mit der Suspension in die Poren des Bodens ein. In diesem Fall sind wie beim Eindringverhalten hohe Sandkonzentrationen erforderlich, um die Luftstrommengen spürbar zu reduzieren (Bild 129).

Einen überraschenden Einfluß hatten die plättchenförmigen Glimmerschuppen. In einer Konzentration von 10 und 20 g/l beeinflussen sie die Eindringtiefe nur wenig, bilden jedoch einen zähen Filterkuchen, der eine große Menge an Glimmerschuppen enthält. Während der Messung des Luftdurchgangs entstehen trotz Austrockung des Filterkuchens nur wenige Kanäle. Geringe Mengen an Glimmerschuppen reduzieren die Luftstrommengen erheblich. Der Einfluß ist bei dem feineren Glimmer 1 am deutlichsten (Bild 130).

<u>Bild 130:</u> Gemessene Eindringtiefen I_E und Luftstrommengen Q_L bei verschiedenen Glimmersorten

Die Zugabe von 5 g/l Zement vermindert entsprechend den Verhältnissen beim Eindringversuch die Luftdurchlässigkeit deutlich. Bis kurz vor Ende des Versuches nach 120 min war der Filterkuchen luftdicht. Erst nach 115 min wurde durch die Austrocknung ein geringer Luftdurchgang beobachtet. Im Vergleich zu einer Bentonitsuspension ohne Zusatzmittel gleicher Konzentration wird die Luftstrommenge bei Versuchsende um 87 % vermindert. Dies korrespondiert mit der Eindringtiefe (Bild 131).

<u>Bild 131:</u> Verminderung der gemessenen Luftstrommengen Q_L bei der Zugabe von Zement

7.6 Tonsuspensionen

Bei den deutschen Schilden mit flüssigkeitsgestützter Ortsbrust wird als Stützflüssigkeit eine Bentonitsuspension eingesetzt. Es ist jedoch denkbar, statt des quellfähigen Bentonits andere Tone für die Suspension zu verwenden, die während eines Tunnelvortriebes angetroffen werden oder von anderen Baustellen zur Verfügung stehen. In der Literatur sind bislang zum Eindringverhalten von Tonsuspensionen wenige Ergebnisse von Watanabe/ Yamazaki (1981) veröffentlicht. Untersuchungen zur Luftdurchlässigkeit der Filterkuchen liegen nicht vor. Es erschien deshalb sinnvoll zu prüfen, ob Tonsuspensionen für einen Schildvortrieb geeignet sind. Hierzu wurden exemplarisch für einen Ton 34 Versuche durchgeführt. Es wurde ein trockener, gemahlener Ton (Tonmehl) eingesetzt, der nach einer Röntgendiffraktometer-Untersuchung der U Kiel 28 % des wenig quellfähigen Illits, 72 % des nicht quellfähigen Kaolinits und keinen Montmorillonit enthält. Weitere wichtige bodenmechanische Kennwerte gibt Bild 132 an.

Eigenschaft

Wassergehalt w	0,03
Fließgrenze w _l	0,53
Ausrollgrenze wp	0,22
Plastizitätszahl I _P = w _L - w _P	0,31
Wasseraufnahme w _{max} (Enslin/Neff)	310 %

Bild 132: Wichtige bodenmechanische Eigenschaften des Tons

Der Ton enthält im Gegensatz zum Bentonit keinen Montmorillonit, ist daher weniger quellfähig, ausgedrückt durch die Wasseraufnahme w_{max}, und hat einen kleineren plastischen Bereich, beschrieben durch die Plastizitätszahl I_D. Seine Körnung besteht zu über 65 % aus Tonfraktion.

Die Vorversuche mit dem Ton ergaben, daß eine geeignete Suspension wesentlich höhere Tonanteile enthalten muß, als dies bei Verwendung von Bentonit üblich ist. Für die Versuche wurden deshalb Suspensionen mit einem Tonanteil zwischen 200 g und 600 g je 1000 m³ Wasser angemischt. Die physikalischen Kennwerte dieser Suspensionen sind mit denen der Bentonitsuspensionen vergleichbar (Bild 135). Die Anfangsgelstärke $\tau_{G}^{"}$ und die Gelstärke $\tau_{G}^{"}$ sind bei allen Suspensionen nahezu gleich groß, so daß eine Thixotropie nicht erkennbar ist.

Die Zugabe von 2 g/l CMC verändert die physikalischen Eigenschaften der Tonsuspensionen. Entsprechend den Bentonitsuspensionen ist eine Verbesserung der Suspensionseigenschaften zu erwarten. Tatsächlich werden die Auslaufzeit t_M aus dem Marsh-Trichter und die Filtratwasserabgabe f verbessert, die Scherfestigkeit, ausgedrückt durch die Fließgrenze τ_F oder Gelstärke τ_G' , verringert. Die Ursache könnte ein für diese hohen Tonkonzentrationen zu geringer Anteil an CMC sein. Kontrollversuche zeigten, daß die Scherfestigkeit bei höheren CMC-Anteilen nach dem Durchlaufen eines Minimums wieder ansteigt.

Bild 133: Physikalische Kennwerte der Tonsuspensionen

- 146 -

Der zeitliche Verlauf der Eindringung einer Tonsuspension entspricht dem einer Bentonitsuspension. Nach 1 min Versuchsdauer hat die Eindringtiefe 40 – 70 % ihres Wertes nach 60 min erreicht. Die statistische Auswertung der Versuche ergibt vergleichbare Eindringtiefen und Luftstrommengen, wenn die Tonkonzentration etwa 10 fach so hoch ist, wie die der Bentonitsuspension. Beispielhaft ist dies für die Suspensionen mit 50 und 60 g/l Bentonit sowie 500 und 600 g/l Ton im Bild 134 dargestellt. Der erforderliche, höhere Tonanteil ist zu einem größten Teil auf das Fehlen des Tonminerals Montmorillonit zurückzuführen. Der günstige Einfluß des Montmorillonites auf die physikalischen Eigenschaften muß durch erhöhte Feststoffkonzentration ersetzt werden.

Aufgrund der Untersuchung des Eindringverhaltens und der Luftdurchlässigkeit des Filterkuchens scheint der Einsatz von Tonsuspensionen in der Praxis sinnvoll zu sein. In diesem Fall sollte der Ton zuvor genau untersucht werden, um den Anteil des Tonminerals Montmorillonit zu bestimmen. Ob es wirtschaftlich ist, bei den deutschen Schilden mit flüssigkeitsgestützter Ortsbrust Tonsuspensionen einzusetzen, muß noch geprüft werden, weil die hohen Tonkonzentrationen gleichzeitig einen zusätzlichen technischen Aufwand bei der Separierung erfordern.

Suspension	Konzentration g/I	t _M s	^τ F N/m²	l _E cm	Q _L I/h
Bentonit	50	44	31	9,0	103
Bentonit	60	59	53	3,6	0
Ton	500	38	14	8,5	51
Ton	600	49	39	3,5	29

<u>Bild 134:</u> Beispielhafte Gegenüberstellung der Ergebnisse von Ton- und Bentonitsuspensionen für Boden 3 bei einem Differenzdruck $\Delta p = 0,1$ bar

8. FOLGERUNGEN AUS DEN VERSUCHEN

Die Laborversuche im Modellversuchsstand zeigen, wie durch die Veränderung der physikalischen Eigenschaften einer Suspension ihre Eindringtiefe und die den Filterkuchen durchströmende Luftmenge beeinflußt werden kann. Die Wirkung eines Filterkuchens wird besonders deutlich bei der Gegenüberstellung des Luftdurchlässigkeitsbeiwertes k_L für den trockenen Boden und für den mit einem Filterkuchen versiegelten Boden $k_{L,F}$. Das Verhältnis dieser beiden Luftdurchlässigkeitsbeiwerte hängt vom Differenzdruck Δp und den physikalischen Eigenschaften der Suspension ab. Die Erhöhung des Differenzdruckes oder die Verminderung der physikalischen Eigenschaften verursachen zusätzliche Kanäle im Filterkuchen, durch welche die Luft entweichen kann. Bei den durchgeführten Versuchen wird die Luftdurchlässigkeit des Bodens durch den Filterkuchen mindestens um den Faktor 1/400, im Mittel jedoch um den Faktor 1/1200 verkleinert (Bild 135).

<u>Bild 135:</u> Quotient aus den Luftdurchlässigkeitsbeiwerten des mit einem Filterkuchen versiegelten Bodens $k_{L,F}$ und des trockenen Bodens k_{L} in Abhängigkeit von der Bodenart, dem Differenzdruck Δp und der Gelstärke τ_{G}^{-1} für Bentonitsuspensionen ohne Zusatzmittel

Weil die gemessenen Eindringtiefen I_E und die Luftstrommengen Q_L bei Suspensionen ohne Zusatzmittel von den gleichen Parametern abhängen (Bild 102 und 128), ist ein Zusammenhang zwischen beiden zu erwarten. Die Ergebnisse der Laborversuche wurden im Hinblick hierauf statistisch ausgewertet und dargestellt. Es kann eine deutliche Abhängigkeit zwischen der Eindringtiefe I_E und der Luftstrommenge Q_L für Suspensionen ohne Zusatzmittel nachgewiesen werden. Mit zunehmender Eindringtiefe steigt die gemessene Luftstrommenge an (Bild 136).

<u>Bild 136:</u> Zusammenhang zwischen Eindringtiefe I_E und Luftstrommenge Q_L bei Bentonitsuspensionen ohne Zusatzmittel

Für versandete Suspensionen läßt sich für Sandkonzentrationen über 5 g/l ebenfalls ein Zusammenhang zwischen der Eindringtiefe und der Luftstrommenge feststellen (Bild 137). Steigende Sandkonzentrationen vermindern die Eindringtiefe und die Luftstrommenge. Bei Sandkonzentrationen kleiner als 5 g/l vermindert sich die Eindringtiefe und erhöhtsich die Luftstrommenge mit steigender Sandkonzentration. Die geringen Sandmengen verstopfen die Poren des Bodens und vermindern die Eindringtiefe. Die wenigen im Filterkuchen eingelagerten Sandkörner erhöhen jedoch die Luftdurchlässigkeit.

<u>Bild 137:</u> Zusammenhang zwischen Eindringtiefe I_E und Luftstrommenge Q_L bei Bentonitsuspensionen mit Sand

Aufgrund der Laborversuche kann die Wirkung der Zusatzmittel auf drei Ursachen zurückgeführt werden (Bild 138):

- <u>Verbesserung der physikalischen Eigenschaften</u> einer Suspension im gleichen Sinne wie eine Erhöhung des Bentonitanteils (Fall 1).
- Mechanische Wirkung des Zusatzmittels in der Suspension. Wenn die Teilchen des Zusatzmittels kleiner als die Porenweite des Bodens sind, dringen sie in den Boden ein und filtern im Bereich der Eindringzone aus (Fall 2). Sind die Teilchen der Zusatzmittel größer als die Porenweite, filtert das Zusatzmittel an der Bodenoberfläche ab und bildet eine Schicht auf dem Boden (Fall 3).
- 3. Verfestigung der in den Boden eingedrungenen Suspension (Fall 4).

Fall	Wirkung	Zusatzmittel	
1	<u>Eindringung</u> Verringerung der Eindring- tiefe I _E und der Luftstrom- menge Q _L durch Verbesserung der phys. Eigenschaften	ohne Zusatzm., CMC, geringer Zementanteil	AUSSERER FILTERKUCHEN EINDRINGZONE
2	Ausfilterung Durchmesser des Sandes kleiner als Porenweite; Filterkriterium nicht erfüllt; Sand filtert über Eindringtiefe aus	Sand	Ţ SAND
3	Abfilterung Durchmesser des Sandes oder Glimmers größer als Porenweite; Filter- kriterium erfüllt; Sand, Glimmer filtern an der Bodenoberfläche ab	Sand Glimmer	‡ SAND,GLIMMER
4	<u>Verfestigung</u> Eindringtiefe I _E und Luftstrommenge Q _L hängen von phys. Eigenschaften ab; später einsetzende Verfestigung	höherer Zementanteil	VERFESTIGTER BEREICH

Bild 138: Wirkung der Zusatzmittel

9. ZUSAMMENFASSUNG UND EMPFEHLUNGEN FÜR DIE PRAXIS

Die Kenntnisse über Schilde mit flüssigkeits- und erdgestützter Ortsbrust sind teilweise gering und einige ihrer Probleme bislang noch unerforscht. Die vorliegende Arbeit hat deshalb folgende Ziele:

- Überblick und Vergleich der deutschen und japanischen Schildsysteme mit flüssgkeits- und erdgestützter Ortsbrust.
- 2. Untersuchungen zur Standsicherheit der Ortsbrust.
- Durchführung von Laborversuchen mit Böden größerer Durchlässigkeit zur Auswahl geeigneter Stützflüssigkeiten für den Einsatz von Schilden mit flüssigkeitsgestützter Ortsbrust.

In den Abschnitten 2, 3, 4 und in den Tabellen des Anhangs werden die deutschen und japanischen Schildsysteme vorgestellt und miteinander verglichen. Die wichtigen Bauteile, wie Schildmantel, Abbaugerät, Förderkreislauf und das Meß- und Steuersystem werden erläutert und ihre speziellen Probleme herausgearbeitet. Dazu werden die Angaben in der Literatur, die Referenzlisten mehrerer Schildhersteller sowie eigene Erfahrungen von Baustellenbetreuungen und -besuchen in Deutschland und Japan ausgewertet und Hinweise für die Praxis bei der Konstruktion und dem Einsatz der Schildsysteme abgeleitet.

