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These notes are designed for the lecture course ’Stochastic Financial Models’ in
Part II of the mathematical tripos at the University of Cambridge. The course ma-
terial covers roughly the first five chapters of [10]. Here we will mainly follow the
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lecture notes by Friz and Rogers [8]. In fact, Section 1 below is almost identical to
[8, Section 1], but is still included here for completeness. The selection of the ma-
terial in Sections 2, 6 and 7 is also quite similar to [8] but the presentation deviates
more significantly. Section 2.1 on conditional expectations is mainly based on [13]
and the sections about martingales follows largely the book of Rogers and Williams
[12], see also [2, Section 4]. Sections 3 and 4 are taken from certain parts of [7,
Chapter 5], where much further material can be found. Finally, students who are
interested in the more financial aspects of the topic are referred to [9].

0. MOTIVATION

An investor needs a certain quantity of a share (or currency, good, ...), however
not right now at time t = 0 but at a later time t = 1. The price of the share S(ω)

at t = 1 is random and uncertain, but already now at time t = 0 one has to make
some calcultations with it, which leads to the presence of risk. (Example: 500 USD
are roughly 370 GBP today, but in one year?) A possible solution for the investor
would be to purchase a financial derivative such as

• Forward contract: The owner of a forward contract has the right and the
obligation to buy a share at time t = 1 for a delivery price K specified at
time t = 0. Thus, the owner of the forward contract gains the difference
between the actual market price S(ω) and the delivery price K if S(ω) is
larger than K. If S(ω) < K, the owner loses the amount K − S(ω) to the
issuer of the forward contract. Hence, a forward contract corresponds to
the random payoff

H(ω) = S(ω)−K.

• Call option: The owner of a call option has the right but not the obligation
to buy a share at time t = 1 for a the strike price K specified at time t = 0.
Thus, if S(ω) > K at time t = 1 the owner of the call gains again S(ω)−K,
but if S(ω) ≤ K the owner buys the share from the market, and the call
becomes worthless in this case. Hence, at time t = 1 the random payoff of
the call option is given by

H(ω) =
(
S(ω)−K

)+
=

{
S(ω)−K if S(ω) > K,

0 otherwise.

What would be now a fair price for such a financial derivative?

A classical approach to this problem is to regard the random payoff H(ω) as a
’lottery’ modelled as a random variable on a probability space (Ω,F ,P) with some
’objective’ probability measure P. Then the fair price is given the expected dis-
counted payoff E[ H

1+r ], where r ≥ 0 is the interest rate for both fund and loans from
t = 0 to t = 1. Here we implicitly assume that both interest rates are the same,
which seems reasonable for large investors. The economic reason for working with
discounted prices is that one should distinguish between payments at time t = 0
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and ones at time t = 1. Usually, people tend to prefer a certain amount today over
the same amount paid at a later time, and this preference is reflected in the interest
rate r paid by the riskless bond (riskless asset, bank account). An investment of the
amount 1/(1 + r) at time zero in the bond results in value 1 at time t = 1.

Less classical approaches also take a subjective assessment of the risk by the
involved agents (in this case buyer and seller of the derivative) into account (cf.
Section 1 below).

In this lecture we will mainly focus on a more modern approach to option pricing.
First let us assume for simplicity that the primary risk (the share in our example)
can only be traded at t = 0 and t = 1. The idea is that the fair price of the derivative
should equal the value of a hedging strategy. Denote by

• θ1 the number of shares held between t = 0 and t = 1,
• θ0 the balance on a bank account with interest rate r.

Note that we allow both θi ≥ 0 and θi < 0, where θ1 < 0 corresponds to a short sale
of the share. Further, if π1 denotes the price for one share at time t = 0, then the
price of the strategy at t = 0 is

θ0 + θ1π1 =: V0,

and the random value V (ω) of the strategy at t = 1 is given by

θ0(1 + r) + θ1S(ω) = V (ω).

In order for a trading strategy (θ0, θ1) to be a so-called replicating strategy for a
derivative with random payoff function H, we require that for every possible event
ω ∈ Ω the value H of the derivative equals the value of the trading strategy, so

H(ω) = V (ω), ∀ω ∈ Ω.

In the example of a forward contract, i.e. H = S −K this means

S(ω)−K = V (ω) = θ0(1 + r) + θ1S(ω), ∀ω ∈ Ω,

which implies

θ1 = 1, θ0 = − K

1 + r
, V0 = π1 − K

1 + r
.

In particular, if the seller of H is using this strategy, all the risk is eliminated and
the fair price π(H) of H is given by V0 since V0 is the amount the seller needs for
buying this strategy at t = 0. Moreover, π(H) = V0 is the unique fair price for H
as any other price would lead to arbitrage, i.e. a riskless opportunity to make profit,
which should be excluded in any reasonable market model.

For example, consider a price π̃ > V0. Then, at time t = 0 one could sell the
forward contract for π̃ and buy the above hedging strategy for V0. At time t = 1

the strategy leads to a portfolio with one share and a balance of −K in the bank
account. Now we can sell the share to the buyer of the forward for the delivery
price K and repay the loan. We are left with a sure profit of (π̃ − V0)(1 + r) > 0, so
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we have an arbitrage. These considerations lead us to the questions we will mainly
address in this lecture course.

• How can arbitrage-free markets be characterised mathematically?
• How can one determine fair prices for options and derivatives?

1. UTILITY AND MEAN VARIANCE

A market is the interaction of agents trading goods and services, and the ac-
tions and choices of the individual agents are shaped by preferences over different
contingent claims. A contingent claim is simply a well-specified random payment,
mathematically, a random variable. We shall suppose that agents’ preferences are
expressed by an expected utility representation, that is

Y is preferred to X ⇐⇒ E
[
U(X)

]
≤ E

[
U(Y )

]
,

where U : R → [−∞,∞) is a non-decreasing utility function, so for any amount
x ∈ R the value U(x) represents the ’utility’ of x for the respective agent. The
agents may have different preferences, so every agent chooses a utility function
individually and the choices may differ from one agent to another. We will assume
that U is concave.

Definition 1.1. A function U : R→ [−∞,∞) is said to be concave if for all p ∈ [0, 1],

pU(x) + (1− p)U(y) ≤ U
(
px+ (1− p)y

)
, ∀x, y ∈ R.

Set D(U) :=
{
x : U(x) > −∞

}
.

Remark 1.2. (i) If U is concave then −U is convex.
(ii) If U is concave, then by Jensen’s inequality,

E
[
U(X)

]
≤ U

(
E[X]

)
,

so if an agent is offered the choice of a contingent claim X and a certain payment
of E[X] we will prefer the latter. This property is called risk-aversion. Similarly if U
is linear then the agent is risk-neutral and if U is convex he is risk-friendly.

(iii) U(x) = −∞ means that the outcome x is unacceptable.

Example 1.3 (Examples for utility functions). (i) The function

U(x) = − exp(−γx)

with parameter γ > 0 is called the constant absolute risk aversion (CARA)
utility.

(ii) The function

U(x) =

{
x1−R

1−R if x ≥ 0,

−∞ if x < 0,

with parameter R ∈ (0,∞) \ {1} is called the constant relative risk aversion
(CRRA) utility.
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(iii) The function

U(x) =

{
log x if x > 0,

−∞ if x ≤ 0,

is the logarithmic utility. It is often regarded as the CRRA utility with parame-
ter R = 1.

(iv) U(x) = min(x, αx) for α ∈ [0, 1).
(v) U(x) = −1

2x
2 + ax for a ≥ 0 is concave but not increasing.

(vi) If U1 and U2 are utilities then α1U1 +α2U2 is again a utility for any α1, α2 > 0.
(vii) If {Uλ, λ ∈ Λ} is a family of utilities, then

U(x) = inf
λ∈Λ

Uλ(x)

is again a utility.

The certainly easiest criterion to check the concavity of a function is to verify
the non-positivity of its second derivative in the case it exists. We will now briefly
derive a more general characterisation.

Proposition 1.4. A function U : R → [−∞,∞) is concave if and only if for all
x1, y1, x2, y2 ∈ D(U) such that x1 < y1 ≤ x2 < y2 we have

U(y1)− U(x1)

y1 − x1
≥ U(y2)− U(x2)

y2 − x2
. (1.1)

Proof. First, suppose that U is concave. It is enough to show (1.1) in the case
y1 = x2, that is

U(z)− U(x)

z − x
≥ U(y)− U(z)

y − z
, ∀x < z < y,

which is equivalent to

U(z) ≥ z − x
y − x

U(y) +
y − z
y − x

U(x). (1.2)

Setting p := (z − x)/(y − x) ∈ [0, 1] we observe that z = py + (1 − p)x and (1.2)
holds by the concavity of U . Conversely, if (1.1) holds, then (1.2) also holds and
implies concavity. �

By taking limits we immediately get the following statement.

Corollary 1.5. (i) Let U be concave. For any z ∈ intD(U) the left- and right-hand
derivatives

U ′−(z) := lim
x↑z

U(z)− U(x)

z − x
, U ′+(z) := lim

y↓z

U(y)− U(z)

y − z

exist. Both U ′− and U ′+ are decreasing functions and satisfy U ′− ≥ U ′+.
(ii) If U ∈ C2(R), then U ′′(x) ≤ 0 for all x ∈ R if and only if U is concave.
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From now on, unless stated otherwise, we will make the following

Assumption. All utility functions are stricly increasing and strictly concave.

Now consider an agent with wealth w and utility function U ∈ C2(R) who is con-
templating whether or not to accept a contingent claim X. He will do so provided

E
[
U(w +X)

]
> U(w).

If we suppose that X is small so that we may perform a Taylor expansion, this
condition is approximately the same as the condition

U(w) + U ′(w) E[X] + 1
2U
′′(w) E

[
X2
]
> U(w). (1.3)

Since U ′(w) > 0 (U is strictly increasing) and U ′′(w) < 0 (U is strictly concave) the
benefits of a positive mean E[X] are offset by the disadvantage of positive variance;
the balance is just right (to this order of approximation) when

2E[X]

E
[
X2
] = −U

′′(w)

U ′(w)
,

where the right-hand side is the so-called Arrow-Pratt coefficient of absolute risk aver-
sion. If we consider instead the effect of the proposed gamble to be multiplicative
rather than additive, the decision for the agent will be to accept if

E
[
U
(
w(1 +X)

)]
> U(w).

Assuming that w > 0, a similar argument shows that to this order of approximation
the agent should accept when

2E[X]

E
[
X2
] ≥ −wU ′′(w)

U ′(w)
,

where the right-hand side is the so-called Arrow-Pratt coefficient of relative risk aver-
sion. This explains the names of the CARA and CRRA utilities, for which the Arrow-
Pratt coefficients are constant γ and R, respectively.

1.1. Reservation and marginal prices. Although the derivations above are not
rigorous, they do build our intuition. Developing this intuitive theme a bit further,
let us consider an agent with utility U who is able to choose any contingent claim
X from an admissible set A; he will naturally choose X to achieve

sup
X∈A

E
[
U(X)

]
.

We shall suppose that the supremum is achieved at some X∗ ∈ A. In the special
case where A is an affine space1 taking the form A = X + V for some vector space
V, we have therefore that for all ξ ∈ V and all t ∈ R,

E
[
U(X∗)

]
≥ E

[
U(X∗ + tξ)

]
,

1That is, for any X1, X2 ∈ A and t ∈ R, tX1 + (1 − t)X2 ∈ A. Equivalently, there exists a vector
space V such that for any X ∈ A we have A = X + V.
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and formally differentiating the right hand side with respect to t gives

E
[
U ′(X∗)ξ

]
= 0, ∀ξ ∈ V. (1.4)

Suppose now that the agent considers whether to buy a contingent claim Y for price
π. To fix our ideas, let us suppose that Y ≥ 0, though this is not essential. For any
π for which

sup
X∈A

E
[
U(X + Y − π)

]
≥ E

[
U(X∗)

]
,

he would be willing to buy Y ; the largest such π, denoted by πb(Y ), is called the
(reservation) bid price. Similarly, the (reservation) ask price πa(Y ) is the smallest
value of π such that

sup
X∈A

E
[
U(X − Y + π)

]
≥ E

[
U(X∗)

]
,

Obviously, πb(Y ) = −πa(−Y ). Moreover,

πa(Y ) ≥ πb(Y ), ’ask above, bid below’. (1.5)

Proof of (1.5). Let X ′ and X ′′ be the optimal choices from A when selling Y for
πa(Y ) and when buying Y for πb(Y ), respectively. Then,

E
[
U(X ′ − Y + πa(Y ))

]
= E

[
U(X∗)

]
= E

[
U(X ′′ + Y − πb(Y ))

]
.

Further, since U is concave and 1
2(X ′ +X ′′) ∈ A since A is convex, we get

sup
X∈A

E
[
U(X + 1

2(πa(Y )− πb(Y ))
]

≥ E
[
U(1

2(X ′ +X ′′) + 1
2(πa(Y )− πb(Y ))

]
≥ 1

2

(
E
[
U(X ′ − Y + πa(Y ))

]
+ E

[
U(X ′′ + Y − πb(Y )

])
= E

[
U(X∗)

]
= sup

X∈A
E
[
U(X)

]
,

and (1.5) follows since U is strictly increasing. �

Further, one can show that for 0 < α < β,

πb(βY )

β
≤ πb(αY )

α
,

πa(βY )

β
≥ πa(αY )

α
.

In particular, the mapping

fY : R\{0} → R : t 7→ πa(tY )

t

is increasing and therefore limits at zero from either side exist. For t 6= 0 let now
X∗t be defined via

sup
X∈A

E
[
U
(
X − tY + πa(tY )

)]
= E

[
U
(
X∗t − tY + πa(tY )

)]
.
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Then, a (non-justified) Taylor expansion gives

E
[
U(X∗)

]
= E

[
U
(
X∗t − tY + πa(tY )

)]
= E

[
U
(
X∗ + (X∗t −X∗)− tY + tfY (t)

)]
= E

[
U(X∗) + U ′(X∗)

{
(X∗t −X∗)− tY + tfY (t)

}]
+ o(t)

= E
[
U(X∗) + U ′(X∗)

{
− tY + tfY (t)

}]
+ o(t).

In the last step we used (1.4) and the fact that X∗t − X∗ ∈ V. Further, for the
remainder term to be in o(t) we actually also require that |X∗t −X∗| ∈ o(t1/2) P-a.s.,
for instance. Nevertheless, this non-rigorous computation implies

lim
t→0

πa(tY )

t
=

E
[
U ′(X∗)Y

]
E
[
U ′(X∗)

] . (1.6)

This expression is the agents marginal price for Y , that is, the price per unit at
which he would be prepared to buy or sell an infinitesimal amount of Y . Notice
that the marginal price is linear in the contingent claim, in contrast to the bid and
ask prices. If prices had been derived from some economic equilibrium, and the
contingent claim Y was one which was marketed, then the market price of Y would
have to equal the marginal price of Y given by (1.6), and this would have to hold
for every agent. This is not to say that for every agent the marginal utility of optimal
wealth would have to be the same; in general they are not. But the prices obtained
by each agent from their marginal utility of optimal wealth via (1.6) would have to
agree on all marketed contingent claims.

This heuristic discussion provides us with firm guidance for our intuition, and
the form of the prices frequently fits (1.6). Although there are many steps where
the analysis could fail, where we assume that suprema are attained, or that we can
differentiate under the expectation, the most common reason for the above analysis
to fail is thatA is not an affine space! For a mathematically more rigorous discussion
we refer to [5].

1.2. Mean-variance analysis and the efficient frontier. In the discussion below
(1.3) it has already been indicated that a risk-averse agent with expected utility
preferences will tend to accept contingent claims with large mean and small vari-
ance. In other words, given a choice of contingent claims, all with the same mean,
the agent should take the one with smallest variance. This is the main idea of
mean-variance analysis.

Consider a single-period model with d assets in which an agent may invest; the
non-random prices of the assets at time t = 0 are denoted by S0 = (S1

0 , . . . , S
d
0)T

and their random values at time t = 1 by S1 = (S1
1 , . . . , S

d
1)T . Further, let

µ := E
[
S1

]
∈ Rd, V :=

(
cov(Si1, S

j
1)
)
i,j=1,...,d

= E
[
(S1 − E[S1])(S1 − E[S1])T

]
denote mean vector and covariance matrix of S1, respectively. Suppose that at
time t = 0 the agent chooses to hold θj units of asset j for j = 1, . . . , d and write



STOCHASTIC FINANCIAL MODELS 9

θ = (θ1, . . . , θd)T . Then at time t = 1 his portfolio is worth

w1 = θ · S1 =
d∑
i=1

θjSj1

with

E[w1] = θ · µ, var(w1) = θ · V θ.

(Here and below x · y = xT y with x, y ∈ Rd denotes the canonical scalar product
in Rd.) If the agent now requires to choose θ to give a predetermined mean value
E[w1] = m and to have minimal variance, then his optimisation problem is to find

min
θ

1
2θ · V θ subject to θ · µ = m, θ · S0 = w0. (1.7)

The second constraint is the budget constraint, that the cost at time t = 0 of the-
chosen portfolio must equal the agents wealth w0 at time t = 0. To solve this, we
introduce the Lagrangian

L = 1
2θ · V θ + λ1(m− θ · µ) + λ2(w0 − θ · S0).

Assuming V is regular, this is minimised by choosing

θ = V −1(λ1µ+ λ2S0).

We still need to determine the multipliers λ1 and λ2 using the constraints in (1.7).
By the choice of θ,(
m

w0

)
=

(
µT

ST0

)
θ =

(
µT

ST0

)
V −1

(
µ S0

) (λ1

λ2

)
=

(
µ · V −1µ µ · V −1S0

µ · V −1S0 S0 · V −1S0

) (
λ1

λ2

)
Recall that the inverse of a general regular 2× 2 matrix is given by(

a b

c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

Hence, provided µ is not a multiple of S0, we get(
λ1

λ2

)
=

1

∆

(
S0 · V −1S0 −µ · V −1S0

−µ · V −1S0 µ · V −1µ

) (
m

w0

)
,

where ∆ :=
(
µ ·V −1µ

)(
S0 ·V −1S0

)
−
(
µ ·V −1S0

)2. For the variance of w1 we obtain

θ · V θ =
(
λ1 λ2

)(µT
ST0

)
V −1

(
µ S0

) (λ1

λ2

)
=
(
λ1 λ2

) (m
w0

)
=

1

∆

(
m w0

)(S0 · V −1S0 −µ · V −1S0

−µ · V −1S0 µ · V −1µ

) (
m

w0

)
=

1

∆

(
m2 S0 · V −1S0 − 2mw0 S0 · V −1µ+ w2

0 µ · V −1µ
)
,

which is quadratic in the required mean m. This variance is minimised (over m) to
the value w2

0/(S0 ·V −1S0) and the minimum is attained for m = w0(S0 ·V −1µ)/(S0 ·
V −1S0), which corresponds to the portfolio θ = (w0/S0 · V −1S0)V −1S0.
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FIGURE 1. Mean-variance efficient frontier

We can display the conclusions of this analysis graphically by a parabola (see
Figure 1). For any chosen value of the mean m, corresponding to a given level,
values of the portfolio variance corresponding to points to the left of the parabola
are not achievable, wheras points on and to the right of the parabola are. The
parabola is called the mean-variance efficient frontier.

We noted already earlier that while it is natural to think that from among all
available contingent claims with given mean we should choose the one with the
smallest variance, this is not in general correct. Indeed, assuming our agent has
expected-utility preferences, if two contingent claims are considered equally desir-
able if they have the same mean and the same variance, then the utility must be
a function only of the mean and the variance. But in this case one can check (see
excercises) that the utility must be quadratic, which is disqualified because it is not
increasing.

Despite this, the kind of mean-variance analysis set forth above, and graphs ef-
ficient frontiers are ubiquitous in the practice of portfolio management. There are
two reasons for this:

(i) This analysis is just about as sophisticated as you can expect to put across to
the mathematically untrained.

(ii) In one very special situation, when S1 is Gaussian, the mean-variance analysis
in effect amounts to the correct expected-utility maximisation. We study this
situation right now, assuming that agents have CARA utilities.

Example 1.6 (CARA, S1 Gaussian, no riskless asset). Suppose that S1 is N (µ, V )-
distributed, that is normal distributed with mean vector µ ∈ Rd and regular covari-
ance matrix V . Further, suppose that the agent has CARA utility, and so he aims to



STOCHASTIC FINANCIAL MODELS 11

maximise

E
[
− exp(−γw1)

]
with w1 = θ · S1 =

d∑
j=1

θj Sj1.