Für die japanischen Schilde mit flüssigkeits- und erdgestützter Ortsbrust wurden die geometrischen Abmessungen des Schildmantels, die für die Manövrierfähigkeit des Schildes von erheblicher Bedeutung sind, ausgewertet. Es ergibt sich ein Zusammenhang zwischen dem Schilddurchmesser D_s und dem Quotienten aus der Schildlänge L_s zum Schilddurchmesser D_s , welcher annähernd durch eine e-Funktion beschrieben werden kann. Mit abnehmendem Schilddurchmesser steigt das Verhältnis L_s/D_s , weil für den Einbau der Maschinen und Geräte eine Mindestlänge des Schildes erforderlich ist. Bei den deutschen Schilden ist dieser Zusammenhang nicht deutlich erkennbar, das Verhältnis L_s/D_s liegt unabhängig vom Schilddurchmesser meist zwischen den von Wagner (1961) genannten Grenzwerten von 0,4 und 1,0.

Die Auswertungen zeigen weiterhin, daß die erforderliche maximale Kraft der Vortriebspressen für alle Schildsysteme quadratisch, das erforderliche maximale Antriebsmoment des Schneidrades in der 3. Potenz vom Schilddurchmesser abhängen. Japanische Schilde mit flüssigkeitsgestützter Ortsbrust haben im Gegensatz zu den deutschen Schilden ein weitgehend geschlossenes Schneidrad mit nur wenigen kleinen Öffnungen, so daß zwischen der Oberfläche des Schneidrades und dem Boden an der Ortsbrust hohe Reibungskräfte entstehen. Sie benötigen daher etwa doppelt so hohe Antriebsmomente für das Schneidrad. Von allen Schildsystemen erfordern die Erddruckschilde, bei denen der Boden in der Abbaukammer ständig durchmischt wird, die höchsten Antriebsmomente für das Schneidrad.

Bei allen Schilden muß der angreifende Erd- und Wasserdruck an der Ortsbrust durch den Stützdruck Stützdruck in der Abbaukammer aufgenommen werden. Die richtige Einstellung des Stützdruckes ist wichtig. Bei einem zu geringen Stützdruck kann die Ortsbrust instabil werden. Ist der Stützdruck zu groß, können besonders bei geringen Überdeckungshöhen des Schildes Hebungen an der Geländeoberfläche oder Ausbläser von Stützflüssigkeit eintreten. Der Wasserdruck ergibt sich aus der Lage des Grundwasserhorizontes. Der Erddruck ist dagegen wegen der räumlichen Tragwirkung vor der Ortsbrust schwieriger zu bestimmen. Er wird entscheidend von den Baugrundverhältnissen beeinflußt.

Die bislang bekannten Näherungsverfahren zur Berechnung des Erddruckes an der Ortsbrust werden vorgestellt und durch zwei eigene Verfahren ergänzt. Das erste eigene Berechnungsverfahren beruht auf der Beobachtung, daß sich bei einem Tunnelvortrieb häufig örtlich begrenzte schalenförmige Bruchkörper aus der Ortsbrust lösen, die zur Instabilität der Ortsbrust führen können. Die schalenförmigen Bruchkörper werden durch vereinfachte, ebene und räumliche Bruchkörper mit idealisierten Gleitflächen als Halboder Viertelkreise sowie als Halbkugeln simuliert. Das zweite eigene Verfahren zur Berechnung des Erddruckes an der Ortsbrust ist aus den Nachweisen der Standsicherheit suspensionsgestützter Erdschlitze entwickelt worden. Die Standsicherheit der Ortsbrust wird hierbei an großräumigen Bruchkörpern untersucht, die auf endlich ausgedehnten, geraden Gleitflächen abrutschen. Die Berechnungsverfahren werden in einer Parameterstudie miteinander verglichen und an einem Beispiel aus der Praxis überprüft. Hierbei zeigt sich, daß im Vergleich zu dem tatsächlich auf die Ortsbrust wirkenden Erddruck, mit dem ebenen Fall und mit der Coulomb'schen Erddrucktheorie ein etwa 3fach größerer, mittlerer Stützdruck berechnet wird. Mit den eigenen Berechnungsverfahren werden hingegen in diesem Beispiel aber zutreffendere Ergebnisse erzielt.

Die Auswahl einer geeigneten Suspension zur Stützung der Ortsbrust ist bei den Schilden mit flüssigkeitsgestützter Ortsbrust besonders wichtig. Bei diesen Schilden ist der vordere Bereich abgeschottet und mit der unter dem

Stützdruck stehenden Suspension aus Wasser und Bentonit oder Ton gefüllt. Die Suspension dringt mehr oder weniger weit in den Boden ein und versiegelt die Ortsbrust mit einem Filterkuchen aus Bentonit oder Ton. Der anareifende Erd- und Wasserdruck wird über den Filterkuchen von dem Stützdruck gehalten. In Böden mit groben Poren und höherer Durchlässigkeit fließt die Suspension im Grenzfall nahezu drucklos im Boden ab, so daß sich auf der Ortsbrust kein Filterkuchen aus Bentonit oder Ton bilden und der erforderliche Stützdruck nicht übertragen werden kann. Erst am Ende der Eindringtiefe ist der gesamte Stützdruckanteil zur Aufnahme des Erddruckes auf das Korngerüst des Bodens übertragen. Die Eindringtiefe der Suspension muß begrenzt werden, um den Stützdruck innerhalb eines möglichen Bruchkörpers vor der Ortsbrust zu übertragen und um gleichzeitig die randnahen Korngruppen des Bodens an der Ortsbrust ausreichend zu stützen. Wenn während des Vortriebes aus der Ortsbrust Hindernisse zu entfernen oder Wartungsarbeiten an der Maschine durchzuführen sind, wird die Suspension in der Abbaukammer abgepumpt und die Ortsbrust über den Filterkuchen durch Druckluft gestützt. Für diesen Fall muß der Filterkuchen an der Ortsbrust weitgehend luftundurchlässig sein.

Um für die Praxis Hinweise bei der Auswahl geeigneter Stützflüssigkeiten zu geben, wurden die Verhältnisse an der Ortsbrust in einem Modellversuchsstand simuliert. Mit diesem Versuchsstand wurde sowohl das Eindringverhalten von Bentonit- und Tonsuspensionen mit und ohne Zusatzmittel (CMC, Sand, Glimmer und Zement) in stärker durchlässigen Böden, als auch die Luftdurchlässigkeit des mit dem Filterkuchen versiegelten Bodens untersucht. Für Bentonitsuspensionen wurde der Einfluß der physikalischen Eigenschaften, der Bodenart und des Druckes, unter dem die Suspension in den Boden eindringt, im Modellversuchsstand untersucht. Die statistische Auswertung der Versuchsergebnisse zeigt, daß die Eindringtiefe und die Luftdurchlässigkeit des mit dem Filterkuchen versiegelten Bodens durch den d₁₀-Wert des Bodens, der Gelstärke der Suspension und den Differenzdruck bestimmt werden kann.

Die Wirkung von Zusatzmitteln in einer Suspension kann aufgrund der Versuche auf eine Verbesserung der physikalischen Eigenschaften der Suspension, auf mechanische Wirkungen des Zusatzmittels und auf eine Verfestigung des Bodens vor der Ortsbrust zurückgeführt werden. Die Zusatzmittel vermindern die Eindringtiefe der Suspension in den Boden und die Luftdurchlässigkeit des mit einem Filterkuchen versiegelten Bodens. Die untersuchten Zusatzmittel wirken unterschiedlich. Bei Böden mit höherer Durchlässigkeit ergeben bereits geringe Beigaben von Sand (der gegenüber dem Boden das Filterkriterium von Terzaghi/Peck (1961) erfüllt) sowie kleine Zementkonzentrationen in der Bentonitsuspension deutlich geringere Eindringtiefen und Luftdurchlässigkeiten des Filterkuchens als Suspensionen ohne Zusatzmittel.

Für Bentonitsuspensionen ohne Zusatzmittel konnte zwischen der Eindringtiefe und der Luftdurchlässigkeit des mit dem Filterkuchen versiegelten Bodens ein etwa linearer Zusammenhang beobachtet werden. Mit zunehmender Eindringtiefe steigt auch die Luftdurchlässigkeit. Bei Bentonitsuspensionen, denen Sand von mehr als 5 g/l zugegeben wird, vermindert sich die Eindringtiefe und Luftdurchlässigkeit mit steigender Sandkonzentration.

Für die Laborversuche mit Tonsuspensionen wurde ein Ton verwendet, der im Gegensatz zum Bentonit nicht das quellfähige Tonmineral Montmorillonit enthielt. Diese Versuche zeigen den bedeutenden Einfluß des Montmorillonits. Weil der Ton kein Montmorillonit enthält, ist bei der verwendeten Tonsuspension zum Erzielen vergleichbarer physikalischer Eigenschaften, Eindringtiefen und Luftstrommengen wie bei Bentonitsuspensionen eine etwa 10fach größere Tonkonzentration erforderlich.

Bei zukünftigen ergänzenden Untersuchungen sollte auf folgende Problemkreise eingegangen werden:

- Beim Einsatz von Erddruckschilden sollten der Stützdruck in der Abbaukammer gemessen, die Fließfähigkeit nichtbindiger Böden verbessert und die Bildung eines wasserundurchlässigen Verschlusses der Förderschnecke untersucht werden.
- Die vorgeschlagenen Berechnungsansätze zur Ermittlung des Erddruckes an der Ortsbrust sollten in der Praxis überprüft werden, um die zahlreichen Einflüsse, wie z.B. die Lagerungsdichte des Bodens, besser zu erfassen.
- 3. Es sollten in-situ Verfahren zur Bestimmung des Eindringverhaltens von verschiedenen Suspensionen entwickelt werden. Es ist denkbar, ähnlich dem Versuch zur Bestimmung der Wasserdurchlässigkeit des Baugrundes (WD-Test), von einem Bohrloch aus verschiedene standardisierte Suspensionen unter Druck in den Boden zu pressen und aus der verbrauchten Suspensionsmenge und dem Porenanteil des Bodens die Eindringtiefe zu ermitteln.

ANLAGEN

Zusammenstellung der in der Literatur erwähnten Einsätze von Schilden mit flüssigkeits- und ergestützter Ortsbrust

Anlage 1 – 2 : Deutsche Schildsysteme Anlage 2 – 4 : Japanische Suspensionsschilde Anlage 5 – 6 : Japanische Erddruckschilde