Recall that since S1 ∼ N (µ, V ) we have E
[

exp(x · S1)
]

= exp(x · µ + 1
2x · V x) for

every x ∈ Rd. So the agents objective is to minimise

E
[

exp(−γθ · S1)
]

= exp(−γθ · µ+ 1
2γ

2θ · V θ),

again under a budget constraint θ ·S0 = w0. This leads to the optimisation problem
to minimise

−γ θ · µ+ 1
2γ

2 θ · V θ subject to θ · S0 = w0.

Using the Lagrangian method, we convert this problem into the unconstrained min-
imisation of

−γ θ · µ+ 1
2γ

2 θ · V θ + γλ(w0 − θ · S0).

Differentiating with respect to θ gives

γ V θ = µ+ λS0,

which is solved by taking

θ = γ−1V −1(µ+ λS0),

and from the budget constraint θ · S0 = w0 we get

λ =
γw0 − S0 · V −1µ

S0 · V −1S0
.

Hence, the optimal θ has the explicit form

θ = γ−1V −1µ+
γw0 − S0 · V −1µ

γS0 · V −1S0
V −1S0. (1.8)

Notice that this optimal portfolio is a weighted average of two portfolios, the mini-
mum-variance portfolio V −1S0, which minimises the variance of w1 = θ ·S1 subject
to the initial budget constraint θ · S0 = w0 (see above), and the diversified portfolio
V −1µ. This is an example of a mutual fund theorem.

Example 1.7 (CARA, S1 Gaussian, with a riskless asset). Consider exactly the situ-
ation of the previous example, but add one more asset, denoted S0, whose return
is riskless (bond), that is at time t = 0 it has initial value S0

0 > 0 and at has value

S0
1 = S0

0 (1 + r),

where r is the riskless interest rate. Let S̄ = (S0, S1, . . . , Sd)T denote the enlarged
vector of assets, with corresponding mean vector µ̄ = (S0

0 (1+r), µ)T and covariance
matrix V̄ , where all entries of V̄ in the zeroth row and the zeroth column will be
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zero. Again we are aiming to maximise the expected CARA utility. So, similarly as
before we need to minimise

−γ θ̄ · µ̄+ 1
2γ

2 θ̄ · V̄ θ̄ + γλ(w0 − θ̄ · S̄0),

where θ̄ = (θ0, θ1, . . . , θd)T and θ0 is the number of units of bonds the agents is
holding. Then, differentiating with respect to θ̄ gives the condition

γ V̄ θ̄ = µ̄+ λS̄0.

However, V̄ is not invertible, but the equation in the top row yields

λ = −S
0
0 (1 + r)

S0
0

= −(1 + r).

Solving the remaining equations as before gives θ = γ−1V −1(µ + λS0), and we
obtain

θ = γ−1θM := γ−1V −1(µ− (1 + r)S0). (1.9)

Remark 1.8. (i) Once again, the optimal portfolio (1.9) is a weighted average of
the minimum-variance portfolio and the diversified portfolio, though this time the
weights are in fixed proportions. The portfolio θM is referred to as the market
portfolio (think of a major share index), for reasons we shall explain shortly.

(ii) Notice that in contrast to the solution (1.8) to the previous example, the
optimal θ does not depend on w0, the initial wealth of the agent. How can this be
reconciled with the initial budget constraint? Very simply: the agent takes up the
portfolio (1.9) in the risky assets, and his holding θ0 of the riskless asset adjusts to
pay for it.

(iii) Looking at (1.9), we see that the more risk-averse the agent is (that is, the
larger γ), the less he invests in the risky assets - evidently sensible. If we took the
simple special case where V were diagonal, we see that the position in asset j is

θj =
µj − (1 + r)Sj0

γVjj

proportional to the excess mean return Rj := µj − (1 + r)Sj0 of asset j, that is, the
average amount by which investing in asset j improves upon investing the same
initial amount Sj0 in the riskless asset. We also see that the higher the variance of
asset j, the less we are prepared to invest in it, again evidently sensible.

1.3. The Capital Asset Pricing Model (CAPM). In the situation of Example 1.7 let
us assume that all covariances, variances, mean rates of return of stocks and so on
are known to all agents, who are supposed to be all risk-averse rational investors
using the same mean-variance approach portfolio selection. Then each agent will
have a portfolio on the same efficient frontier, and hence has a portfolio that is a
mixture of the risk-free asset and a unique efficient fund of risky assets, namely the
market portfolio θM = V −1(µ− (1 + r)S0) derived in Example 1.7.
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Consider now an agent with initial wealth w0 = θM · S0 at time t = 0, who is
investing in the market portfolio. Then, the value of his portfolio at time t = 1 is
random with mean

µM = θM · µ.

On the other hand, investing w0 in the bond S0 would give him a certain return of
(1 + r)θM · S0, so the mean excess return of the market portfolio is given by

RM := µM − (1 + r)θM · S0 = θM · V θM .

Now for each asset i we define the beta of that asset by

βi :=
cov(Si1, θM · S1)

var(θM · S1)
, i = 1, . . . , d.

The quantity βi serves as an important measure of risk for individual assets that is
different from var(Si1). More precisely, for any asset i, var(Si1) describes the risk
associated with its own fluctuations around its mean, also called unsystematic risk,
also known as specific risk or diversifiable risk. Unsystematic risk can be reduced
through diversification. On the other hand, βi measures the uncertainty inherent
to the entire market or entire market segment, also known as non-diversifiable risk,
market risk or systematic risk.

We observe that βi can be rewritten as

βi =

(
V θM

)i
θM · V θM

=

(
µ− (1− r)S0

)i
θM · V θM

,

so we obtain for the mean excess return Ri of asset i that

Ri := µi − (1 + r)Si0 = βiθM · V θM = βiRM ,

so the mean excess return of asset i equals βi times the mean excess return of the
market portfolio,

Ri = βiRM . (1.10)

Is this a profound result, or merely a tautologous reworking of the definition of βi?
It is both; the profundity lies in the fact that (1.10) expresses a relation between
on the one hand the mean rates of return of individual assets and of the market
portfolio, and on the other, the variances and covariances of asset returns, which
could all be estimated very easily from market data, thereby providing a test of the
CAPM analysis. It is rare to find a verifiable prediction from economic theory; sadly,
it turns out in practice to be very hard to make reliable estimates of rates of return
(see [8, Section 1.3] for more details).
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1.4. Equilibrium pricing. We end this section with a short discussion about equi-
librium pricing. So far we have been looking at a market with d risky assets whose
values S1 at time t = 1 are Gaussian random variables, and whose values S0 at time
t = 0 are given constants; but where did those constants come from? How were
they determined? An economist would answer these questions by saying that the
prices at time 0 are equilibrium prices, determined by the agents in the market and
their interaction. The central idea of equilibrium analysis is that we now adjust the
prices until the market is cleared, that is, the supply and demand are matched

Suppose there is unit net supply of asset i, for each i = 1, . . . , d, and zero net
supply of the riskless asset; the (equilibrium) prices must be such that the total
demand of all agents for each risky asset is 1, and for riskless asset the total demand
is 0. Without loss of generality, we assume that S0

0 = 1. Further, suppose that there
are K agents in the market, agent k having CARA utility with coefficient of absolute
risk aversion γk, and that agent k enters the market. According to (1.9) will hold a
portfolio θk ∈ Rd in the risky assets given by

θk = γ−1
k θM .

Thus, the total holdings of all agents in the market will be

K∑
k=1

θk = Γ−1θM = Γ−1V −1
(
µ− (1 + r)S0

)
(1.11)

where Γ = (
∑

k γ
−1
k )−1. Now market-clearing at time t = 0 requires that

K∑
k=1

θk = 1. (1.12)

where we write 1 := (1, . . . , 1)> ∈ Rd. By combining (1.11) and (1.12) we see that
the market-clearing prices for the risky assets must be

S0 =
(µ− ΓV 1)

1 + r
.

We still need to check that the total demand for the riskless asset is zero, which we
leave as an exercise.

2. CONDITIONAL EXPECTATIONS AND MARTINGALES

2.1. Conditional expectations. Let X be a random variable on a probability space
(Ω,F ,P). Then, its expected value E[X], provided it exists, serves as a prediction
for the random outcome of X. From now on we will occasionally also write E[X] =∫
X dP and E[X1lA] =

∫
AX dP for A ∈ F .

Our goal is now to introduce an object, which allows us to improve the prediction
for X if additional information is available. In the special case where this additional
information can be encoded in a single event B having positive probability, this can
be achieved rather easily by conditioning on B.
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Definition 2.1. Let B ∈ F with P[B] > 0. Then, for any A ∈ F ,

P
[
A |B

]
=

P[A ∩B]

P[B]

is called conditional probability of A given B and for a random variable X,

E
[
X |B

]
=

E[X1lB]

P[B]

is called the conditional expectation of X given B.

P
[
· |B

]
is again a probability distribution and E

[
X |B

]
is the expected value

of X under P
[
· |B

]
. If we regard P[A] as a prediction about the occurence of A

and the expected value as a prediction for the value of a random variable, then the
conditional probability and the conditional expectation are improved predictions
under the assumption that we know that the event B occurs.

We will now generalise the notion of conditional expectations and conditional
probabilities considerably, because so far it only allows us to condition on events of
positive probability which is too restrictive. We will first discuss the easier discrete
case before we will give the general definition.

2.1.1. The elementary case. A typical problem might be the following situation.

Example 2.2. The day after tomorrow it will be decided whether a certain event A
occurs (for instance A = {Dow Jones ≥ 10000}). Already today we can compute
P[A]. But what prediction would we make tomorrow night, when we have more
information available (e.g. the value of the Dow Jones in the evening)? Then we
would like to consider the conditional probability

P
[
A |Dow Jones tomorrow = x

]
, x = 0, 1, . . .

as a function of x.

As mentioned before, our goal is to formalise predicitions under additional in-
formation. But how do we model additional information? We will use a σ-algebra
F0 ⊂ F . This σ-algebra contains the events, about which we will know tomorrow
(in the context of Example 2.2 above) if they occur or not, so for instance

F0 = σ
(
{Dow Jones tomorrow = x}, x = 0, 1, . . .

)
.

More generally, let now B1, B2, . . . be a decomposition of Ω into w.l.o.g. disjoint
sets Bi ∈ F and set

F0 := σ(B1, B2, . . .) =
{

all possible unions of Bi’s
}
⊆ F .

Recall that by definition σ(B1, B2, . . .) denotes the smallest σ-algebra in which all
the sets B1, B2, . . . are contained.
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Definition 2.3. The random variable

E
[
X | F0

]
(ω) :=

∑
i:P[Bi]>0

E
[
X |Bi

]
1lBi(ω) (2.1)

is called conditional expectation of X given F0.