Peure		Devilare	Projek	t	Turnel	-t- P		Baug	rund		-	I a	schine	e	Auskleid	ung	Setzung	Leistung	Bemerkungen	Literatur
Ort	rk, Land	Bauherr	a)Baubeginn b)Bauende	Durchmesser Schildlänge	Tunnel- länge	min K	Firmen	Boden	überdeckung über der	Vasser Firste	тур	Herstelle	rmax P m	авх Жт	Art	Dicke Breite	Gelände oberfl.	schwindigkeit		
Samml Wilhe burg, Hambu	er D lms- rg	Freie u. Hansestadt Hamburg	a) 1973 b) 1977	D _i = 3,70 m D = 4,34 m D ₅ = 4,48 m L ₆ = 4,30 m	4555 m		V & F D & V Hochtief	fS-gS, G, Steine max 800mm k≃10 ^{-s} m/s	3 - 17,5 m	≃18,3 m	Ну	Bade & Theelen	20×900= 5 18000 kN	500 kNm	Stahlbeton- tübbing 5 + 1	32 cm 80 cm	max 9 mm	max 15,2 m/d max 68 m/Vo max 239 m/No (3 Schichten)	 Einsatz Hydroschild; gefördert vom BMFT Prototyp mehrfach verändert; zu Beginn war ganzer Tunnel unter Druckluft; Stein- fangkasten; Schildschwanzdicht.entwickelt 	Anheuser (1981a); Anheuser (1984a) Becker et al. (1982, 1983) Droscha (1975); Engelmann (1981) Jacob (1976, 1978, 1979a,b)
Samml Harbu Nord, Hambu	er D rg LosI, rg	Freie u. Hansestadt Hamburg	a) 1978 b) 1980	D ₄ = 2,88 m D = 3,60 m D ₅ = 3,60 m L ₅ = 3,00 m	1169 m	150 ш	Hochtief D & V V & F Klee KG	fS-mS, G locker - m.dicht k≃10 ⁻⁴ m/s	9 - 12 m	≃7 ⊒	Ну	Bade & Theelen			Extrudier- beton	36 cm	≃ 20 mm		Zu Beginn ein Druckluftschild eingesetzt; Ausbläser, große Setzungen; dann Hydro- schild; 1. Binsatz Extrudierbeton; geförd. vom BMF; Schildgelenk	Becker et al. (1982, 1983) Engelmann (1981); Gebhard (1981) H.W. (T&T, 4/1979); Thomson (1983)
Pre-M Linie Antwe (MECO I+II)	etro B 1+2, rpen MA	NIVA	a) 4.1978 b) 1985	D ₁ = 5,70 m D = 6,40 m D ₈ = 6,56 m L ₈ = 5,88 m	4100 m 3752 m 7852 m	≃ 300 m.	CFE Franki Verbeeck V & F	fS-mS, t m.dicht k≃4×10 ^{-©} - 2×10 ⁻⁴ m/s	9 - 18 m	0 - 12 m	Ну	Bade & Theelen 4 Masch.	14×1600= 1 22400 kN	1200 kWm	Stahlbeton- tübbing 7 + 1	35 сш 110 сш	max 18 mm ø 7 mm	max 24 m/d ø 15,3 m/d max 100 m/Vo (3 Schichten)	MECOMA I:7 Vortriebe, 4 Stationen; Tunnel neben-/übereinander, min Abstand 2-3 m; hoher Tongeh.1.Boden, Suspension dickt ein; Endwert der Stzungen nach 14 Tagen; Umsetzen der Maschine in 1 Monat	Anheuser (1981a, 1983, 1984b) Becker et al. (1982, 1983) Eber (1982) Engelmann (1981) Jacob (1978, 1979a,b)
Samml HH-Lo "Mügg Zollh Hambu	er D sIIb, enbg. afen", rg	Freie u. Hansestadt Hamburg	a) 3.1978 b) 1979	D _i = 3,50 m D = 4,18 m D ₅ = 4,18 m L ₅ = 3,30 m	365 m		Ph. Holzmann	S, G, Mergel k≃10 ⁻⁴ m/s	4 - 14 m	10 - 13 m	(RV)	Orenstein Koppel	& 24×1000= 24000 kN	-	Stahlbeton- rohre l = 4 m	34 cm		max 16,5 m/d s 8 m/d max 70 m/Wo	 Einsatz Thixschild; gefördert vom BMFT Probleme durch Findlinge etc.; Brustver- bau noch von Hand eingebaut; Cuttersteu- erung per Computer; Förderstrom 250 m³/h davon Bodenanteil 50 m³/h 	Baumer (1979) Becker et al. (1982, 1983) Haack (1980); Krabbe (1980) Thomson (1983)
Sielb Blohm Hambu	au D str., rg	Freie u. Hansestadt Hamburg	a) 8.1979 ; b) 3.1982	Regen-/ Schmutzsiel D ₄ =2,4/1,5 m D =3,0/1,9 m D ₉ =3,0/1,96m L ₉ = /1,7 m	240 / 675 m	700/900 m	Ph.Holzmann D & W W & F Hochtief B + B Züblin	mS, Torf, Wurzeln/ mS, dicht, G, max 50mm, Torf	3 m / 6,5 m	1 m / 4,5 m	Hj/ Hj (RV)	Bade & Theelen			Stahlbeton- rohre 1 = 3,3 m	30 / 20 cm	?/max 5mm	max 20 m/d c 8 m/d (1 Schicht)	 Binsetz Hydrojetschild; gefördert vom BMFT; 3 bzw. 5 Disen ø 18 mm; forf von Hand aus Kammer entfernt; Druck- und Verformingsgeber für Hindernisortung eingebaut; Durchflußmesser für gleichm. Disenbeschickung 	Anheuser (1981a,b, 1984a) Becker (1982) Becker (1983), Engelmann (1981) Jacob (1981) Thomson (1983) Zell (1981)
U-Bah Linie Los H Berli	n D 7, 110, n	Senator f. Bau und Wohnungs- wesen	a) 1980 b) 1981	D _i = 5,70 m D = 6,40 m D _m = 6,56 m L _m = 5,88 m	1144 m	260 ш	Ph.Holzmann Hochtief D & W V & F B + B Züblin	mS,t, dicht Mergel, G max 250 mm, Steine <2m ³ k≈4×10 ⁻⁵ m/s	7,8-11,2 m	0 - 6,3 m	а Ну	Bade & Theelen	14×1600= 1 22400 kW	1200 kNm	Stahlbeton- tübbing	35 сш	max 8 mm ø <4 mm	8,5 m/d	2 eingleisige Tunnel; Schild von Proj. 3, zusätzl. breitere Schneidarme, Steinfang- kasten u. Stützplatten an Schneidrad;Zeit zus Mindernisbergen größer als Ringbau- zeit; Findlinge z.T. hydraulisch gespal- ten;	Anheuser (1981a, 1983) Becker et al. (1982) Engelmann (1981)
Eisen tunne Aurel Tunne Rom	bahn- I l, ia l,	Minister für Trans- portwesen	a) 11.1980 b) 1985	D ₁ = 9,42 m D =10,42 m D ₈ =10,64 m L ₂ = 7,50 m	2410 m	700 ш	Astaldi Dipenta Lodigiani Sogene V & F	T + S,u,t k≃10-7- 2×10-3 m/s	12 - 32 m	5 - 10 m z.T. gesp GW bis 30	Hy 5.	Bade & Theelen	32×2000= 4 64000 kM	4000 kNm	Stahlbeton- tübbing 8 + 1	50 ст 125 ст	max 7 mm	Ton: max 125 m/Mo Sand: max 8,8 m/d ø 6,3 m/d	2 spuriger Tunnel; im Ton (1035 m) ohne Stützflüssigkeit, Trockenförderung; im Bereich Ton/Sand als Hydroschild mit Problemen; hinter dem Schild stückigen Ton aus Kreislauf entnommen	Becker et al. (1982) Becker (1983, 1984) Engelmann (1981) Wallis (1984) H.H. (T&T, 9/1981); Pick (1986)
Fernw dampf leitu Essen	ärme- D - ng,	STEAG	a) 1981 b) 1981	D _i = 3,00 m D = 3,60 m D _m = 3,60 m L _m = 3,20 m	350m		Hochtief				Hy (RV)	Bade & Theelen			Stahlbeton- rohre					Referenzliste Fa. Hochtief
Neben samml Kuhmü Hambu	- D er hle, rg	Freie u. Hansestadt Hamburg	geplant: t a) 12.1981	D ₄ = 3,00 m D = ca.4 m	1635 m	300 m	Ph. Holzmann	S + Mergel	10 - 17 m	max 6 m	Thix (RV)									Becker et al. (1982, 1983) Krabbe (1981)
Düker ERM 2 Mannh	D , eim	Erdöl- raffin- erie Mannheim	Vortrieb: a) 4.1982 b) 12.1982	D _i = 3,00 m D = 3,60 m D _s = 3,60 m L _s = 3,20 m	747 m		Hochtief	S + G k≃4×10-s- 2×10-∍ m/s	max 15,5 m ;	≃ 17 m	Hy (RV)	Bade å Theelen	6×3000= 4 18000 kN	400 kNm	Stahlbeton- rohre 1 = 3,00 m	30 cm		max 84 m/Wo	Unterquerung des Rheins; 10 Zwischen- preßstationen; Steinfangkasten eingebaut; Zielgenauigkeit ± 10 cm	Lah (1984) Mosch (1983)
Kühlw tunne Kraft Karls	asser D 1 werk ruhe	Baden- werk AG	a) 1.1983 b) 8.1983	$D_{\star} = 2,40 \text{ m}$ D = 3,00 m $D_{\oplus} = 3,00 \text{ m}$	540 m		Ph.Holzmann B + B, D & W W & F Füssler GmbH	S + G m.dicht; Schotter k<2,5×10-2 m	3,0 - 7,5 п 1/s	0 - 4,0 п	Hj (RV)	Bade & Theelen			Stahlbeton- rohre			max 18,7 m/d ø 8,0 m/d	4 Einzelvortriebé	Anheuser (1984a,b)
Kühlw tunne KKV I Ohu/L	asser D l, sarII andsh	Bayern- werk AG	a) 3.1983 b) 9.1985	D _s = 2,30 m D = 2,80 m D _s = 2,80 m L _s = 4,30 m	2030 m		D & W W & F	S + G, Rollkies, Sandstein, k<1-2 m/s	6,5 - 15 m	12 -15 m	Hy (RV)	Bade & Theelen	4×3000= 12000 kN		Stahlbeton- rohre 1 = 4,50 m	25 cm 40 cm		10 - 19 m/d max 32 m/d	8 Einzelvortriebe; Schild G=35 t, Meißel alle 8-10 m ausgetauscht; Schildsteuerung ± 4 cm, Zielschacht ± 1 cm	Referenzliste Fa. Bade & Theelen Fröhlich (1986)
Schel tunne Pre-M Antwe	de- B 1, etro, rpen	AVIN	a) 1984 b) 1987	D ₁ = 5,70 m D = 6,60 m D ₂ = 6,80 m L ₂ = 6,65 m	1940 m		Verbeeck Franki Six Constr. ₩ & F	T + Kalk- steine + S	8,5 - 28 m	шах 26 ш	Ну	Bade & Theelen	24×2000= 48000 kN		Stahlbeton- tübbing 6 + 1	45 cm 120 cm			Unterquerung der Schelde; Schneidrad mit Stützplatten; Brecher vorhanden; Kontur- meißel	Anheuser (1984b) Becker (1982) W.W. (Bautechnik, 6/1986) Prospekt von MIVA
Ring- Tunne HERA, Hambu	D 1 rg	DESY Deutsche Elektronen Synchroton	Vortrieb: a) 5.1985 h b) 12.1987 h	D _i = 5,20 m D = 5,80 m D _s = 5,95 m L _s = 6,40 m	6300 m	780 m	W & F D & W Hochtief Ph.Holzmann Aug. Prien	U + fS - mS, Mergel, Blöcke bis ø 1,6 m	10 - 25 m	0 - 10 m	Mix	Herren- knecht	12×1600= 1 19200 kW	1300 kNm	Stahlbeton- tübbing 6 + 1	30 ст 120 ст	zugel. max 10 mm	Sand: max 18 m/d max 80 m/Wo Steine/Blöcke: ø 6 m/d	ringförmige Trasse; 4 unterirdische Hallen; Stützflüssigkeit: Vasser oder Bentonitsusp.; Schlidgelenk vorh.; kein Brecher; Probleme mit Blöcken; Förderkreislauf 600 m²/h	Anheuser (1984b) Becker (1986) Jacob (1986) W.B. (143, 3/1985, 4/1986a) Wallis (1986)
Schmu wasse düker Berli	tz- D r- n	Berliner Entwässer- ungswerke	a) 1984	D _i = 1,80 m D = 2,24	102 m	50 m	Ed. Züblin	fS - gS, Geschiebe- mergel, gr.Steine	3 - 10,40 m	≃ 6 m	Hy (RV)	×	5600 kN		Stahlbeton- rohre	22 cm			Steuerung des Stützdruckes durch geo- dätische Höhe des Suspensionsbehälters im Schacht (Fluidschild); 25,6 m als Druckluftschild aufgefahren	Möhring et al. (1985)
U-Bah Linie Lyon	n F D,	SEMALY	a) 1984 b) 3.1987	D _i = 5,90 m D = 6,50 m D _{ff} = 6,50 m L _{ff} = 4,77 m	2500 m	250 ш	Dragages et Traveaux Pub. Campenon Bernard Hochtief Colas	S + G, Steine über 400 mm, Holzpfähle, k≃10 ⁻³ - 10 ⁻² m/s	5-22 ш	bis 25 m	Ну	Bade & Theelen	30000 kN 1	1800 kNm	Extrudier- beton	30 сш		max 18 m/d ø 10 m/d	Zu Beginn Durchfahren alter Brücken- gründung, größe Probleme; Schneidrad mit Stützplatten; Brecher für Steine 120-400 mm; Förderkreislauf 1100m ² /h unter den Flüssen sehr geringe über- deckung	Babendererde (1986) Becker (1986), Braun (1985) Ferrand/Bouyat (1984) Ferrand/Péra (1984) B.B. (T&T, 4/1986b)
Verso gungs tunne Köln	r- D , 1,	Gas-Elek- trizitäts- u. Vasser- werk, Kölr	Vortrieb: - a)Nitte 198 - b)Nitte 198 n	D ₁ = 3,00 m 4 D = 3,60 m 5 D ₈ = 3,60 m L ₈ = 3,20 m	450 m		Hochtief	S + G, Steine k≃6×10 ⁻² m/s	4 - 14,5 m	≃ 10 m.	Hy (RV)	Bade & Theelen	6×3000= 4 18000 kN	400 kNm	Stahlbeton- rohre	30 cm			Unterquerung des Rheins; 4 Zwischen- preßstationen;	Hochtief-Wachrichten H.4 (1984) Lah (1984)
Eisen bahn- tunne Ville	- F 1, just	SNCF	Vortrieb: a) 11.1984 b) 2.1989	D ₄ = 8,24 m D = 9,25 m	9558 m		SGE-TPI Spie Batign. Franki	fS, locker wenig Kies u. Steine	5 - 50 m	max 20 m	Ну	Bade & Theelen 2 Masch.	28×2150= 4 60200 kM	4000 kNm	Stahlbeton- tübbing 7 + 1	40 cm 170 cm		4. 14	Schneidrad mit Stützplatten =2/3 der Ortsbrustfläche; 4 Einstiegsluken in der Abbaukammer; Förderkreislauf 350 m³/h; 2 Erektoren für Tübbinge	Eraud (1984) Wallis (1986b) W.W. (T&T, 9/1985, S.9)

									Deutso	che Sc	h11	dsyste	eme								
			Projek	t				Baug	rund			Xa	schi	ne	Auskleid	lung	Setzung	Leistung	Bemerkungen	Literatur	
Wr. Bauwerk, Ort	Land	i Bauherr	a)Baubeginn b)Bauende	Durchmesser Schildlänge	Tunnel- länge	min R	Firmen	Boden	überdeckung über der	Vasser Firste	Тур	Herstelle	r max P	пах Ит	Art	Dicke Breite	Gelände oberfl.	Vortriebege- schwindigkeit	4	-	
19 Sammler Bürrig, Lever- kusen	D	Bayer AG	a) 1985 b) 1985	D ₄ = 3,00 m D = 3,60 m	1846 m		W & F	S + G	2,5 - 6 ш	0 - 2 ш	Mix (RV)	Herren- knecht	6×2000= 12000 }	= 260 kNm kN	Stahlbeton- rohre 1 = 4,50 m	30 cm		max 24 m/d	6 Einzelvortriebe von 41 bis 890 m; Steinfangkasten	Jacob (1986) Becker (1986)	
20 U-Bahn, Lille Ligne 1, Los 3	F	Commu- naute Urbaine de Lille	a) 1985 b)	D _s = 6,80 m D = 7,60 m Dm = 7,70 m Lm = 6,70 m	3540 ш	250 ш	Soc.Urbaines de Traveaux Montcocol; SGTN; V & F	T (5-35%) + fS + Kreide	4,8 - 17,4	m 0 - 3,5 m	n Mix	Herren- knecht			Stahlbeton- tübbing 7 + 1	40 cm 120 cm		max 19,2 m/d ø 14-15 m/d (3 Schichten)	2 gleisiger Tunnel; 6 Stationen; Steinfangkasten (1m [*]) bis 300 mm; kein Brecher;	Becker (1986) Langer (1986) H.H. (T&T, 4/1986a) H.H. (T&T, 7/1986)	
21 Sammler, Dachauer Straße, München	D		a) 1985 b) 1986	Ds = D = 1,98 m	500 m		W&F				Mix	Herren- knecht							Steinfangkasten; kein Brecher	N.N. (T&T, 4/1986a)	
22 Sammler, Los 3, Cairo	Egy	Sewer Departm., Cairo	Vortrieb: a) 1.1986 b) 7.1988	D _i = 5,52 m D = 6,00 m L ₆ = 6,12 m	3970 m	12	Tarmac Balfour Beat. Cementation I Ed. Wuttall	T + V + G	ø 22 m	ø 16 m	Ну	NEI, Leeds Lizenz v. Bade & Th 2 Masch.			Stahlbeton- tübbing			Ċ	Schildhersteller garantiert im / 20min; beide Schilde haben Brecher bis 380 mm; Förderkreislauf 700 m²/h	H.W. (T&T, 11/1984, 5/1985) H.H. (T&T, 1,3 u.5/1986) H.H. (World Construction 2/1986)	
23 U-Bahn, Gelsen- kirchen	D	U-Bahnamt Gelsen- kirchen	a) 1986	D _i = 6,29 m D = 6,89 m D ₅ = 7,29 m L ₅ =11,30 m	1244 m	×	Ph. Holzmann	S, u Mergel z.T. verwittert	0 - 14 m	0 - 7ш	Thix	Wirth			Stahl- tübbing (Wellen- profil)	220 cm			2 eingleisige Tunnel im Bergsenkungs- gebiet; Tübbinge verschweißt; Cutter für Steine bis 100 mm; Steinfangkasten für Steine bis 300 mm		
24 Speicher siel, Hamburg	- D	Freie u. Hansestad Hamburg	a) 1986 t	D: = D = 3,50 m	500 ш		Ph.Holzmann				Thix (RV)				Stahlbeton- rohre						

								-		Japani	sche	Suspe	ensio	nssci	ailde						
				Projek	t				Baug	rund			Xae	schin	e	Ausklei	dung	Setzung	Leistung	Bemerkungen	Literatur
Bauwe Ort	rk, I	Land	Bauherr	a)Baubegin b)Bauende	n Durchmesser Schildlänge	Tunnel- länge	min R	Firmen	Boden	überdeckung über der	Wasser Firste	Тур Не	ersteller 1	max P	max H _T	Art	Dicke Breite	Gelände oberfl.	Vortriebsge- schwindigkeit		
Sewer	Tunnel	J			Ds = 3,05 m D = 3,35 m Ds = 3,48 m	1 755 m 1		Ohbayshi	G (unter G♥)	3-6,5 ш			-				15 ст 90 ст	3-10 mm			Kurosawa et al.
Sewer Kotsu Tokyo	Tunnel ta-Line	J	Sewage Bureau Tokyo	a) 1.1969 b) 3.1971	D ₁ = D = 2,45 m D ₅ = 2,63 m L ₅ = 4,75 m	702 m	300 m	Nishimatsu	fS N>50; U=3 k=10 ⁻² - 10 ⁻² m/s	32-75 m	23-40 m		64	6×800 + 4×1000= 8800 kN	104 kWm	Stahl- tübbinge				Tunnel mit 2 bar Überdruck aufgefahren; Schneidrad mit overcutter; erhebliche Probleme mit Steuerung des Stützdruckes; im lockeren Sand Ortsbrust instabil	Wakayama (1980)
Haned way T Keiyo Tokyo	a Rail- unnel, -Line,	J	Japan Railway Construct Public Co	a) 3.1969 b) 8.1971	D ₁ = D = 7,10 m D ₈ = 7,29 m L ₈ = 6,45 m	2×856m= 1712 m	700 m	Nishimatsu	U, sehr weich	6-12 m	15 m	CT	2	27×1600= 43200 kN	2620 kNm	Tübbinge 4 + 2 + 1	- 80 cm		max 17,6 m/d	Schneidrad mit 1 copy cutter (50 mm); Einsturz der Ortsbrust beim übergang vom weichen in den festeren Baugrund	Hama (1978) Japan Tunnelling Association (1978) N.W. (Civil Engng. in Japan 1971) Ohira (1971)
Main Ayasw Tokyo	Sewer egawa,	J	Sewage Bureau Tokyo	a) 1973 b) 7.1974	D ₄ = 4,00 m D = 4,90 m D ₆ = 5,05 m	1057 m		Tekken	T+U (≃35%); fS; N ≃ 0-5 k = 10 ^{-s} - 10 ^{-s} m/s	8 m	6 ш					,		max 68 mm ø 26 mm	s 8,7 m/d s 210 m/Mo		Prospekt der Fa. Tekken Takahashi et al. (1976) Yamazaki (1976)
Sewer Katsu Yotsu Tokyo	Tunnel shika, gi,	J	Sewage Bureau Tokyo	a) 1974 b) 1975	D ₁ = 1,65 m D = 2,25 m D ₆ = 2,39 m	1 829 m		Tekken	U + fS, locker N ≈ 15	6,2 ш	5,2 m							max 40 mm ø 24 mm	ø 4,9 m/d ø 138 m/¥o		Miki et al. (1977) Prospekt der Fa. Tekken Takahashi et al. (1976) Yamazaki (1976)
Sewer No.35 migau Ushik	Tunnel 2,Kasu- ra, u	J	Sewage Bureau Ibaragi Prefectur	a) 1974 b) 4.1975 e	D ₁ = 1,80 m D = 2,40 m D ₅ = 2,55 m	622 m		Tekken	T + U + fS N ≈ 5-10	7,4 m	5,5 m							max≃30mm ø 5mm	s 10,7 m/d s 304 m/Mo		Miki et al. (1977) Prospekt der Fa. Tekken Takahashi et al. (1976) Yamazaki (1976)
Daiba way T Keiyo Tokyo	Rail- unnel, -Line	J	Japan Railway Construct Public Co	a) 3.1976 b) 10.1978	D _s = D = 7,50 m D _S = 7,69 m L _S = 7,11 m	2×1420m 2840 m 1	≔ 800 m		T + U + S 500m T,weich 500m T+S 400m S,dicht	12-20 m	12-20 m	СТ	2	25×2000= 52000 kN	2800 kNm	Stahlbeton tübbinge 4 + 2 + 1	- 30 cm 90 cm		ø 4,5 m/d max 101 m/∦o	Schneidrad mit 2 copy cutter; 2 Mixer	Doi (1978) Hama (1978) Japan Tunnelling Association (1978) Yokoyama (1980)
Meiko Tunne Aichi Prefe	Water 1, cture	J	Water- works Bureau, Aichi Pre	a) 1976 b) 5.1979 f	D _i = 3,40 m D = 3,70 m D ₂ = 3,83 m L ₂ = 5,67 m	1 2105 m 1 1	Construction and a dama.	Tekken +3 andere	U + S + G max ø50 mm N = 0-50	11-34 m	24-29 m	CT				Gußeisen- tübbinge 4 + 2 + 1	15 cm 100 cm			1 Mixer	Prospekt der Fa. Tekken
Water Nagoy bor, Prefe	Tunnel a Har- Aichi cture	J	Water Supply Bureau, Aichi Pre	a) 10.1976 b) 3.1979 f	D _i = 3,40 m D = 3,70 m D _S = 3,85 m L _S = 5,67 m	a 2105 m a	200 m	Kajima Kumagai Okumura Tekken	U, S + G max ø 300 mm k=10 ⁻⁴ m/s Steine bis 60%	11-14 m	max 35 m	CT	1	16×980= 15680 kN	980 kNm	Stahl- u. Gußeisen- tübbinge	15 cm 100 cm		x	2 copy cutter (100 mm) und 2 Overcutter (50 mm); 2 Mixer; Klesseparator ein- gebaut; Ortsbrust vereist bei Hinder- nissen u. Wechsel v. Schneidzähnen	Kawarabata (1979) Ohta et al. (1978)
Sewer Tokyc	,	J	Sewage Bureau Tokyo	a) 10.1977 b) 3.1981	D ₄ = D = D ₅ = 3,55 m L ₅ = 4,67 m	1237 m	300 m	Taisei		9,6-28,6 m		Mi	itsubishi 1 1	14×800= 11200 kW	715 kNm		B. and The selection of the selection			Brecher eingebaut	Baustellenprospekt
U-Bah No.8, dai S Tokyo	n, Line Hikawa- tation,	J	Teito Rapid Transit Authority	a) 9.1978 b) 1.1981	D _s = 8,70 m D = 9,80 m D _f = 10,00 m L _f = 8,27 m	n 884 m n n	800 m	Tekken	T+U+S+G max ø450 mm N = 30-50 k=2,7×10 ⁻⁶ m/s	8-19 m	10-12 m	IT Ka	awasaki 3	33×2500= 82500 kW	15000 kNm	Stahlbeton tübbinge 5 + 2 + 1	- 55 cm 90 cm	max 6 mm ø 2 mm	max 9,0 m/d ø 3,6 m/d (2 Schichten)	Schneidrad mit 6 overcutter; 4 Mixer; Sensor für überschnitt; Backenbrecher im Schild (max ø450 mm), weiterer Brecher hinter Schild (max ø100 mm)	Kawade (1982); Kumai/Incue (1982) Watanabe (1981) Watanabe/Yamazaki (1981) Prospekt der Fa. Tekken
Sewer Miyau Kawas City	Line chi Nol aki	J	Sewage Bureau Kawasaki City	a) 1979	D ₄ = 2,15 m D = 2,35 m D ₅ = 2,74 m L ₅ = 5,15 m	a 815 m a a	100 m	Mitsui	U + S + G max ø400 mm	6,5-8 ш	5-6,5 m	Kc	omatsu 1	10×600= 6000 kN	318 kNm	Stahl- tübbinge	10 ст 75 ст		max 7,5 m/d	gewölbtes Schneidrad mit Disken; Schild- gelenk; Brecher hinter dem Schild	Unterlagen der Fa. Komatsu (1982)
Bente Sewer Tunne Osaka	n 1,	J	Sewage Bureau Osaka	a) 1.1979 b) 2.1980	D ₄ = 5,50 m D = 6,60 m Dm = 6,75 m Lm = 5,90 m	a 460 m a a	200 m	Okumura	T + S N = 40-50	6,2-20,7 m	4,5-19 m	IT Mi	itsubishi 3	34×1500= 51000 kN	2490 kNm	Stahl- u. Stahlbeton tübbinge	30 ст - 90 ст		92 m/Ko	Schneidrad mit 2 copy cutter und Sensor für überschnitt; 2 Mixer; Maschine: G = 252 t	Baustellenprospekt
Utili Tunne Makuh Chiba	ty 1, ari, Pref.	J	New Tokyo Int. Air- port Authority	a) 5.1979 b) 10.1981	D ₄ = 2,50 m D = Dm = 3,45 m Lm = 5,10 m	n 1311 m n		Okumura Fujita Takenaka	T + S	≃ 18 m	20 -23 m	CT D	kumura :	12×1000= 12000 kN		Gußeisen- tübbinge			max 12,6 m/d ø 7,2 m/d (2 Schichten)	Schildgelenk; Bentonitsuspension; Schildschwanzdichtung wegen schlechter Tübbinge zerstört und ausgetauscht, da- bei Tunnel unter 0.9 bar überdruck	Harding (1981)
Main limin Tsuch Akita	Sewer a und izaki, City	J	Sewage Bureau Akita City	a) 1980	D ₄ = D = 2,55 m D ₆ = 2,68 m L ₆ = 4,95 m	1034 m a	70 m	Tekken	gS, mS + G max ø200 mm N ≃ 30 k=10 ⁻² -10 ⁻⁴ m/s	3-5 ш	1,8-3,8 п	n Ko	omatsu :	10×600= 6000 kW	310 kNm					Schneidrad mit Disken; Schildgelenk; Brecher hinter dem Schild; Injektionen zur Verringerung der Setzungen	Unterlagen der Fa. Kommatsu
Sugar Condu Tokyc	o it,	J	Tokyo Electric Power Co.	a) 1980 b) 1981	D _s = D = D _s = 5,20 m L _s = 5,72 m	1223 m	260 m	Kajima	T + U + S	15,7 m		Ki	itsubishi 2	22000kN	1250 kNm						Prospekt der Fa. Kajima
Sewer Kong Kaohs	Cheng- Road, iung	Tai- wan	Ret-Ser Engng. Agency	a) 5.1980 b) 10.1983	D ₄ = 2,80 m D = 3,15 m D ₈ = 3,27 m L ₈ = 5,07 m	n 3356 m n n	200 m		T + U (≃15%); S U = 4-10 k=10 ^{-€} -10 ⁻⁹ m/s	7,5-10 m	6,5-10 m			10×1000= 10000 kN	405 kNm	Stahlbeton tübbinge	- 17.5 cm 90 cm		max 21,6 m/d ø 5,4 m/d	Schneidrad mit overcutter; Grundwasser- absenkung, Injektionen; Betonpfähle und Reste einer Kaianlage angetroffen Maschine: G = 40 t	Chi et al. (1984)
Railw Tunne Yokob	ay 1, ama	J	Japan National Railway JNR	a) 1981	D ₄ = D = D ₅₅ = 6,77 I	2×382m= 764 m	210 m	Nishimatsu	S + Schluffstein	≃ 11 m	≃ 8 m	PT 2	Masch.			Stahlbeton tübbinge 7 Stck	90 cm			Unterquerung der Shinkansen-Linie, max zul. Setzung 2mm, Injektionen er- forderlich	Sawada/ Wishihira (1980)
Sewer Tunne Asahi City	l, kawa	J		a) 1982	D ₄ = 1,20 m D = D ₅ = 1,46 m L ₅ = 3,30 m	n 184 m n		Okumura	U + S + G max ø 280 mm N>45; U=1,7 k=10 ⁻³ -10 ⁻⁴ m/s	11 m	6,4 ш	0	kumura (6×294= 1764 kN	102.9 kHm				max 12,2 m/d ø 7,4 m/d	Rohrvortrieb; Brecher (3t/h) hinter dem Schild	Kawarabata (1983)
Oyata Water Nakag	Storm Sewer, awa	J	Sewage Bureau Tokyo	a) 2.1982 b) 2.1983	$D_{s} = 6,00 \text{ m}$ $D = 7,20 \text{ m}$ $D_{s} = 7,35 \text{ m}$ $L_{r} = 7,15 \text{ m}$	n 688 m n	100 m	Maeda	T = 0-1	13-14 m		IT M	itsubishi 3	28×1700= 47600 kN	4590 kNm	Stahlbeton tübbinge	- 35 cm 90 cm		X	3 Schächte; 2 Mixer	Baustellenprospekt