Example 2.4. If F0 = {∅,Ω}, then E
[
X | F0

]
(ω) = E[X].

We briefly recall what it means for a real-valued random variable to be measur-
able with respect to a σ-algebra.

Definition 2.5. Let A ⊆ F be a σ-algebra over Ω. Then, a random variable Y :

Ω→ R is A-measurable if {Y ≤ c} ∈ A for all c ∈ R.

Proposition 2.6. The random variable X0 = E
[
X | F0

]
has the following properties.

(i) X0 is F0-measurable.
(ii) For all A ∈ F0,

E
[
X1lA

]
= E

[
X01lA

]
.

Proof. (i) For every i we have that 1lBi is F0-measurable. Since X0 is a linear com-
bination of such functions, it is F0-measurable as well.

(ii) Let us first consider the case that A = Bi for any i such that P[Bi] > 0. Then,

E
[
X1lA

]
= E

[
X1lBi

]
= E

[
X |Bi

]
P[Bi] = E

[
X |Bi

]
E[1lBi ]

= E
[
E
[
X |Bi

]︸ ︷︷ ︸
=X0 on Bi

1lBi

]
= E

[
X01lA

]
.

For general A ∈ F0, 1lA can be written as a (possibly infinite) sum of 1lBi ’s (re-
call that the sets B1, B2, . . . are disjoint), so (ii) follows from the linearity of the
expectation and the monotone convergence theorem. �

Example 2.7. (i) Consider the probability space ((0, 1],B((0, 1]), λ), where B((0, 1])

denotes the Borel-σ-algebra and λ the Lebesgue-measure. For any n ∈ N, let F0 =

σ(( kn ,
k+1
n ], k = 0, . . . , n − 1). Then, on each interval ( kn ,

k+1
n ] the random variable

E
[
X | F0

]
is constant and coincides with the average of X over this interval.

(ii) Let Z : Ω→ {z1, z2, . . .} ⊂ R and

F0 = σ(Z) = σ
(
{Z = zi}, i = 1, 2, . . .).

(In general, for any real-valued random variable Z, σ(Z) = σ({Z ≤ c}, c ∈ R)

denotes the smallest σ-algebra with respect to which Z is measurable.) Then,

E
[
X |Z

]
:= E

[
X |σ(Z)

]
=

∑
i:P[Z=zi]>0

E
[
X |Z = zi

]
1l{Z=zi}.

In particular, E
[
X |Z

]
(ω) = E

[
X |Z = Z(ω)

]
, so E

[
X |Z

]
describe the expectation

of X if Z is known.
However, if Z would have a continuous distribution (e.g. N (0, 1), then P[Z =

z] = 0 for all z ∈ R and E
[
X |Z

]
is not defined yet.
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2.1.2. The general case. Let (Ω,F ,P) be a probability space and F0 ⊆ F be a σ-
algebra.

Definition 2.8. Let X ≥ 0 be a random variable. A random variable X0 is called (a
version of) the conditional expectation of X given F0 if

(i) X0 is F0-measurable.
(ii) For all A ∈ F0,

E
[
X1lA

]
= E

[
X01lA

]
. (2.2)

In this case we write X0 = E
[
X | F0

]
.

If X ∈ L1(Ω,P), i.e. E[|X|] < ∞, (but not necessarily non-negative) we decom-
pose X into its positive and negative part X = X+ −X− and define

E
[
X | F0

]
:= E

[
X+ | F0

]
− E

[
X− | F0

]
.

Remark 2.9. (i) If F0 = σ(C) for any C ⊆ F , then it suffices to check condition (ii)
for all A ∈ C.

(ii) If F0 = σ(Z) for any random variable Z, then E
[
X |Z

]
:= E

[
X |σ(Z)

]
is σ(Z)-measurable by condition (i). In particular, by the so-called factorisation
lemma (see e.g. [1]) it is of the form f(Z) for some function f . It is then common
to define

E
[
X |Z = z

]
:= f(z).

(iii) If X ∈ L1 then E
[
X | F0

]
∈ L1. Indeed, if X ≥ 0, by choosing A = Ω in

(2.2) we have

E
[
X
]

= E
[
E
[
X | F0

]]
.

For general X ∈ L1 we can use again the decompostion X = X+ −X−.
(iv) The weakest possible condition on X under which a definition of conditional

expectation can make sense is that E[X+] < ∞ or E[X−] < ∞. (Note that X ∈ L1

if and only if both hold.) In this case E
[
X | F0

]
can still be defined to be a random

variable X0 satisfying (i) and (ii) in Definition 2.8.

Theorem 2.10 (Existence and uniqueness). For any X ≥ 0 the following hold.

(i) The conditional expectation E
[
X | F0

]
exists.

(ii) Any two versions of E
[
X | F0

]
coincide P-a.s.

The existence follows rather easily from the following important result in mea-
sure theory.

Theorem 2.11 (Radon-Nikodym, 1930). Let µ be a measure and ν be a probability
measure on (Ω,F). Then the following are equivalent.

(i) µ is absolutely continuous with respect to µ (notation: µ� ν), that is for every
A ∈ F we have ν(A) = 0⇒ µ(A) = 0.
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(ii) There exists an F -measurable function ϕ ≥ 0 such that

µ(A) =

∫
A
ϕdν, ∀A ∈ F .

The function ϕ is called density or Radon-Nikodym derivative and is denoted by dµ
dν .

Moreover, ϕ is unique up to ν-null sets.

Proof. See, for instance, [1, Chapter 17]. �

Proof of Theorem 2.10. (i) Define µ(A) =
∫
AX dP, A ∈ F . Then µ is a measure and

µ� P on F . In particular, µ� P also on F0. We apply Theorem 2.11 (on the space
(Ω,F0)) to obtain that there exists an F0-measurable function

X0 =
dµ

dP

∣∣∣
F0

such that µ(A0) =

∫
A0

X0 dP, ∀A0 ∈ F0.

In other words,
∫
A0
X dP =

∫
A0
X0 dP or E

[
X1lA

]
= E

[
X01lA

]
for all A0 ∈ F0.

(ii) follows from (2.2) and the fact that the Radon-Nikodym density is unique up
to P- null sets. If X ∈ L1 this can also be seen directly as follows.

Let X0 and X̃0 be as in Definition 2.8. By Remark 2.9 we have X0, X̃0 ∈ L1. Then
A0 := {X0 > X̃0} ∈ F0 and

E
[
X01lA0

]
= E

[
X1lA0

]
= E

[
X̃01lA0

]
.

Thus,

E
[

(X0 − X̃0)︸ ︷︷ ︸
>0 on A0

1lA0

]
= 0,

which implies P[A0] = 0. Similarly it can be shown that P[X0 < X̃0] = 0. �

2.1.3. Properties of conditional expectations.

Proposition 2.12. The conditional expectation has the following properties.
(i) If F0 is P-trivial, i.e. P[A] ∈ {0, 1} for all A ∈ F0, then E

[
X | F0

]
= E[X] P-a.s.

(ii) Linearity: E
[
aX + bY | F0

]
= aE

[
X | F0

]
+ bE

[
X | F0

]
P-a.s.

(iii) Monotonicity: X ≤ Y P-a.s.⇒ E
[
X | F0

]
≤ E

[
Y | F0

]
P-a.s.

(iv) Monotone continuity: If 0 ≤ X1 ≤ X2 ≤ . . . P-a.s., then

E
[

lim
n→∞

Xn | F0

]
= lim

n→∞
E
[
Xn | F0

]
P-a.s.

(v) Fatou: If 0 ≤ Xn P-a.s. for all n ∈ N, then

E
[

lim inf
n→∞

Xn | F0

]
≤ lim inf

n→∞
E
[
Xn | F0

]
P-a.s.

(vi) Dominated convergence: If there exists Y ∈ L1 such that |Xn| ≤ Y P-a.s. for all
n ∈ N, then

lim
n→∞

Xn = X P-a.s. ⇒ lim
n→∞

E
[
Xn | F0

]
= E

[
X | F0

]
P-a.s.

(vii) Jensen’s inequality: Let h : R→ R be convex, then

h
(
E
[
X | F0

])
≤ E

[
h(X) | F0

]
P-a.s.
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Proof. (i) follows directly from the definition of the conditional expectation. State-
ments (ii)-(vi) all follow from the corresponding properties of the expected value,
and (vii) can be shown similarly as for the usual expected value. �

Proposition 2.13. Let Y0 ≥ 0 be F0-measurable. Then,

E
[
Y0X | F0

]
= Y0 E

[
X | F0

]
P-a.s., (2.3)

so F0-measurable random variables behave like constants. In particular,

E
[
Y0 | F0

]
= Y0 P-a.s.

Proof. Clearly the right hand side of (2.3) is F0-measurable, so we only need to
check condition (ii) in Definition 2.8. Let us first consider the case Y0 = 1lA0 for any
A0 ∈ F0. Then for any A ∈ F0,

E
[
Y0X 1lA

]
= E

[
X 1lA ∩A0︸ ︷︷ ︸

∈F0

]
= E

[
E[X | F0] 1lA∩A0

]
= E

[(
Y0 E[X | F0]

)
1lA
]
.

For general Y0 the statement follows by linearity and approximation. �

Proposition 2.14 (’Projectivity’ or ’Tower property’ of conditional expectations). Let
F0 ⊆ F1 ⊆ F be σ-algebras. Then,

E
[
X | F0

]
= E

[
E
[
X | F1

] ∣∣F0

]
P-a.s.

Proof. Let A ∈ F0. Then, clearly A ∈ F1 and therefore

E
[
X 1lA

]
= E

[
E
[
X | F1

]
1lA
]

= E
[
E
[
E
[
X | F1

] ∣∣F0

]
1lA

]
.

�

Proposition 2.15. Let X be independent of F0
2. Then,

E
[
X | F0

]
= E[X] P-a.s.

Proof. E[X] is constant and therefore F0-measurable. For A ∈ F0 we have by inde-
pendence and the linearity of the expected value that

E
[
X 1lA

]
= E[1lA] E[X] = E

[
E[X] 1lA

]
.

�

In practice, conditional expectations are difficult to compute explicitly. However,
in two situations there are explicit formulas, namely in the discrete case discussed
at the beginning, see (2.1), or when the random variables involved admit densities,
which we now state without proof.

2i.e. P[A∩B] = P[A] ·P[B] for all A ∈ σ(X) and all B ∈ F0. If for instance F0 = σ(Y ) this means
that X and Y are independent random variables.
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Proposition 2.16. LetX and Y be real-valued random variables with densities fX and
fY . Assume that (X,Y ) admits a joint density fXY . Then the conditional distribution
of X given Y is a random distribution with density

fX|Y (x) :=

{
fXY (x,Y (ω)
fY (Y (ω)) if fY (Y (ω)) 6= 0,

0 else,

and the conditional expectation of X given Y is

E
[
X |Y

]
=

∫
R
x fX|Y (x) dx.

For later use we end this section with another useful result on conditional expec-
tations.

Proposition 2.17. Let F : R2 → [0,∞) be measurable, X be independent of F0 and
Y be F0-measurable. Then

E
[
F (X,Y ) | F0

]
(ω) = E

[
F (X,Y (ω))

]
P-a.s.

More precisely, if we set Φ(y) := E
[
F (X, y)

]
, y ∈ R, then

E
[
F (X,Y ) | F0

]
(ω) = Φ(Y (ω)) P-a.s.

Proof. Let first F be of the form F (x, y) = f(x)g(y) for any measurable f, g : R →
[0,∞). Then,

E
[
F (X,Y ) | F0

]
(ω) = g(Y (ω)) E

[
f(X) | F0

]
(ω) = g(Y (ω)) E

[
f(X)

]
= E

[
g(Y (ω)) f(X)

]
= Φ(Y (ω)).

For general F the statement now follows from a monotone class argument. �

2.2. Martingales. In the subsequent chapters we will consider risky assets in a
multi-period model. Their values at time t ∈ {0, . . . , T} will be modelled by a
stochastic process (St)t=0,...T , which is a collection of random variables.

In this section we introduce the fundamental concept of martingales, which will
keep playing a central role in our investigation of models for financial markets. Mar-
tingales are truly random stochastic processes, in the sense that their observation in
the past does not allow for useful prediction of the future. By useful we mean here
that no gambling strategies can be devised that would allow for systematic gains.

First we need to introduce the notion of a filtration.

Definition 2.18. A filtration is (Ft)t∈I is an increasing family of σ-algebras, that is
Fs ⊆ Ft ⊆ F for all s, t ∈ I with s < t.

Typical choices for the index set I are [0,∞), [0, T ], N or {0, . . . , T}. In almost
all situations the index t represents time. Then the σ-algebra Ft contains all the
events that are observable up to time t, so Ft models the information available at
time t. A stochastic process S = (St)t=0,1,... naturally induces a filtration defined via



STOCHASTIC FINANCIAL MODELS 21

Ft = σ(S0, . . . St). If S models asset prices as in example mentioned above then Ft
represents the information about all prices up to time t.

Recall that for any random variable Y the σ-algebra σ(Y ) is the smallest σ-
algebra such that {Y ≤ c} ∈ σ(Y ) for all c ∈ R. Similarly, σ(S0, . . . St) is the smallest
σ-algebra such that {S0 ≤ c0, . . . ST ≤ cT } ∈ σ(S0, . . . , St) for all c0, . . . , cT ∈ R.

Example 2.19. Consider the simple symmetric random walk S on Z started from
S0 := 0, that is St =

∑t
k=1 Zk, t ≥ 1, where (Zk)k≥1 are i.i.d. random variable with

P[Zk = 1] = P[Zk = −1] = 1
2 . Then, Ft = σ(S1, . . . St) = σ(Z1, . . . Zt), t ≥ 1,

defines a filtration and{
S1 ≤ 0, S3 ≥ 2

}
∈ F3 but

{
S4 > 0} 6∈ F3.

Since S0 = 0 is deterministic, σ(S0, . . . St) and we could have started the filtration
with the trivial σ-algebra F0 = σ(S0) = {∅,Ω}.

Definition 2.20. A stochastic process Y = (Yt)t∈I is said to be adapted to a filtration
(Ft)t∈I if Yt is Ft-measurable for all t ∈ I.

Now we define martingales.

Definition 2.21. Let (Ft)t=0,...,T be a filtration on (Ω,F). A stochastic process M =

(Mt)t=0,...,T on (Ω,F , (Ft)t=0,...,T ,P) is a martingale (or P-martingale) if and only if
the following hold.

(a) M is adapted, that is Mt is Ft-measurable for every t.
(b) Mt ∈ L1(Ω,P), i.e. E[|Mt|] <∞ for every t.
(c) The martingale property holds, i.e. for all 0 ≤ s ≤ t ≤ T ,

E[Mt | Fs] = Ms, P-a.s.

If (a) and (b) hold, but instead of (c), it holds E[Mt | Fs] ≥ Ms, respectively
E[Mt | Fs] ≤Ms, then the process M is called a sub-martingale, respectively a super-
martingale.

Remark 2.22. (i) Similarly one defines martingales (Mt)t∈I if the index set I is
[0,∞), [0, T ] or N.

(ii) If M is a martingale it holds E[Mt] = E[Ms] for all 0 ≤ s ≤ t, for a sub-
martingale we have E[Mt] ≥ E[Ms] , finally, for a super-martingale E[Mt] ≤ E[Ms].

(iii) The martingale property (c) is equivalent to

E[Mt −Ms | Fs] = 0, P-a.s., ∀0 ≤ s ≤ t ≤ T,

so a martingale is a mathematical model for a fair game in the sense that based on
the information available at time s the expected future profit is zero.

(iv) In discrete time, that is I = {0, . . . , T} (or I = N), (c) is equivalent to

E[Mt+1 | Ft] = Mt, P-a.s. ∀0 ≤ t ≤ T − 1. (2.4)

Warning: In continuous time, i.e. if I is [0,∞) or [0, T ], (2.4) is not sufficient for (c)
to hold.
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(v) If I = {0, . . . , T}, a martingale M = (Mt)t=0,...,T is determined by MT via
Mt = E[MT | Ft]. Conversely, every F ∈ L1(Ω,FT ,P) defines a martingale via

Mt := E[F | Ft], t = 0, . . . , T.

Example 2.23. Let Z1, . . . , ZT be independent random variables with Zk ∈ L1 and
E[Zk] = 0 for all k = 1, . . . , T . Set

M0 := 0, Mt :=
t∑

k=1

Zk, t = 1, . . . , T,

and Ft := σ(M0, . . . ,Mt), t = 0, . . . , T . Obviously, M is adapted to (Ft)t and
Mt ∈ L1 for all t = 0, . . . , T . Further, for t = 0, . . . , T − 1,

E
[
Mt+1 | Ft

]
= E

[
Mt + Zt+1 | Ft

]
= Mt + E

[
Zt+1 | Ft

]
= Mt + E

[
Zt+1

]
= Mt,

where we used in the third step that Zt+1 is independent of Ft. So M is a martin-
gale. Note that in the special case Zk ∈ {−1, 1} with P[Zk = 1] = P[Zk = −1] = 1

2

the process M becomes the simple random walk on Z.

Definition 2.24. A stochastic process (Cn)n≥1 is called previsible3 with respect to a
filtration (Fn)n≥0, if, for all n ∈ N, Cn is Fn−1-measurable.

Proposition 2.25. Let (Ω,F , (Fn)n≥0,P) be a filtered probability space.

(i) Let M = (Mn)n≥0 be a martingale and let (Cn)n≥1 be a bounded previsible
process. Then, the process Y = (Yn)n≥0 defined by

Yn :=

n∑
k=1

Ck
(
Mk −Mk−1

)
, Y0 := 0,

is a martingale.
(ii) If M is a sub-martingale (or supermartingale) and (Cn)n≥1 is a bounded previs-

ible and non-negative, then Y is a sub-martingale (or super-martingale, respec-
tively).

Proof. (i) Since C is bounded, Yn ∈ L1 for all n. For all k ≤ n the random variables
Ck, Mk−1 and Mk are all Fn-measurable, so Yn is Fn-measurable, which means that
Y is adapted. Finally, for n ≥ 1,

E
[
Yn − Yn−1 | Fn−1

]
= E

[
Cn(Mn −Mn−1) | Fn−1

]
= Cn E

[
Mn −Mn−1 | Fn−1

]
= 0. (2.5)

Here we used that Cn is Fn−1-measurable in the second step and the martingale
property in the last step.

(ii) Since Cn is now assumed to be non-negative, we have in the last step of
(2.5) that Cn E

[
Mn −Mn−1 | Fn−1

]
is non-negative if M is a sub-martingale and

non-positive if M is a super-martingale. �

3The teminology previsible refers to the fact thatCn can be foreseen from the information available
at time n− 1
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Remark 2.26. (i) Sometimes the process (Cn)n≥1 represents a gambling strategy. If
M models the price process of a share, then Yn represents the wealth at time n.

(ii) Y is a discrete time version of the stochastic integral ’
∫
C dM ’.

2.3. Martingale convergence. Let X = (Xn)n≥0 be a real-valued stochastic pro-
cess on (Ω,F ,P) adapted to a filtration (Fn)n≥0. Consider an interval [a, b]. We
want to count the number of times a process crosses this interval from below.

Definition 2.27. Let a < b ∈ R. We say that an upcrossing of [a, b] occurs between
times s and t, if

(i) Xs < a, Xt > b,
(ii) for all r such that s < r < t, Xr ∈ [a, b].

We denote by UN (X, [a, b])(ω) the number of uprossings in the time interval
[0, N ]. Now we consider the previsible process (Cn)n≥1 defined by

C1 := 1l{X0<a}, Cn := 1l{Cn−1=1}1l{Xn−1≤b} + 1l{Cn−1=0}1l{Xn−1<a}, n ≥ 2.

(2.6)

This process represents a winning strategy: wait until the process (say, price of a
share) drops below a. Buy the stock, and hold it until its price exceeds b; sell, wait
until the price drops below a, and so on. The associated wealth process is given by

Wn =
n∑
k=1

Ck
(
Xk −Xk−1

)
, W0 := 0.

Now each time there is an upcrossing of [a, b] we win at least (b− a). Thus, at time
N , we have

WN ≥ (b− a)UN (X, [a, b])− |a−XN | 1l{XN<a}, (2.7)

where the last term count is the maximum loss that we could have incurred if we
are invested at time N and the price is below a.

Naive intuition would suggest that in the long run, the first term must win. The
next theorem says that this is false, if we are in a fair or disadvantageous game.