-									Japani	sche	Sue	spensio	DIREC	hilde						-
			Projek	t			-	Baug	rund			Ка	schi	ne	Auskleid	lung	Setzung	Leistung	Bemerkungen	Literatur
Nr. Bauwerl Ort	, La	nd Bauberr	a)Baubegi b)Bauende	nn Durchmesse Schildläng	r Tunnel- e länge	min R	Firmen	Boden	überdeckung über der	Vasser Firste	Тур	Hersteller	max P	шах Ит	Art	Dicke Breite	Gelände oberfl.	Vortriebege- schwindigkeit	7	
21 U-Bahn, juku-L: Nishim: Stat.,?	Shin- J ne, zue okyo	Trans- portatio Bureau Tokyo	a) 5.198 n b) 7.198	2 D _i = 6,70 5 D = 7,30 D _S = 7,45 L _S = 7,05	m 2×1425m= m 2850 m m		-	U + S, weich N = 0-40 k=10 ⁻⁶ -10 ⁻⁷ m/s	7-14 m S	5-9,5 m	IT	Mitsubishi 2 Masch.	24×2000= 48000 kN	4680 kWm	Stahlbeton- tübbinge 4 + 2 + 1	30 cm 90 cm		119 m/Жо	Schneidräder mit 1 copy cutter (90mm); 2 Mixer	Baustellenprospekt
22 Sewer Morigas Tokyo	J aki,	Sewage Bureau Tokyo	a) 9.198 b) 11.198	2 D _i = 8,60 4 D = 9,50 D _B = 9,70 L _B =12,03	m 1667 m m m	220 m	Taisei Okumura Tekken	U + S + Kieslagen N = 0-50 1.M. 20	15,4-27,2 ш	22-24 m	IT		32×3000= 96000 kW	13950 kHm	Stahlbeton- tübbinge 6 + 2 + 1	45 cm 90 cm			Schneidrad mit 2 copy cutter (202 mm) 5 Mixer	Prospekt der Fa. Taisei
3 Nambu 1 ment Pl Tunnel, Tokyo	reat- J ant	Sewage Bureau Tokyo	a) 9.198 b) 11.198	2 D ₄ = 8,60 4 D = 9,50 D ₅ = 9,70 L ₅ = 9,00	m 1667 m m m . m	150 m	Kajima	U + S	15,4-29 m	22-24 ш		Kawasaki	82500 kM	12450 kBm'						Prospekt der Fa. Kajima
4 U-Bahn, juku-Li Minami Tokyo	Shin- J ne, Stat.	Trans- portatio Bureau Tokyo	a) 10.198 n b) 7.198	2 D _i = 6,70 5 D = 7,30 D _s = 7,45 L _s = 6,35	m 2×925m= m 1850 m m		Taisei	U + S; N = 0-50 k ≃ 10 ^{-s} m/s	6,7-8,1 m	5,3-6,7m	IT	IHI 2 Masch.	24×2000= 48000 kN	6360 kWm	Stahlbeton- tübbinge 4 + 2 + 1	30 ст 90 ст	0-10 mm	97 m/Mo	Schneidräder mit 2 copy cutter (235mm); 4 Mixer	Baustellenprospekt
5 Storm V Tunnel nogawa, Osaka	ater J Hira-		a) 12.198 b) 198	2 D _i =10,00 5 D =11,00 D _S =11,22 L _S = 9,00	m 1276 m m m	600 m	Ohbayashi Tekken Fudo Constr	T, U, G + S, dicht k≃2-5×10 ^{-s} m/s N= 1.M. 30	22-23 m		IT	Hitachi Zosen	36×3000= 108000kM	21300 kMm	Stahlbeton- tübbinge 6 + 2 + 1	50 сш 100 сш			Schneidrad mit 4 copy cutter und Sensor für Überschnitt; 4 Mixer; Maschine: G = 1650 t, 72 Teile	Baustellenprospekt Hashimoto et al. (1984) Kurosawa/Yamamoto H.H. (T&T, 6/1984, S.9)
6 U-Bahn, juku-Li Shinoza Tokyo	Shin- J ne, kiSt.	Trans- portatic Bureau Tokyo	a) 2.198 n b) 8.198	$\begin{array}{llllllllllllllllllllllllllllllllllll$	m 2×215m= m 430 m m		Dai Nippon Constr.	U + S; Sand: N>50 k = 10 ⁻⁴ m/s U = 2-3	8-9 m		IT	Kawasaki	20×2000= 40000 kW	7540 kNm	Stahlbeton- tübbinge 4 + 2 + 1	30 cm 90 cm		61 ш/Жо	2 Mixer	Baustellenprospekt
7 Oyata S Water S Phase 1 Tokyo	torm J ewer '	Sewage Bureau Tokyo	a) 7.198 b) 1.198	3 D _s = 5,70 5 D = 4,75 D _s = 5,83 L _s = 5,90	m 1453 m m m	25 m	Naeda	U + S sehr locker, N ≈ 2	5,2-7,2 ш	2-5 m	IT	Mitsubishi	20×1500= 30000kN	2250 kNm	Stahlbeton- tübbinge 6 + 1	22,5 cm 90 cm		8 m/d	Baugrund enthält Methangas; 3 Schächte; kein Brecher; Tonsuspension ohne Zu- sätze; 4 Filterpressen; 2 Mixer; Maschine: G = 230 t	Baustellenprospekt
8 Sewer Otagawa Hiroshi	ј , ша	Sewer Bureau Hiroshin Prefectu	a) 10 198 b) 3.198 a re	3 D ₄ = 3,05 4 D = 3,35 D ₈ = 3,48 L ₈ = 4,81	m 379 m m m	90	Kumagai	T+U (≃10%) fS, locker N=4-18; U≃5 k≃10 ⁻⁵ m/s	2,6-12 ш	6-9 m unter Fluß		,	10000 kW		Stahl- u. Stahlbeton- tübbinge	15/- cm 90 cm		ø 8,8 m/d	Schneidrad mit copy cutter (125 mm); z.T. mit Injektionsschirm um den Schild	Moromoto et al. (1984)
9 Sewer, Tokyo	J	Sewage Bureau Tokyo	a) 10.198 b) 9.198	3 D _i = 5,90 5 D = 6,50 D _B = 6,70 L _B = 6,18	m 1772 m m m	70 m	Tekken	V + S	6-21,5 ш				26×1500= 39000 kM	2122 kWm	Stahlbeton- tübbinge 4 + 2 + 1	30 ст 90 ст	≃ 1 mm	max 13 m/d (2 Schichten)	Schildgelenk; copy cutter (200 mm); 2 Mixer; Suspension aus Tonmehl; Holzpfähle angetroffen, Druckluft- schleuse im Tunnel eingebaut	Baustellenprospekt
0 Sewer 1 Mexiko	unnel Me: ko	di- Depart- mento de Distrito Federal	Vortrieb: 1 a) 6.198 b) 12.198	D _i = 3,20 D = 3,85 D ₀ = 4,00 L ₀ = 6,30	m 1450 m m m		Solum	T, sehr weich	≃ 11 m			Okumura			Stahlbeton- tübbinge 6 Stck	- 100 cm	< 20 mm	ø 13 m/d	1. Einsatz eines Suspensionsschildes in Amerika	N.N. (T&T, 12/1984, S.8)
1 Storm W Tunnel gawa, Ka wa City	ater J Edo- shi- ,Chiba	Kashiwa City	a) 6.198 b) 11.198	4 D ₄ = 2,65 5 D = 2,95 D ₆ = 3,08 L ₆ = 4,42	m 1436 m m m	180 m	Taisei	T + U + S N = 10-30 U = 25-32	13,2- 20 m	11,5 m	CT	Hitachi	10×800= 8000 kN	420 kNm	Tübbinge	15 cm 90 cm	0-2 mm	ø 221 m/Mo	Schneidrad mit 2 overcutter (100 mm); 1 Mixer; Suspension aus Tonmehl	Baustellenprospekt
2 Sewer Los 4, Cairo	unnel Eg	1	a) 1.198	5 D _s = 4,00 D = D ₅ = 5,15 L ₆ = 6,20	m 1616 m + 1900 m = m m 3516 m		Lilley Int. Misr Engng.	T + U + G,s max ø 250 mm	≃ 20 m			Markham (Lizenz v. Okumura) 2 Masch.	24000 kN	3480 kNm	Stahlbeton- tübbinge				Backenbrecher (max ø250 mm) eingebaut Maschine: G = 160 t	N.N. (T&T, 12/1985, S. 13) N.N. (World Construction, 2/1984) N.N. (T&T, 3/1987, S. 9)
3 U-Bahn, Lille, Ligne 1 Los 8	F	Commu- naute Urbaine de Lille	Vortrieb: a) 6.198	D₁ = 5 D ∓ Ds = 7,65	900 m m		Bouygues Kawasaki	S + G Muschelkalk		≃ 10 m		Fives-Cail Babcock (Lizenz v. Kawasaki)			Stahlbeton- tübbinge 7 + 1	35 ст				Langer (1986) N.H. (T&T, 9/1985), S.9)
4 Sewer 1 Los 4, Cairo	unnel Eg	7	a) 198	$D_{4} = 5,00$ D = 0 $D_{5} = 6,11$ $L_{5} = 6,60$	m 1000 m + 600 m = m m 1600 m		Lilley Int. Misr Engng.	S + G				Markham (Lizenz v. Okumura)	33000 kN	6000 kNm	Stahlbeton- tübbinge			max 30 m/d ø 24 m/d	Maschine: G = 220 t	N.N. (T&T, 12/1985, S. 13) N.N. (Vorld Construction, 2/1984) N.N. (T&T, 3/1987, S. 9) N.N. (T&T, 7/1987, S. 11)

										Japan	lsche 1	Erdo	irucke	schild	le				~		
_				Projek	t				Baug	rund			Ка	schin	e	Auskle	idung	Setzung	Leistung	Bemerkungen	Literatur
Nr.	Bauwerk, Ort	Land	Bauherr	a)Baubegin b)Bauende	n Durchmes Schildlä	ser Tunnel nge länge	- min R	Firmen	Boden	überdeckung über der	Wasser Firste	Тур	Herstelle	r max P	max H _T	Art	Dicke Breite	Gelände oberfl.	Vortriebege- schwindigkeit		
1	Cable Tunne Keihin/Ushi oda,Sect.11 Yokohama	1 J -	Tokyo Electric Power Co.		D: = D = 5,6 D: = 5,8 L: = 6,1	912 m 5 m 0 m 4 m			U + S N ≤ 3; Tonstein N > 50	14,3-20,2 m	ı	WP								im Sand und Tonstein Zugabe von Bentonitsuspension; 2 overcutter	Maeda et al. (1984)
2	Sewer Toyos 3-4-chome Koto-ku, Tokyo	u J	Sewage Bureau Tokyo	a) 2.1975 b) 10.1976	D ₄ = 2,5 D = 2,7 D ₈ = 2,8 L ₈ = 4,0	5 m 532 m 5 m 7 m 9 m	100 m	Sato Kogyo	S,u N = 1-5 k=10 ⁻⁹ -10 ⁻⁷ m/s	5,5-6,5 m s	4,5 m	EPB		6400 kH	280 kWm	Stahl- tübbinge	10 cm	12 mm	max 11,7 m/d © 5,4 m/d (2 Schichten à 10 h)		Abe et al. (1978) Ishihara (1978 u. 1979) Unterlagen d. Fa. Sato Kogyo (unveröff.)
3	Sewer Shio- hama,1-chom Koto-ku, Tokyo	J	Sewage Bureau Tokyo	a) 11.1975 b) 2.1977	D ₁ = 2,5 D = 2,7 D ₂ = 2,8	0 m 110 m 5 m 7 m		Sato Kogyo	T + U,s N = 0-3 k=10 ⁻⁹ m/s	22 ш	20,5 m	EPB		3600 kW		Stahl- tübbinge	12,5 cm	8 mm	max 9 m/d ø 5,4 m/d (2 Schichten à 10 h)		Abe et al. (1978) Ishihara (1978 u. 1979)
4	Sewer Shinozaki/ Edo, Tokyo	J	Sewage Bureau Tokyo	a) 10.1976 b) 11.1978	D _i = 7,6 D = 8,3 D _m = 8,4 L _m = 6,7	0 m 1041 m 0 m 3 m 0 m	150 m	Taisei	T + U + S N = 0-5 z.T.50 k=10 ⁻⁴ -10 ⁻⁶ m/s	13-15 m) ;	12-14 m	ИІ	IHI	28×2500= 70000 kN	9840 kW	a Stahlbeto tübbinge 8 Stck	n-35 сш 90 сш	30-50 mm	Sand: © 2,7-3,6 m/d Ton/Schluff: © 5,4-9,0 m/d	3 Förderschnecken; mehrere copy cutter; Bau d. Schildes 12 Mon., Montage im Tunnel 2,5 Mon.; Ringspaltfüllung durch PU außen auf d. Tübbingen u. Verpressung	Kakutani (1981) Prospekt d. Fa. Taisei Saito et al (1979)
5	Sewer Shin- ozaki, Edo- gawa-ku, Tokyo	J	Sewage Bureau Tokyo	a) 10 1976 b) 3.1979	$D_{s} = 4,7$ D = 5,1 $D_{s} = 5,2$ $L_{s} = 5,1$	0 m 1634 m 0 m 1 m 0 m	60 ш	Sato Kogyo	fS, locker; T+U ≈ 5-15%; N = 5-15 k=10 ⁻⁷ -10 ⁻⁶ m/s	10-12 m	10,5 m	WP		22×1200= 26400 kM	2700 kM	u. Stahlbeto u. Stahl- tübbinge	n-	7-15 mm	max 7,2 m/d ø 5,4 m/d	erster Einsatz eines WP EPB; copy cutter 115 mm	Abe et al. (1978) Ishihara (1978 u. 1979) Matsushita (1979 u. 1980); Miyata et al. (1980) Unterlagen d. Fa. Sato Kogyo (unveröff.)
6	Main Sewer Tennouji- Benten, Phase3, Osal	J	Sewage Bureau Osaka	a) 11.1976 b) 8.1981	D _s = D = 6,6 D _m = 6,7 L _m = 6,5	1380 m 0 m 5 m 5 m	200 m	Ohbayashi	T(7%)+U,s(37%) +G(56%) N = 0->50	0 4,3-13,3 m		EPB	Hitachi Zosen	24×1470= 35300 kW	5620 kM	1	-	20-50 mm	max 9,9 m/d s 7,2 m/d (2 Schichten)	Tunnel querte bestehenden U-Bahn Tunnel mit geringer überdeckung, Injektionen waren erforderlich; 2 Förderschnecken	Maitoh (1984 u. 1985) Referenzliste d. Fa. Hitachi Zosen
7	Cable Tunne: Tokyo	L J	Tokyo Electric Power Co.	a) 4.1977 b) 11.1979	D _s = 3,0 D = 3,3 D ₆ = 3,4	5 m 124 m 5 m 9 m	130 m	Sato Kogyo	U (~9%)+ S + (N = 15-50 k=10 ⁻⁴ m/s	3 10-12 m	5-7 в	WP				Stahl- tübbinge	15 ст 75 ст		ø 7,5 m/d	n e	Ishihara (1978 u. 1979) Matsushita (1979 u. 1980) Miyata et al. (1980) Unterlagen d. Fa. Sato Kogyo (unveröff.)
8	U-Bahn, Nagoya	J	City Transit Bureau Nagoya	a) 6.1977 b) 3.1981	$D_{s} = 6,7$ D = 7,3 $D_{ss} = 7,4$ $L_{ss} = 6,6$	0 m 966 + 0 m 915 = 5 m 1881 m 5 m		Ohbayashi Nishimatsu	T + U, N = 10-20; S, N = 10-50	16-24 ш	3-12 ш	EPB	IHI 2 Masch.	28×2000= 56000 kM	6570 kB	Stahlbeto tübbinge 5 + 2 + 1	n- 30 cm 90 cm	max 34 mm ø 20 mm	max 9,9 m/d	x	Baustellenprospekt Kakutani (1981) W.W. (Tunnels and Underground, 13/1982)
9	Water Tunne: Tokyo	LJ	Sewage Bureau Tokyo	a) 3.1978 b) 4.1980	D ₁ = D = D ₆ = 3,7	1045 m 1 m	170 m	Sato Kogyo	T+U (7-32%) + fS (N=50) k=10 ^{-s} m/s	16-25 m	13-22 ш	WP				Stahlbeto tübbinge	n-				Matsushita (1979 u. 1980) Miyata et al. (1980)
10	Sewer Tunne! Kanagawa	LJ		a) 7.1978 b) 3.1980	D _i = D = L _B = 4,9	678 m L m ⁻	gerade	Sato Kogyo	T+U (9-55%) + S,u (N=5-50) k=10 ^{-s} m/s	7 m	4 m	٧P				Stahlbeto tübbinge	n-				Matsushita (1979 u. 1980) Miyata et al. (1980)
11	Cable Tunne Osaka	l J		a) 7.1978 b) 3.1979	D _i = D = D ₀ = 1,9	374 m 3 m	150 m	Sato Kogyo	T+U (8-12%)+ S+G (N=50) k=10 ⁻⁵ m/s	7-8 ш		WP				Stahl- tübbinge					Matsushita (1979 u. 1980) Miyata et al. (1980)
12	Sewer Tunne Aichi Pre- fecture	L J		a) 2.1979 b) 3.1980	D ₁ = D = D ₂ = 3,9 L ₂ = 5,3	718 m 4 m 2 m	500 m	Sato Kogyo	T+U (4-13%)+ S+G (N=10-50) max ø300 mm k=10-3-10-sm/s	8 m	7,5 m	WP		16×1000= 16000 kM	1365 kW	1 Stahlbeto tübbinge	n- 90 cm		max 12,6 m/d ø 5,2 m/d max 222 m/Mo	copy cutter	Miyata et al. (1980) Oizumi et al. (1980)
13	Sewer B Line, Chien Kuo, N.Rd.Se Taipei	Tai- wan ec	Sewage Bureau Taipei	a) 4.1979 b) 10.1981	$D_{s} = 3,8$ D = 4,2 $D_{s} = 4,3$ $L_{m} = 5,4$	0 m 804 m 0 m 5 m 5 m	80 m	RET-SER - Engineering	T+U (≃30-70%) 5 m = 0-15 k=10 ^{-∞} -10 ⁻⁷ m/s	4,8-9,1 m	2,8-7 m	MI	IHI	16×1000= 16000 kN	1770 kM	Stahlbeto tübbinge	n- 20 cm 90 cm		max 9 m/d ø 4,7 m/d	Vortriebsgeschwindigkeit wurde durch Herstellung der Tübbinge begrenzt; overcutter	Chi et al. (1984) Kakutani (1981)
14	Cable Tunne: Kanagawa Prefecture	L, J		a) 6.1979 b) 5.1983	D ₁ = D = D ₅₅ = 5,8	658 m L m	350 ш	Sato Kogyo	U+S+Tonstein M = 0-50 T+U=(60-80%) k=10 ⁻⁷ m/s	15-27 m	12,5-24,5	m WP				Stahlbeto tübbinge	n				Miyata et al. (1980)
15	Cable Tunne! Kanagawa Prefecture	L, J		a) 6.1979 b) 5.1983	D _s = D = D _s = 5,2	1077 m	200 m	Sato Kogyo	Tonstein + fS N = 50 T+U=5-10% k=2×10 ⁻⁴ m/s	19-31 m	17-29 m	WP				Stahlbeto tübbinge	n-				Miyata et al. (1980)
16	Main Sewer Shukugahara, 2. Stage, Kawasaki	J	Sewage Bureau Kawasaki City	a) 7.1979 b) 3.1982	$D_{4} = 2,39$ D = 2,59 $D_{64} = 2,63$ $L_{65} = 5,1$	5 m* 1393 m 5 m 3 m 1 m		Kajima	S (16%) + G (83%) max ø350 mm N = 20 -50	10 m	7 ш	ЖI	Komatsu	10×800= 8000 kM	480 kNm	Stahl- tübbinge	10 cm 75 cm				Sato (1984)
17	Sewer Tunnel Toyama Pre- fecture	J		a) 8.1979 b) 10.1980	D ₄ = D = D ₅ = 2,8'	1361 m	200 m	Sato Kogyo	T+U (2-6%) + fS+G (N=30-50) k=10-3-10-5m/s	4-7 m	3-6 ш	WP				Stahlbetc tübbinge	n				Miyata et al. (1980)
18	Sewer Tunnel N-2, San Francisc	USA :0	City and County of San Franc	a) 10.197 b) 12.198	9 D ₄ = 3,29 1 D = 3,59 D ₅ = 3,79 L ₆ = 5,09) m 915 m 5 m) m	300 m	Ohbayashi	T + U, weich z.T. S, locker	7,5-11,5 m	4,5 m	EPB	Mitsubishi	12×1000= 12000 kW	884 kNm	Stahl- tübbinge 3 + 2 + 1 Liner Pla	tes	ø 25 mm	max 30 m/d ø 9,1 m/d max 203 m/Mo	erstes EPB in den USA; etwa 90 Holz- pfähle ø 30 cm angetroffen, Schneidrad hatte für Holz spezielle Schneidezähne; overcutter 120 mm;	Clough (1983); Kurosawa (1981) Maitoh (1984); Yammato et al. (1983) Referenzitet d. Fa. Mitsubishi M.M. (Engineering Mews Record, 1981)
19	U-Bahn, Line Wo.3 Chichibu St. Nagoya	J	City Transit Bureau Nagoya	a) 3.1980 b) 3.1983	$D_{s} = 6,70$ D = 7,30 $D_{m} = 7,45$ $L_{m} = 7,45$) n 2×884=) n 1768 m 5 m	600 m	Kajima Okumura	G, z.T. S max ø500 mm N > 30 k=10 ⁻² -10 ⁻³ m/s	12,8-16,4 m	7,5 m	NI	Kawasaki 2 Masch.	28×2000= 56000 kN	8750 kBr	Stahlbetc tübbinge	90 cm	10-50 mm		öffnungen im Schneidrad für max ø 500 mm Disken nur am Außenrand des Schneidrades Förderschnecke ø 1,2 m, 1=11,2 m	Ishitani et al. (1984) Kanematsu (1982) Prospekt d. Fa. Kajima Referenzliste d. Fa. Kawasaki
20	Cable Tunnel Kobe	, J		a) 5.1980b) 2.1981	D ₄ = D = D ₆ = 1,98	201 . m	gerade	Sato Kogyo	S + G N = 5-30 T+U = 10-17% k=2×10 ⁻⁴ m/s	8-11 m	6-9 m	WP				Stahl- tübbinge				-	Miyata et al. (1980)