Theorem 2.28 (Doob’s upcrossing lemma). Let X be a super-martingale. Then for
any a < b ∈ R,

E
[
UN (X, [a, b])

]
≤

E
[(
XN − a

)−]
b− a

. (2.8)

Proof. The process (Cn)n≥1 defined in (2.6) is obviously bounded, non-negative
and previsible, so by Proposition 2.25 (ii) the wealth process (Wn)n≥0 is a super-
martingale with W0 = 0. Therefore E[WN ] ≤ 0 and taking expectation in (2.7)
gives (2.8). �

For any interval [a, b], we define the monotone limit

U∞(X, [a, b]) := lim
N→∞

UN (X, [a, b]).
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Corollary 2.29. Let (Xn)n≥0 be an L1-bounded super-martingale, i.e. supn E[|Xn|] <
∞. Then

E
[
U∞(X, [a, b])

]
≤
a+ supn E

[
|Xn|

]
b− a

<∞. (2.9)

In particular, P
[
U∞(X, [a, b]) =∞

]
= 0.

Note that the requirement supn E[|Xn|] < ∞ is strictly stronger than just asking
that for all n, E[|Xn|] <∞.

Proof. This follows directly from Theorem 2.28 and the monotone convergence the-
orem since supn E

[(
Xn − a

)−] ≤ a+ supn E
[
|Xn|

]
. �

This is quite impressive: a (super-) martingale that is L1-bounded cannot cross
any interval infinitely often. The next result is even more striking, and in fact one
of the most important results about martingales.

Theorem 2.30 (Doob’s super-martingale convergence theorem). Let (Xn)n≥0 be an
L1-bounded super-martingale. Then, P-a.s., X∞ := limn→∞Xn exists and is a finite
random variable.

Proof. Define

Λ :=
{
ω : Xn(ω) does not converge to a limit in [−∞,∞]

}
=
{
ω : lim sup

n
Xn(ω) > lim inf

n
Xn(ω)

}
=

⋃
a,b∈Q:a<b

{
ω : lim sup

n
Xn(ω) > b > a > lim inf

n
Xn(ω)

}
=:

⋃
a,b∈Q:a<b

Λa,b.

But

Λa,b ⊂
{
ω : U∞(X, [a, b])(ω) =∞

}
.

Therefore, by Corollary 2.29, P[Λa,b] = 0, and thus also

P
[ ⋃
a,b∈Q:a<b

Λa,b

]
= 0,

since countable unions of null-sets are null-sets. Thus P[Λ] = 0 and the limit X∞ :=

limnXn exists in [−∞,∞] with probability one. It remains to show that it is finite.
To do this, we use Fatous lemma:

E
[
|X∞|

]
= E

[
lim inf

n
|Xn|

]
≤ lim inf

n
E
[
|Xn|

]
≤ sup

n
E
[
|Xn|

]
<∞.

So X∞ is almost surely finite. �

Remark 2.31. Doobs convergence theorem implies that positive super-martingale
always converge a.s. This is because the super-martingale property ensures in this
case that E[|Xn|] = E[Xn] ≤ E[X0], so the uniform boundedness in L1 is always
guaranteed.
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2.4. Stopping times and optional stopping. In a stochastic process we often want
to consider random times that are determined by the occurrence of a particular
event. If this event depends only on what happens ’in the past’, we call it a stopping
time. Stopping times are nice, since we can determine their occurrence as we ob-
serve the process; so if we are only interested in them, we can stop the process at
this moment, hence the name.

Definition 2.32. A map τ : Ω → {0, 1, . . .} ∪ {∞} is called a stopping time (with
respect to a filtration (Fn)n≥0) if {τ ≤ n} ∈ Fn for all n ≥ 0 or, equivalently,
{τ = n} ∈ Fn for all n ≥ 0.

Example 2.33. The most important examples of stopping times are hitting times.
Let (Xn)n≥0 be an adapted process, and let B ∈ B(R). Define

τB(ω) := inf
{
n > 0 : Xn(ω) ∈ B

}
with inf ∅ := +∞. Then τB is a stopping time.

Definition 2.34. Let (Xn)n≥0 be a stochastic process and τ be a stopping time. We
define the stopped process Xτ via

Xτ
n(ω) := Xn∧τ(ω)(ω).

Proposition 2.35. Let (Xn)n≥0 be a (sub-)martingale and τ be a stopping time. Then
the stopped process Xτ is a (sub-)martingale.

Proof. Exercise! �

Theorem 2.36 (Doob’s Optional stopping theorem). Let (Xn)n≥0 be a martingale
and τ be a stopping time. Then, Xτ ∈ L1 and

E[Xτ ] = E[X0],

if one of the following conditions holds.

(a) τ is bounded (i.e. there exists N ∈ N such that τ(ω) ≤ N for all ω ∈ Ω).
(b) Xτ is bounded and τ is a.s. finite.
(c) E[τ ] <∞ and for some K <∞,∣∣Xn(ω)−Xn−1(ω)

∣∣ ≤ K, ∀n ∈ N, ω ∈ Ω.

Proof. By Proposition 2.35 the stopped process Xτ
n = Xτ∧n is a martingale. In

particular, its expected value is constant in n, so that

E
[
Xτ∧n

]
= E

[
Xτ
n

]
= E

[
Xτ

0

]
= E

[
X0

]
. (2.10)

Consider the case (a). By assumption τ is bounded, so there exists N ∈ N such
that τ(ω) ≤ N for all ω ∈ Ω. Then, choosing n = N in (2.10) gives the claim.

In case (b) we have limnXτ∧n = Xτ on the event {τ < ∞} and therefore P-a.s.
Since Xτ is bounded, we get by the dominated convergence theorem

lim
n→∞

E
[
Xτ∧n

]
= E

[
lim
n→∞

Xτ∧n
]

= E
[
Xτ

]
,
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which together with (2.10) implies the result.
In the last case, (c), we observe that

∣∣Xτ∧n −X0

∣∣ =
∣∣∣ τ∧n∑
k=1

(Xk −Xk−1)
∣∣∣ ≤ Kτ,

and by assumption E[Kτ ] < ∞. So again by the dominated convergence theorem
we can pass to the limit in (2.10). �

Remark 2.37. (i) By similar arguments Theorem 2.36 extends immediately to super-
resp. submartingales in which case the conclusion reads

E[Xτ ] ≤ E[X0] resp. E[Xτ ] ≥ E[X0].

(ii) Theorem 2.36 may look strange and contradict the ’no strategy’ idea. Take a
simple random walk (Sn)n≥0 on Z (i.e. a series of fair games), and define a stopping
time τ = inf{n : Sn = 10}. Then clearly E[Sτ ] = 10 6= E[S0] = 0! So we conclude,
using (c), that E[τ ] = +∞. In fact, the ’sure’ gain if we achieve our goal is offset by
the fact that on average, it takes infinitely long to reach it (of course, most games
will end quickly, but chances are that some may take very very long!).

3. ARBITRAGE THEORY IN DISCRETE TIME

In this section we will give some answers to our two main questions in the context
of a multiperiod model in discrete time, that is we will develop a formula for prices
of financial derivative and give a characterisation of arbitrage-free market models.
For the latter we will discuss the so-called ’Fundamental Theorem of Asset Prices’,
which states that a model is arbitrage-free if and only if the process discounted
asset prices is a martingale under some measure admitting the same null sets as the
original measure. As a warm-up we will discuss these results for a one-period model
first, but before we need to revisit the Radon-Nikodym theorem in the context of
two probability measures.

Definition 3.1. Let P and Q be two probability measures on (Ω,F).

(i) We say that Q is absolutely continuous with respect to P if

P[A] = 0 ⇒ Q[A] = 0, ∀A ∈ F .

In this case we also write Q� P.
(ii) We say that Q is equivalent to P if Q� P and Q� P, that is

P[A] = 0 ⇔ Q[A] = 0, ∀A ∈ F .

In this case we write Q ≈ P.

Theorem 3.2. Let P and Q be two probability measures on (Ω,F).
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(i) Radon-Nikodym theorem: Q � P if and only if there exists an F -measurable
function f ≥ 0 with EP[f ] = 1 such that

Q[A] =

∫
A
f dP = EP

[
f1lA

]
, ∀A ∈ F .

The function f is called density or Radon-Nikodym derivative and is often denoted
by f = dQ

dP .
(ii) Q ≈ P if and only if dQ

dP > 0 P-a.s. In this case we have

dP
dQ

=
(dQ

dP

)−1
.

(iii) If Q� P and Y ∈ L1(Ω,F ,Q) then

EQ[Y ] = EP[fY ].

3.1. Single period model. Consider a single period market model with d risky
asset and one riskless bond. Their values at time t are denoted by S̄t = (S0

t , St) =

(S0
t , S

1
t , . . . , S

d
t ), t ∈ {0, 1}. The prices S̄0 at time t = 0 and the value S0

1 of the bond
at time t = 1 are deterministic, and the values of the risky assets at time t = 1 are
represented by a vector of random variables S1 = (S1

1 , . . . , S
d
1) on (Ω,F ,P).

Definition 3.3. We say that a portfolio θ̄ ∈ Rd+1 is an arbitrage opportunity if
θ̄ · S̄0 ≤ 0 but θ̄ · S̄1 ≥ 0 P-a.s. and P[θ̄ · S̄1 > 0] > 0.

Intuitively, an arbitrage opportunity is an investment strategy that yields with
positive probability a positive profit and is not exposed to any downside risk. The
existence of such an arbitrage opportunity may be regarded as a market inefficiency
in the sense that certain assets are not priced in a reasonable way. In real-world
markets, arbitrage opportunities are rather hard to find. If such an opportunity
would show up, it would generate a large demand, prices would adjust, and the
opportunity would disappear.

Note that the probability measure P enters the definition of an arbitrage only
through the null sets of P. Thus, if θ̄ is an arbitrage under P then it is also an
arbitrage under any probability measure Q ≈ P.

Theorem 3.4. Assume that S0
t = 1 for all t ∈ {0, 1}. Then the following are equiva-

lent.

(i) There is no arbitrage.
(ii) There exists a probability measure Q ≈ P such that

EQ[S1] = S0.

In this case we may take a density of the form
dQ
dP

=
1

Zθ
exp

(
−θ(S1 − S0)− 1

2

∣∣S1 − S0

∣∣2)
for some θ ∈ Rd, where Zθ := E

[
exp(−θ(S1−S0)− 1

2 |S1−S0|2)
]

is a normalising
constant.
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Proof. Write Y := S1 − S0 for abbreviation. Without loss of generality we may
assume that P

[
θ · Y = 0

]
< 1 for all θ ∈ Rd \{0}. Otherwise we would have linear

dependencies in the model and some assets would be redundant.
(ii) ⇒ (i): Assume that θ̄ is an arbitrage. By condition (ii) we have EQ[θ · S1] =

θ · S0, and since S0 ≡ 1 this yields EQ[θ̄ · S̄1] = θ̄ · S̄0. Then, by the fact that θ̄ is an
arbitrage we get

0 ≤ EQ[θ̄ · S̄1] = θ̄ · S̄0 ≤ 0,

so EQ[θ̄ · S̄1] = 0. Further, θ̄ · S̄1 ≥ 0 P-a.s., and, since Q ≈ P, we also have θ̄ · S̄1 ≥ 0

Q-a.s. Hence, θ̄ · S̄1 = 0 Q-a.s. and therefore also θ̄ · S̄1 = 0 P-a.s., so θ̄ is not an
abitrage.

(i)⇒ (ii): Consider the function

ϕ : Rd → [0,∞) θ 7→
E
[

exp
(
− θ · Y − 1

2

∣∣Y ∣∣2)]
E
[

exp
(
− 1

2

∣∣Y ∣∣2)] ,

which is continuous, convex and differentiable.
Let us first consider the case that the infimum infθ ϕ(θ) is attained at some θ∗.

Then we get by differentiating

E
[
exp

(
− θ∗ · Y − 1

2

∣∣Y ∣∣2)Y ] = 0,

and, defining Q via Q[A] =
∫
A

dQ
dP dP with dQ

dP = 1
Zθ∗

exp
(
− θ∗ ·Y − 1

2

∣∣Y ∣∣2), this can
be be rewritten as EQ[Y ] = 0, so we obtain (ii).

It suffices to show now that if there is no arbitrage in the model then the infimum
infθ ϕ(θ) is attained. Let us assume that infθ ϕ(θ) is not attained. Consider the sets

Fα :=
{
θ ∈ Rd : |θ| = 1, ϕ(αθ) ≤ 1

}
, α ≥ 0,

which are compact subsets of Rd. Since ϕ is convex and ϕ(0) = 1 we have Fβ ⊆ Fα
for α ≤ β. By the Finite Intersection Property4 either the intersection

⋂
α≥0 Fα is

non-empty, or for some α > 0, Fα = ∅. By assumption infθ ϕ(θ) is not attained, so
infθ ϕ(θ) < ϕ(0) = 1 and there exists a sequence (ak)k≥0 in Rd such that ϕ(ak) ↓
infθ ϕ(θ) as k ↑ ∞. Then (ak) cannot be bounded, because otherwise a subsequence
would converge to a point where the infimum is attained. Thus, there exists a
sequence of points tending to infinity where ϕ is less than 1. In particular, Fα = ∅
for some α > 0 cannot hold. Therefore,

⋂
α≥0 Fα 6= ∅, so there exists a ∈ Rd with

|a| = 1 such that

ϕ(ta) =
E
[

exp
(
− ta · Y − 1

2

∣∣Y ∣∣2)]
E
[

exp
(
− 1

2

∣∣Y ∣∣2)] ≤ 1, for all t ≥ 0.

4We say that a collection of subsets A of a Hausdorff space X (in our context X is the unit sphere
Sd−1 ⊂ Rd) has the Finite Intersection Property if for any finite selection {A1, . . . , AN} ⊂ A we have⋂N
i=1Ai 6= ∅.

Theorem: X is compact if and only if every collection of closed subsets satisfying the Finite Intersec-
tion Property has non-empty intersection.
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But this can only happen if

P
[
a · Y < 0

]
= 0,

and since we assumed that P[a · Y = 0] < 1 this implies

P
[
a · (S1 − S0) > 0

]
> 0.

Now choose the strategy ā = (−a ·S0, a) ∈ R×Rd, that is take a portfolio consisting
of a ∈ Rd units in the risky assets S1, . . . , Sd and −a · S0 units in the riskless asset
S0. Then at time t = 0 this is worth ā · S̄0 = 0 (recall that S0 ≡ 1) and at time t = 1

its value is

ā · S̄1 = −a · S0 + a · S1 = a · (S1 − S0)

{
≥ 0 P-a.s.

> 0 with positive P-probability.

Thus, ā is an arbitrage opportunity, which contradicts condition (i). �

The assumption that S0 is identically 1 is restrictive, asymmetric and unneces-
sary; the notion of arbitrage for any vector S̄ ∈ Rd+1 of assets does not require this,
and in fact we can deduce a far more flexible form of the above result.

Corollary 3.5 (Fundamental Theorem of Asset Pricing (FTAP)). Assume that S0
t > 0

for all t ∈ {0, 1}. Then the following are equivalent.

(i) There is no arbitrage.
(ii) There exists a probability measure Q ≈ P such that

EQ

[S1

S0
1

]
=
S0

S0
0

.

The probability measure Q is referred to as a risk-neutral measure or an equivalent
martingale measure.

Proof. Note that θ̄ is an arbitrage for S̄ if and only if it is an arbitrage for S̃ defined
by S̃it := Sit/S

0
t for i ∈ {0, 1, . . . , d}, t ∈ {0, 1}. The result follows by applying

Theorem 3.4 to S̃. �

Remark 3.6. (i) The strictly positive asset S0 above is referred to as a numéraire.
We have often considered a situation where there is a single riskless asset (referred
to variously as the money-market account, the bond, the bank account, . . . ) in
the market, and it is very common to use this asset as numéraire. It turns out
that this will serve for our present applications, but there are occasions when it
is advantageous to use other numéraires. Note that the Fundamental Theorem of
Asset Pricing does not require the existence of a riskless asset, that is S0

1 could also
be random as long as it is strictly positive.

(ii) Note that the Fundamental Theorem of Asset Pricing does not make any claim
about uniqueness of Q when there is no arbitrage. This is because situations where
there is a unique Q are rare and special; when Q is unique, the market is called
complete.
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3.2. Multi-period model. Consider a multi-period model in which d + 1 assets
are priced at times t = 0, 1, . . . , T . The price of asset i at time t is modelled by
a non-negative random variable on a probability space (Ω,F ,P). We will write
S̄t = (S0

t , St) = (S0
t , . . . , S

d
t ), t ∈ {0, . . . , T}. The stochastic process (S̄t)t∈{0,...,T} is

assumed to be adapted to a filtration (Ft)t∈{0,...,T}. Further, we assume that F0 is
P-trivial, i.e. P[A] ∈ {0, 1} for all A ∈ F0. This condition holds if and only if all
F0-measurable random variable are P-a.s. constant.

Definition 3.7. A trading strategy is an Rd+1-valued, previsible process θ̄ = (θ0, θ) =

(θ0
t , . . . , θ

d
t )t=1,...,T , i.e. θ̄t is Ft−1-measurable for all t = 1, . . . , T .

The value θit of a trading strategy θ̄ corresponds to the quantity of shares of asset
i held between time t− 1 and time t. Thus, θitS

i
t−1 is the amount invested into asset

i at time t − 1, while θitS
i
t is the resulting value at time t. The total value of the

portfolio θ̄t at time t− 1 is

θ̄t · S̄t−1 =
d∑
i=0

θit S
i
t−1.

By time t, the value of the portfolio θ̄t has changed to

θ̄t · S̄t =
d∑
i=0

θit S
i
t .

The previsibility of θ̄ expresses the fact that investments must be allocated at the
beginning of each trading period, without anticipating future price increments.

Definition 3.8. A trading strategy θ̄ is called self-financing if

θ̄t · S̄t = θ̄t+1 · S̄t, ∀t = 1, . . . , T − 1. (3.1)

Intuitively, (3.1) means that the value of the portfolio at any time t equals the
amount invested at time t. It follows that the accumulated gains and losses resulting
from the price fluctuations are the only source of variations of the portfolio:

θ̄t+1 · S̄t+1 − θ̄t · S̄t = θ̄t+1 ·
(
S̄t+1 − S̄t

)
,

and summing up yields

θ̄t · S̄t = θ̄1 · S̄0 +

t∑
s=1

θ̄s ·
(
S̄s − S̄s−1

)
.

Here, the constant θ̄1·S̄0 can be interpreted as the initial investment for the purchase
of the portfolio θ̄1, while the second term may be regarded as a discrete stochastic
integral (cf. Proposition 2.25).

Example 3.9. Often it is assumed that asset 0 plays the role of a locally riskless
bond. In this case, one takes S0

0 ≡ 1 and one lets S0
t evolve according to spot rate

rt ≥ 0. At time t, an investment x made at time t − 1 yields the payoff x(1 + rt).
Thus, a unit investment made at time t = 0 produces the value S0

t =
∏t
k=1(1 + rk)
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at time t. In order for an investment in S0 to be ’locally riskless’ the spot rate rt has
to be known beforehand at time t − 1. In other words, the process (rt)t=1,...,T and
therefore also (S0

t )t=1,...,T need to be previsible.

Without assuming previsiblity as in the previous example, we assume from now
on that

S0
t > 0 P-a.s. for all t ∈ {0, . . . T}.

This assumption allwos us to use asset 0 as numéraire. Now we define the discounted
price process

Xi
t :=

Sit
S0
t

, t = 0, . . . , T, i = 0, . . . , d.

Then X0
t ≡ 1, and Xt = (X1

t , . . . , X
d
t ) expresses the value of the remaining assets

in units of the numéraire.

Definition 3.10. The (discounted) value process V = (Vt)t=0,...,T of a trading strat-
egy θ̄ is given by

V0 := θ̄1 · X̄0, Vt := θ̄t · X̄t, t = 1, . . . , T.

Proposition 3.11. For a trading strategy θ̄ the following are equivalent.

(i) θ̄ is self-financing.
(ii) θ̄t · X̄t = θ̄t+1 · X̄t for t = 1, . . . , T − 1.

(iii) Vt = V0 +
∑t

s=1 θs · (Xs −Xs−1) for all t.

Proof. By dividing both sides of (3.1) by S0
t we easily see that (i) and (ii) are equiv-

alent. Moreover, (ii) holds if and only if

θ̄t+1 · X̄t+1 − θ̄t · X̄t = θ̄t+1 ·
(
X̄t+1 − X̄t

)
= θt+1 ·

(
Xt+1 −Xt

)
for t = 1, . . . , T − 1, and this identity is equivalent to (iii). �

Remark 3.12. If θ̄ is a self-financing trading strategy , then (θ̄t+1 − θ̄t) · X̄t = 0 for
all t = 1, . . . , T − 1. In particular, the numéraire component satisfies

θ0
t+1 − θ0

t = −(θt+1 − θt) ·Xt, t = 1, . . . , T − 1, (3.2)

and

θ0
1 = V0 − θ1 ·X0. (3.3)

Thus, the entire process θ0 is determined by the initial investment V0 and the d-
dimensional process θ. Consequently, if a value V0 ∈ R and any d-dimensional
previsible process θ are given, we can define the process θ0 via (3.2) and (3.3) to
obtain a self-financing strategy θ̄ := (θ0, θ) with initial capital V0, and this construc-
tion is unique.