Des Des <th>Litonatur</th> <th></th> <th>nadakt</th> <th>D</th> <th></th> <th></th>	Litonatur																	nadakt	D		
Bx Bx<	Literatur	Bemerkungen	Vortriebege-	Gelände	Dicke	Auskleid	max II.	maxP	Hersteller	Тур	Vasser	vberdeckung	Boden	Firmen	min R	Tunnel-	Durchmesser	a)Baubeginn	Bauherr	Land	Bauwerk,
Name Name <th< td=""><td></td><td></td><td>schwindigkeit</td><td>oberfl.</td><td>Breite</td><td></td><td></td><td></td><td></td><td></td><td>Firste</td><td>über der F</td><td></td><td></td><td></td><td>länge</td><td>Schildlänge</td><td>b)Bauende</td><td></td><td></td><td>Ort</td></th<>			schwindigkeit	oberfl.	Breite						Firste	über der F				länge	Schildlänge	b)Bauende			Ort
Chair of all all all all all all all all all al	Miyata et al. (1980)					Stahl- tübbinge				WP	7-24 ш	14-39 m	fS M = 50 T+U = 6% k=10 ⁻⁵ m/s	Sato Kogyo	250 m	1475 m	D ₄ = D = D ₂ = 2,67 m	a) 6.1980b) 8.1981	Sewage Bureau Tokyo	el, J	Sewer Tunne Tokyo
Sector Appendix Appendix Source Appendix S	.ld- Baustellenprospekt zon	Ringspaltverpressung außen am Schild- schwanz; in Sandbereichen Zugabe von Bentonitsuspension	ø 4,5 m/8h ø 200 m/Mo		30 cm 90 cm	Stahlbeton- und Stahl- tübbinge	5310 kWm	21×2000= 42000 kW	IHI	KI		7-11,5 m	T, z.T. mit S N = 0-5 k=10 ^{-m} m/s	Taisei	600 m	2×1177= 2354 m	$D_{i} = 6,20 \text{ m}$ D = 6,80 m $D_{0} = 6,93 \text{ m}$ $L_{0} = 6,60 \text{ m}$	a) 6.1980b) 9.1983	Municipal Tranport. Bureau Osaka	J .,	U-Bahn, Line 4,5 Takaida St Osaka
No. 5 No. 5 No. 5 No. 6 P + 5 No. 6 P + 50 No. 6 No. 6 P + 50 No. 6 No. 6 <td>Harding (T&T, 5/1981) Referenzliste d. Fa. Hitachi</td> <td></td> <td>max 6,3 m/d ø 5,4 m/d (1 Schicht å 10 h)</td> <td></td> <td></td> <td>Tübbinge 5 + 1</td> <td>1260 kWm</td> <td>18×1000= 18000 kN</td> <td>Hitachi</td> <td>DK</td> <td>5,2 m</td> <td>7,5 m</td> <td>fS + G max ø40 mm</td> <td>Daiho Totetsu- Kuyyo Kogyo</td> <td>-</td> <td>1000 m</td> <td>D_i = 4,00 m D = D₂ = 4,91 m</td> <td>a) 1981</td> <td>Kanagawa Prefecture</td> <td>mi J</td> <td>Sewer Sagan River, Chigasaki City</td>	Harding (T&T, 5/1981) Referenzliste d. Fa. Hitachi		max 6,3 m/d ø 5,4 m/d (1 Schicht å 10 h)			Tübbinge 5 + 1	1260 kWm	18×1000= 18000 kN	Hitachi	DK	5,2 m	7,5 m	fS + G max ø40 mm	Daiho Totetsu- Kuyyo Kogyo	-	1000 m	D _i = 4,00 m D = D ₂ = 4,91 m	a) 1981	Kanagawa Prefecture	mi J	Sewer Sagan River, Chigasaki City
Proce Cal: J Jaky J Jaky J Jaky J Jaky Jaky<	Hagimoto et al. (1984) Referenzliste d. Fa. Hitachi Unterlagen d. Fa. Hitachi (unveröff.)						780 kNm	12×1000= 12000 kN	Hitachi	DK	≃22	10,9-11,8 m	sU + fS; fS: ≃90% N = 10-20	Daiho		2055 m	D ₁ = D = D ₂ = 3,91 m	a) 1981	Kaoshiung Municipal Government	Tai- wan	Main Sewer Kaoshung, Taiwan
Alta Fuel 2 Description 2 Descripti	Hagimoto et al. (1984) Referenzliste d. Fa. Hitachi Unterlagen d. Fa. Hitachi (unveröff.)				15,5 ст 90 ст	Stahl- tübbinge 4 + 2 + 1	1680 kNm	20×1200= 24000 kN	Hitachi	DK	14-32 m	17-45 m	fS+Schluff- stein	Daiho	200 m	556 m	D _i = 4,55 m D = 4,90 m D ₅ = 5,03 L ₅ = 4,93 m	a) 1.1981b) 6.1981	Tokyo Electric Power Co.	e J - a,	Power Cable Tunnel, Kei- hin Ushioda Yokohama
Description Tail- Rescaling Raticipal (sec) Tail- (sec) Raticipal (sec) 1000 M (sec) 700 MB (sec) Rescaling $s = 7 \text{ sol}$ (sec) (sec) $s = 7 \text{ sol}$ (sec)	- Ishimoto (1984)	Schildmantel hatte Stabilisierungs- flossen; overcutter	max 18,9 m/d ø 9,0 m/d	max 15 mm ø 11 mm	12,5 cm 90 cm	Stahl- tübbinge	392 kNm	8×800= 6400 kN			5,8-6,3 m	6,5-7 m	T (>50%) + U + fS N = 0-5 k=10 ⁻⁴ m/s	Nishimatsu	100 m	700 m	D _i = 2,50 m D = 2,75 m D _s = 2,87 m L _s = 4,07 m	a) 5.1981 b) 10.1982	Sewage Bureau Tokyo	h J r	Kahei Norti Storm Vate: Tunnel, Tokyo
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	Chen et al. (1984) Referenzliste d. Fa. Hitachi	· .	ø 7 m/d	ž.		Stahlbeton- tübbinge	780 kNm	12×1000= 12000 kN	Hitachi	m DK	8,5-12,5 m	7-21 m	fS-mS, u U = 4-6 N = 10-15 k=10 ⁻⁶ -10 ⁻⁶ m/s	BES Engng. Daiho		1223 ш	D _i = D = 3,80 m D _e = 3,91 m L _s = 4,27 m	a) 5.1981b) 2.1983	Municipal Government Kaoshiung	Tai- wan	Sewage Tunnel, Kaoshiung
Sewer (Inters) J. Subscience Solution Solution </td <td>Chi et al. (1984)</td> <td></td> <td></td> <td></td> <td>20 ст 90 ст</td> <td>Stahlbeton- tübbinge</td> <td></td> <td></td> <td></td> <td>EPB</td> <td>4-5 m</td> <td>7,5-8,5 m</td> <td>U + S N = 5-12 k=10^{-e}-10⁻⁷m/s</td> <td></td> <td>150 m</td> <td>1444 m</td> <td>D_i = 3,80 m D = 4,20 m D_m = 4,35 m</td> <td>a) 8.1981</td> <td>Sewage Bureau Taipei</td> <td>Tai- wan ei</td> <td>Sewage B Line, Min Chuan E.Rd Sect., Taip</td>	Chi et al. (1984)				20 ст 90 ст	Stahlbeton- tübbinge				EPB	4-5 m	7,5-8,5 m	U + S N = 5-12 k=10 ^{-e} -10 ⁻⁷ m/s		150 m	1444 m	D _i = 3,80 m D = 4,20 m D _m = 4,35 m	a) 8.1981	Sewage Bureau Taipei	Tai- wan ei	Sewage B Line, Min Chuan E.Rd Sect., Taip
U-Bab.Nat J Dation B3 Trayo J Trayo J Trayo J J Soluti Lis, Bar M J Soluti Lis, Bar M J Solut Lis, Bar M J Soluti Lis, Bar M <th< td=""><td>Referenzliste d. Fa. Hitachi Unterlagen d. Fa. Bissan Constr. (unveröf</td><td></td><td></td><td></td><td>17,5 cm</td><td>Stahl- tübbinge</td><td>590 kNm</td><td>12×800= 9600 kW</td><td>Hitachi</td><td>MI</td><td></td><td>16 m</td><td>U,s N ≃ 0 k=1.3×10^{-e} m/s</td><td>Nissan Constr.</td><td></td><td>1439 m</td><td>D₁ = 2,80 m D = 3,15 m D₂ = 3,30 m L₂ = 4,30 m</td><td>a) 2.1982 b) 3.1983</td><td>Sewage Bureau Tokyo</td><td>no J</td><td>Sewer Hira: 1-chome, Adachi, Tokyo</td></th<>	Referenzliste d. Fa. Hitachi Unterlagen d. Fa. Bissan Constr. (unveröf				17,5 cm	Stahl- tübbinge	590 kNm	12×800= 9600 kW	Hitachi	MI		16 m	U,s N ≃ 0 k=1.3×10 ^{-e} m/s	Nissan Constr.		1439 m	D ₁ = 2,80 m D = 3,15 m D ₂ = 3,30 m L ₂ = 4,30 m	a) 2.1982 b) 3.1983	Sewage Bureau Tokyo	no J	Sewer Hira: 1-chome, Adachi, Tokyo
10 10 10 10 10 2.447- portation Kangya 5 (255) + (1 + 7,65 m) 5,4-19,4 m Ni 2 Manch 28-2000 9160 MB Schlbeder 50 cm au z 60 mm c = 6 m/d au z 60 mm z = 6 m/d au z 60 mm c = 6 m/d au z 60 mm z = 6 m/d au z 60 mm	Förder- Baustellenprospekt Maruck- Kanematsu (1982) uSen Miyazaki et al. (1964) m Referenzliste d. Fa. Kawasaki	unter dem Fluß 6m überdeckung; 2 Förder- schnecken (s 50 und 75 cm); 15 Erddruck- aufnehmer; Ringspaltverpressung außen am Schlidschwanz; Teststrecke 200 m	ø 5,4 m/d	13 mm	30 ст 90 ст	Stahlbeton- tübbinge 4 + 2 + 1	7500 kNm	36×1500= 54000kN	Kawasaki 2 Masch.	m EPB	8,5-11,4 m	9,5-12,4 m	T + U (95%) N = 0-1	Okumura Tekken	2000 m	2×870= 1740 m	$D_s = 6,70 \text{ m}$ D = 7,30 m $D_m = 7,45 \text{ m}$ $L_m = 6,90 \text{ m}$	a) 5.1982b) 12.1984	Trans- portation Bureau Tokyo	n- J .,	U-Bahn, Shi: juku-Line, Ichinoe St Tokyo
Moin Bewer, TakyoJSewage ba)1033 bD_ = D_m = 6,21 mDistanceTaiset DataT + U + S bain15-10,5 mDKHitachi S0000 H30.0200 m 0000 H7080 HmSewer Ulu Singaporea)1033 D_m = 5,75 mD_m = D_m = 3,75 m3007 m150 mOblogradhi T9,5 mEFBKitaubiahi 124000 HMSchalbeton- tobhingeCable Tunnel J Takino-Saku- rayam, Bereaua)1.1933 D_m = 2,60 m0.93 m100 mSipport PiportHitachi Locond10000 HM630 HMTubbinge12,5 cm 90 cmFörderschnecke zweigeteilt d.1 ohne Seele; overcutter 100 mmCable Tunnel J Takino-Saku- rayam, Toyama)1.1933 D_m = 2,60 m649 MSt + 0 e 2,75 me 28,7 mDKHitachi 10000 HM630 HMTubbinge12,5 cm 90 cmFörderschnecke zweigeteilt d.1 ohne Seele; overcutter 100 mmSeware Koro- ToyamJ D_m = 2,60 ma)1.93 b L = 2,75 m D_m = 3,00 mKajimS + 0 e 0 m= 0 mDKHitachi 10000 HMG30 HMTubbinge12,5 cmSeware Tunnel J Toyama)1.94 b D = 2,75 m D_m = 2,60 mS + 0 m= 0 mDKHitachi 10000 HMStahl- tubbinge100 andSeware Tunnel J Toyama)1.94 b D = 3,00 mTaisei T + U + S2 m1,5 m10.040 b cmStahl- tubbinge10 am10 and (2 Schiches)Seware Tunnel J Toyamb)1.94 b D = 2	ng, Kato (1984) Y	unter dem Fluß nur 5,4 m überdeckung, Injektionen erforderlich; 2 Förder- schnecken (ø 1,2 u. o,8 m); 1 copy cutter	ø≃6m/d	max 50 mm ø 20 mm	30 ст 90 ст	Stahlbeton- tübbinge	9160 kWm	28×2000= 56000 kN	2 Masch.	ЖI		5,4-19,4 m	S (25%) + G (75%) max ø500 mm unter Fluß	Kumagai		2×847= 1694 m	D ₁ = D = 7,30 m D ₂ = 7,45 m L ₂ = 7,90 m	a) 1983	City Trans portatica Bureau Nagoya	3 J er	U-Bahn No Shonai Riv Section, Nagoya
Sever Ulu Pandan, Singar perea)1983 D, = D, = <b< td=""><td>Referenzliste d. Fa. Hitachi Unterlagen d. Fa. Hitachi (unveröff.)</td><td></td><td></td><td></td><td>×.</td><td></td><td>7080 kWm</td><td>30×2000= 60000 kW</td><td>Hitachi</td><td>DK</td><td></td><td>15-19,5 m</td><td>T + V + S</td><td>Taisei Daiho</td><td></td><td>1258 m</td><td>D₁ = D = D₂ = 8,21 m</td><td>a) 1983 b) 1984</td><td>Sewage Bureau Tokyo</td><td>, J</td><td>Main Sewer Tokyo</td></b<>	Referenzliste d. Fa. Hitachi Unterlagen d. Fa. Hitachi (unveröff.)				×.		7080 kWm	30×2000= 60000 kW	Hitachi	DK		15-19,5 m	T + V + S	Taisei Daiho		1258 m	D ₁ = D = D ₂ = 8,21 m	a) 1983 b) 1984	Sewage Bureau Tokyo	, J	Main Sewer Tokyo
Cable Tunnel J Takiko-Saku- rayama,a) 1.1983D_s = 2,90 m b) 3.1984 $0.9 m$ s = 3,28 m L = 4,46 mMippon Te- lecommunic. Constr. Co. Dalho $0.8 + 3.7 m$ DKHitachi10000 kH630 kHm rubingeTubbinge 90 cm12,5 cm 90 cmForderschnecke zweigeteilt d.1 ohne Seele; overcutter 100 mm pon Takiko-Saku- constr. Co. DalhoForderschnecke zweigeteilt d.1 ohne Seele; overcutter 100 mm Lecommunic. Constr. Co. DalhoDKHitachi10000 kH630 kHm rubingeTubbinge 12,5 cm 90 cmForderschnecke zweigeteilt d.1 ohne Seele; overcutter 100 mm constr. Co. DalhoSewer Funnel J Tokyoa) 1094 $D_{\pm} = 2,45 m$ D = 2,45 mKajimaS + 0= 8 mNIKitsubiniStahl- tubbinge10 mm (2 Schild mit Gelenk; overcutter Forderschnecke zweigeteilt d.1 constr. Co. DalhoSewer Funnel J TokyoSewage D 12.1995a) 6.1984 $D_{\pm} = 2,45 m$ m a = 2,45 mTaiseiT + U + S S 2 m2 m1,5 m10x600= 6000 kH486 kHm child mit Gelenk; overcutter forderschnecke zweigeteilt d.1 constr. Sever forderschnecke zweigeteilt d.1 tubbingeSever Tunnel J Tokyob) 12.1995D = 2,45 m m a = 2,45 mOkumura T + U + S 2 m1,5 m10x600= stahl486 kHm child mit Gelenk; forderschnecke zweigeteilt d.1 tubbingeSever Tunnel J Tokyoa) 7.1984D_{\pm} 2,45 m m a = 2,28 m Le = 4,55 m0.0 kumura S + 0 = 995 km S + 0 = 995 kmNII S + 0 = 995 kmNII S + 0 = 995 km S + 0 = 995 kmNII S + 0 = 995	N.N. (T&T, 1/1985, S.8) Referenzliste d. Fa. Mitsubishi	· · ·				Stahlbeton- tübbinge	848 kNm	12×1000= 12000 kW	Mitsubishi	EPB		9,5 ш	T .	Obbayashi	150 m	3067 m	D ₄ = D ₅ = D ₅ = 3,75 m L ₅ = 4,60 m	a) 1983		Singa pore	Sewer Ulu Pandan, Singapore
Sewer Kuro- maki/Iwace, Bureau ToyamJSewage b 10.1984a) 6.1983 $D_{a} = 2,50 \text{ m}$ Kajima S + GS + G= 6 mDKTubbinge12,5 cmSewer Tunnel J Tokyoa) 1984 $D_{a} = 2,68 \text{ m}$ TaiseiS + G= 6 mDKTubbinge12,5 cmSewer Tunnel J Tokyoa) 6.1984 $D_{a} = 2,68 \text{ m}$ TaiseiS + G= 8 mNIKitsubishiStahl- tubbinge100 cmSewer Tunnel J Tokyoa) 6.1984 $D_{a} = 2,90 \text{ m}$ 60 mTaiseiT + U + S2 m1,5 m10x600= 6000 kH606 kJm5tahl- tubbinge10 mm10 m/d (2 Schild mit Gelenk; overcutter)Sewer Tunnel J Tokyoa) 7.1984 $D_{a} = 1,50 \text{ m}$ 250 mOkumura S + G = 95% max s 250 mmT + U = 5% S + G = 95% max s 250 mm10 m9 mNIOkumura 8x600= 4800 kH5x600= Stahl- tubbinge3 mmSchild mit Gelenk; Forderschnecks zweigeteilt d.1 and ohne Seele	it und Prospekt d. Fa. Daiho Referenzliste d. Fa. Hitachi	Förderschnecke zweigeteilt d.h. mit und ohne Seele; overcutter 100 mm			12,5 cm 90 cm	Tübbinge	630 kNm	10000 kW	Hitachi	DK		ø 28,7 m	U + S + G	Nippon Te- lecommunic. Constr. Co. Daiho	100 m	893 m	D _i = 2,90 m D = 3,15 m D ₂ = 3,28 m L ₂ = 4,48 m	a) 1.1983b) 3.1984		el J u-	Cable Tunn Takiko-Sak rayama, Nagoya
Sever Tunnel J Ragaoka Citya)1984 $D_4 = \begin{bmatrix} 687 \text{ m} \\ 0 = 3,00 \text{ m} \end{bmatrix}$ Taisei $S + G = 8 \text{ m}$ NINitsubishiStahl- tübbingeStahl- tübbingeStahl- tübbinge100 cmSewer Tunnel J Tokyo $b_1 12.1985$ $D_0 = 2,55 \text{ m}$ $D_4 = 980 \text{ m}$ 60 m Taisei $T + U + S$ 2 m $1,5 \text{ m}$ 1000 km 600 km 10 m/s Sewer Tunnel J Chiga Fre- fecturea)7.1984 $D_4 = 1,50 \text{ m}$ 123 m $C1 + U = 5\%$ $S + G = 95\%$ $N > 50$ $max # 250 \text{ m}$ 10 m 9 m NI $0kumura$ $8 \times 600 =$ 4800 km $5tahl-$ tübbinge 75 cm 3 mm Schild mit Gelenk; Forderschaecke zweigeteilt d. 1 und ohne Seele	Prospekt d. Fa. Kajima				12,5 cm	Tübbinge				DK	1	≃ 6 m	S + G	Kajima		649 m	D ₁ = 2,50 m D = 2,75 m D ₂ = 2,88 m	 a) 6.1983 b) 10.1984 	Sewage Bureau Toyama	- J , y	Sewer Kuro saki/Iwase Section 14 Toyama Cit
Sewer Tunnel J TokyoSewag Bureau Tokyoa) 6.1984 b) 12.1985 b) 12.1985 b) 22.45 m Le = 4,50 mDate980 m60 m TaiseiTaiseiT + U + S T + U + S c) m10,5 m10x600 = 6000 kW486 kWm tübbinge 6 Stahl tibbinge 6 Stahl10 m/l 10 m/l10 m/l Schild mit Gelenk; overcutter Förderschnecke zweigeteilt d. L und ohne SeeleSewer Tunnel J Chiga Pre- fecturea) 7.1984 b) 9.1986D = 2,15 m0kumura S 250 mT + U = 5% N > 50 max s 250 mm10 m P m10 m/l 6 Stahl10 m/l 10 m/l 6 Stahl10 m/l 10 m/l 10 m/l 3 mmSchild mit Gelenk; förderschnecke zweigeteilt d. L und ohne Seele	N. N. (Construction Industry International, 7/1984, S.63)				100 cm	Stahl- tübbinge			Mitsubishi	ЖI		≃ 8 m	S + G	Taisei		887 m	D ₄ = * D = 3,00 m	a) 1984		el J ty	Sewer Tunn Nagaoka Ci
Sewer Tunnel J a) 7.1984 D_{x} = 1,50 m 1238 m 250 m Okumura T + U = 5% 10 m 9 m NI Okumura Stahl - 3 ma Schild mit Gelenk; Förderschne geteilt, d.h. mit und ohne See geteilt, d.h. mit und o	mm; Baustellenprospekt it	Schild mit Gelenk; overcutter 150 mm; Förderschnecke zweigeteilt d.h. mit und ohne Seele	10 m/d (2 Schichten)	10 mm	75 сш	Stahl- tübbinge 6 Stck	486 kNm	10×600= 6000 kN			1,5 m	2 д	T + U + S	Taisei	60 m	980 m	D ₄ = D = 2,45 m D ₆ = 2,56 m L ₆ = 4,50 m	 a) 6.1984 b) 12.1985 	Sewage Bureau Tokyo	el J	Sewer Tunn Tokyo
	zwei- Raustellenprospekt	Schild mit Gelenk; Förderschnecke zwei- geteilt, d.h. mit und ohne Seele; Schneidrad außen mit Disken;		3 mm	75 сл	Stahl- tübbinge		8×600= 4800 kN	Okumura	И	9 ш	10 m	T + U = 5% S + G = 95% N > 50 max e 250 mm	Okumura	250 m	1238 m	D ₄ = 1,50 m D = 2,15 m D ₅ = 2,28 m L ₅ = 4,65 m	<pre>a) 7.1984 b) 9.1986 (geplant)</pre>		el J	Sewer Tunn Chiga Pre- fecture
Main Sewer J Seware 0 λ = 1100 m 40 m Maeda $T + U_{i5}$ 11,5 m 10 m EPB Hitachi Stahlbeton- 15 cm 5 -7 m/d Bodenförderung mit Dickstoffpu Siehlro, Tokohama $D = 4,19$ m $N = 0$ $5 + 1$ $5 + 1$	a Baustellenprospekt Referenzliste d. Fa. Hitachi	Bodenförderung mit Dickstoffpumpen	5-7 m/d		15 ст 90 ст	Stahlbeton- tübbinge 5 + 1			Hitachi	EPB	10 m	11,5 m	T + U,s N ≈ 0	Maeda	40 m	1100 m	D _s = D = D _c = 4,19 m	a) b) 12.1985	Sewage Bureau Yokohama	J	Main Sewer Ichiba Suehiro, Yokohama
USA Washington a) 12.1985 D ₄ = 5,08 m 2×770m = 430 m Harrison- T + S + G 12 - 17 m 15 - 30 m Hitachi 24x1130= 3940 kHm Stahlbeton- 25,4 cm max 20 m/d Schild (G=250 t); Förderschnee Anacostia Metr.Area 3.1987 D = 5,59 m 1540 m Yestern, Steine Zosen 27120 kH tübbinge 122 cm Seele für max se 450 mm; im 3 Seele für max se 450 mm; im 3 bleme bei Ringspaltverpr. u. n 5 + 1 bleme bei Ringspaltverpr. u. n bleme bei Ringspaltverpr. u. n max 216:chacht; R	ohne B.B. (T&T, 3/1985, S.8) Pro- ¥allis (1987) Dicht. n;	Schild (G=250 t); Förderschnecke ohne Seele für max σ = 450 mm; im Sand Pro- bleme bei Ringspaltverpr. u. mit Dicht. am Zielschacht; Ringbauzeit 50 min;	max 20 m/d		25,4 ст 122 ст	Stahlbeton- tübbinge 6 + 1	3940 kHm	24×1130= 27120 kN	Hitachi Zosen		15 - 30 m	12 - 17 m	T + S + G Steine unter Fluß	Harrison- Western, Franki- Denys	= 4 30 m	2×770m = 1540 m	$D_{4} = 5,08 \text{ m}$ D = 5,59 m $D_{m} = 5,74 \text{ m}$ $L_{m} \simeq 7,00 \text{ m}$	a) 12.1985 3.1987	Washington Metr.Area Transit Authority	USA	U-Bahn, Anacostia River, Washington

BT-HYDROSCHILDE "System W & F"

... über 50.000 m Tunnelstrecken mit ca. 30 BT-HYDROSCHILDEN im Ø-Bereich zwischen 2–11 m!

BADE & THEELEN GmbH Bauernwiesenweg 9 3003 Ronnenberg

Telefon: 0 51 09 / 90 67 Telex: 09 230 961 Telefax: 0 51 09 / 10 98

Die Arbeitsgemeinschaft Tiefdüker Dradenau unter der Technischen Geschäftsführung der Bilfinger + Berger Bauaktiengesellschaft gewann 1983 den Ideenwettbewerb zum Bau der Verbindungsleitung zwischen den Klärwerken Köhlbrandhöft und Dradenau in Hamburg. Dafür wurden 46 m tiefe Schlitzwände für die bis zu 90 m unter die Geländeoberfläche reichenden Schächte ausgeführt. Der 2227 m lange Tunnel wurde im Schildvortrieb mit Stahlbetontübbingausbau bei einer mittleren Tagesleistung von 17 m aufgefahren.

Tiefdüker Dradenau: Tunnel im Bauzustand

Auslandsbereich Gustav-Nachtigal-Straße 3 6200 Wiesbaden 1 Telefon (06121) 708-00

Hauptverwaltung Carl-Reiß-Platz 1-5 6800 Mannheim 1 Telefon (0621) 459-0

Mixshield

System: Wayss & Freytag

Metro Lyon Durchschlag der 2. Röhre

Schildvortrieb mit flüssigkeitsgestützter Ortsbrust

Rellinghauser Straße 53-57 · 4300 Essen 1 Postfach 101762 · Tel. (0201) 824-0 · FS 857778-0

Blick auf den Steuerstand

Für den Leitungs- und Verkehrstunnelbau entwickelte die Philipp Holzmann AG das Schildvortriebssystem »Thixschild«. Der Boden wird durch eine kombinierte Schneid- und Saugvorrichtung punktförmig abgebaut.

Vorteile des Verfahrens:

Schonender Abbau des Gebirges
Anpassung an wechselnde Bodenschichten
Freischneiden von Hindernissen
Geringe Verunreinigung der Stützflüssigkeit
Auffahren beliebiger Querschnitte
Hoher Automatisierungsgrad
PHILIPP HOLZMANN
Aktiengesellschaft
Taunusanlage 1 · 6000 Frankfurt 1

BENTONITSPÜLUNGS-REGENERIERUNG

Schildvortriebe • Schlitzwände • Pfahlgründungen

Separierung

Zyklontechnik

Entwässerung

Komplettanlagen in Modulbauweise für Spülungsleistungen von 40 bis 1000 m³/h

SCHAUENBURG MASCHINEN- UND ANLAGEN-BAU GMBH Weseler Straße 35 · 4330 Mülheim (Ruhr) · Postfach 101823

Tefefon (0208) 588-0 · Telex 856787 · Tefefax (0208) 53374

Der WAYSS & FREYTAG-MIXSCHILD für die Metro Lille

Eine anpassungsfähige Ergänzung zu unserer Hydroschild-Familie **DER WAYSS & FREYTAG MIXSCHILD** für Böden mit wechselnden Eigenschaften

> WAYSS & FREYTAG AKTIENGESELLSCHAFT Postfach 112042 D-6000 Frankfurt a. M. 11 Telefon (069) 79 29-0

HIGH TECH

überwindet Problemböden

Westfalia-Daiho-DK-Schild für Böden, in denen andere Verfahren scheitern würden. Nicht standfest, organisch, sandig bis grobkiesig.

wasserführend bei hohen Durchlässigkeiten und Drücken.

Das DK-Prinzip (DK = drücken und kneten) bedeutet Erddruckkompensation durch den gelösten Boden, der in der Knetkammer zu Erdbrei aufbereitet wird und druckbeaufschlagt die Ortsbrust stabilisiert. Ein äußerst sicherer und setzungsarmer Vortrieb

wird somit möglich. Genial einfach und gerade deshalb als sehr fortschrittlich unter den erddruckausgleichenden Schildverfahren anerkannt.

Ein weiteres Beispiel für unser Bestreben um High Technology im Tief- und Tunnelbau und somit kennzeichnend für unsere gesamte Palette von Maschinen,

Geräten und Systemen. Hierzu zählen Schildmaschinen für Lockerböden. Schilde, Messerschilde, Teilschnittmaschinen und Ausrüstungen für den hydraulischen Rohrvortrieb.

Gewerkschaft Eisenhütte Westfalia GmbH D-4670 Lünen · Tel. (0 23 06) 578-1 · Postfach 14 09 · Telex 8 229 711 gew d

2 Patipp

Rohrvortrieb mit Züblin-Combischild

Für die BEWAG, Berlin, haben wir einen rd. 3600 m langen Kanal zur Verwendung als Heizwassertransportleitung im Vorpreßverfahren unter Druckluft hergestellt.

Zum Einsatz kam ein Züblin-Combischild, mit dem wahlweise eine Auffahrung unter Druckluft, mit Druckluft-Membranstützung oder suspensionsgestützt möglich ist. Die Bauzeit der Vorpressung betrug nur zwölf Monate. Das Bild zeigt eine Innenansicht des fertiggestellten Kanals aus Stahlbetonrohren DN 4100.

ZÜBLIN

Ed. Züblin AG., Bauunternehmung

Hauptverwaltung Albstadtweg 3, Postfach 80 11 46 7000 Stuttgart 80