We now define the notion of an arbitrage in the context of a multi-period model.
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Definition 3.13. A self-financing strategy θ̄ is called an arbitrage opportunity if its
value process V satisfies

V0 ≤ 0, VT ≥ 0 P-a.s., and P
[
VT > 0

]
> 0.

Again we are aiming to characterise those market models that do not allow arbi-
trage opportunities.

Definition 3.14. A probability measure Q on (Ω,F) is called an equivalent mar-
tingale measure if Q ≈ P and the discounted price process X is a d-dimensional
martingale. The set of all equivalent martingale measures is denoted by P.

Proposition 3.15. Let Q ∈ P and θ̄ be a self-financing strategy with value process V
satisfying VT ≥ 0 P-a.s. Then V is a Q-martingale and EQ[VT ] = V0.

Proof. Step 1. As a warm-up, we first suppose that θ̄ = (θ0, θ) with θ bounded, i.e.
maxt |θt| ≤ c <∞ for some c > 0. Then

Vt = V0 +
t∑

s=1

θs · (Xs −Xs−1),

so that

|Vt| ≤ |V0|+ c
t∑

s=1

(
|Xs|+ |Xs−1|

)
.

Since X is a Q-martingale and EQ[|Xk|] < ∞ for each k, we have EQ[|Vt|] < ∞ for
every t. Moreover, for 0 ≤ t ≤ T − 1,

EQ
[
Vt+1 | Ft

]
= EQ

[
Vt + θt+1 · (Xt+1 −Xt) | Ft

]
= Vt + θt+1 · EQ

[
(Xt+1 −Xt) | Ft

]
= Vt,

where we used that Vt and θt+1 are Ft-measurable and X is a Q-martingale. Thus,
V is a Q-martingale.

Step 2. Now let θ̄ be as in the statement. In this step we will show that Vt ≥ 0 P-
a.s. for all t ∈ {0, . . . T} by backward induction. For t = T this holds by assumption.
Further, note that for any t we have by induction assumption

Vt−1 = Vt − θt · (Xt −Xt−1) ≥ −θt · (Xt −Xt−1).

For any c > 0 let θc be defined via θct := 1l{|θt|≤c}θt. Then EQ
[
Vt−11l{|θt|≤c} | Ft−1

]
is

well defined since

Vt−11l{|θt|≤c} = Vt1l{|θt|≤c} − θ
c
t · (Xt −Xt−1),

and the first term is non-negative by the induction assumption and the second term
is integrable. Thus,

Vt−11l{|θt|≤c} = EQ
[
Vt−11l{|θt|≤c} | Ft−1

]
≥ −EQ

[
θct · (Xt −Xt−1) | Ft−1

]
= 0.

Taking c ↑ ∞ yields Vt−1 ≥ 0 P-a.s.
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Notice that Step 2 ensures that EQ[Vt | Ft−1] is well-defined for all t.

Step 3. We show the martingale property for V . Indeed, since θct is Ft−1-
measurable and X is a Q-martingale,

EQ
[
Vt1l{|θt|≤c} | Ft−1

]
= EQ

[
Vt−11l{|θt|≤c} + θct · (Xt −Xt−1) | Ft−1

]
= Vt−11l{|θt|≤c}.

Letting again c ↑ ∞ the monotone convergence theorem gives EQ[Vt | Ft−1] = Vt−1

P-a.s.

Step 4. Since we have assumed that F0 is P-trivial, i.e. P[A] ∈ {0, 1} for all
A ∈ F0, and Q ≈ P, clearly F0 is also Q-trivial. Hence, by Proposition 2.12 and
Step 3,

EQ[V1] = EQ
[
V1 | F0

]
= V0 <∞.

Moreover, we use repeatedly Step 3 to obtain

EQ[VT ] = EQ

[
EQ
[
VT | FT−1

]]
= EQ[VT−1] = · · · = EQ[V1] = V0 <∞.

Thus, EQ[Vt] < ∞ for all t and we have shown that V is a Q-martingale with
EQ[VT ] = V0. �

Theorem 3.16 (Fundamental Theorem of Asset Pricing, FTAP). Assumed that S0 is
an a.s. strictly positive numéraire, i.e. S0

t > 0 P-a.s. for all t = 0, . . . T . Then, the
following are equivalent.

(i) There is no arbitrage.
(ii) P 6= ∅, that is there exists a probability measure Q equivalent to P such that

the discounted value process X defined by

Xt :=
St
S0
t

, t = 0, . . . T,

is a Q-martingale.

Proof. (ii)⇒ (i): Let Q ∈ P and θ̄ be a self-financing strategy with a value process
V satisfying V0 ≤ 0 and VT ≥ 0 P-a.s. Then, by Proposition 3.15,

EQ[VT ] = V0 ≤ 0,

which implies VT = 0 P-a.s., so there is no arbitrage.
(i) ⇒ (ii): A nice proof in our current discrete time setting, which is based on

an application of the Hahn-Banach separation theorem, can be found in [7, Theo-
rem 5.17, Section 1.6]. In continuous time the proof is even much more compli-
cated, see [6]. �

3.3. European contingent claims.

Definition 3.17. A non-negative random variable C on (Ω,F ,P) is called a Euro-
pean contingent claim or European option. A European contingent claim C is called
a derivative of the underlying assets S0, S1, . . . , Sd if C is measurable with respect
to the σ-algebra generated by the price process (S̄t)t=0,...,T .
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A European contingent claim has the interpretation of an asset which yields at
time T the amount C(ω), depending on the scenario ω of the market evolution. T
is called the expiration date or the maturity of C.

Example 3.18. (i) The owner of a European call option has the right, but not the
obligation, to buy a unit of an asset, say asset i, at time T for a strike price K. The
corresponding contingentis given by

Ccall =
(
SiT −K

)+
.

Conversely, a European put option gives the right, but not the obligation, to sell a
unit of an asset at time T for a fixed price K, called strike price. This corresponds
to a contingent claim of the form

Cput =
(
K − SiT

)+
.

(ii) The payoff of an Asian option depends on the average price

Siav :=
1

|T|
∑
i∈T

Sit

of the underlying asset during a predetermined averaging period T ⊆ {0, . . . , T}.
Examples are

• Average price call:
(
Siav −K

)+,
• Average price put:

(
K − Siav

)+,
• Average strike call:

(
SiT − Siav

)+,
• Average strike put:

(
Siav − SiT

)+.

An average strike put can be used, for example, to secure the risk from selling at
time T a quantity of an asset which was bought at successive times over the period
T.

(iii) The payoff of a barrier option depends on whether the price of the underlying
asset reaches a certain level before maturity. Most barrier options are either knock-
out or knock-in options. A knock-out barrier option has a zero payoff once the price
of the underlying asset reaches a predetermined barrier B. For instance, the so-
called up-and-out call with strike price K has the payoff

Ccall
uo =

{(
SiT −K

)+ if max0≤t≤T S
i
t < B,

0 else.

Conversely, a knock-in option pays off only if the barrier B is reached. For instance,
a down-and-in put pays off

Cput
di =

{(
K − SiT

)+ if min0≤t≤T S
i
t < B,

0 else.

Down-and-out and up-and-in options are also traded.
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(iv) Using a lookback option, one can trade the underlying asset at the maximal
or minimal price that occured during the life of the option. A lookback call has the
payoff

SiT − min
0≤t≤T

Sit

and a lookback put

max
0≤t≤T

Sit − SiT .

Definition 3.19. A European contingent claim C is called attainable (replicable, re-
dundant) if there exists a self-financing strategy θ̄ whose terminal portfolio coincides
with C, i.e.

C = θ̄T · S̄T P-a.s.

Such a trading strategy θ̄ is called a replicating strategy for C.

The discounted value of a contingent claim C when using S0 as a numéraire is
given by

H :=
C

S0
T

,

which is called the discounted European claim or just discounted claim associated
with C. Note that a contingent claim C is attainable if and only if the discount
claim H = C/S0

T is of the form

H =
θT · S̄T
S0
T

= θT · X̄T = VT = V0 +
T∑
t=1

θt ·
(
Xt −Xt−1

)
, (3.4)

where V denotes the value process of the replicating strategy θ̄ = (θ0, θ) (cf. Propo-
sition 3.11). In this case, we will also say that the discounted claim H is attainable
with replicating strategy θ̄.

From now on, we will assume that our market model is arbitrage-free or, equiva-
lently, that

P 6= ∅.

Theorem 3.20. Let H be an attainable discounted claim. Then

EQ[H] <∞ for all Q ∈ P.

Moreover, for each Q ∈ P the value process V of any replicating strategy satisfies

Vt = EQ
[
H | Ft

]
P-a.s., t = 0, . . . , T.

In particular, V is a non-negative Q-martingale.

Proof. From (3.4) we see that VT = H ≥ 0. Then, by Proposition 3.15 the value
process V is a Q-martingale for any Q ∈ P, so Vt = EQ

[
VT | Ft

]
= EQ

[
H | Ft

]
. �
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Remark 3.21. The last result has two remarkable implications. First, note that
EQ
[
H | Ft

]
is independent of the replicating strategy, so all replicating strategies

have the same value process. Further, for any t = 0, . . . , T , since Vt = θ̄t · X̄t is
independent of the equivalent martingale measure Q, Vt is a version of EQ

[
H | Ft

]
for all Q ∈ P.

Pricing a contingent claim. Let us now turn to the problem of pricing a contingent
claim. Consider an attainable discounted claim H with replicating strategy θ̄. Then
the (discounted) initial investment

θ̄1 · X̄0 = V0 = EQ[H]

needed for the replication of H can be interpreted as the unique (discounted) ’fair
price’ of H.

In fact, any different price for H would create an arbitrage opportunity. For
instance, if the price π̃ of H would be larger than V0 = EQ[H], then at time t = 0

an investor could sell H for π̃ and buy the portfolio θ̄1 for V0. Then, at time t = 1

he could buy θ̄2 for θ̄1 · X̄1 and so on. At time t = T the terminal portfolio value
VT = θ̄T · X̄T suffices for settling the claim H at maturity T . This yields a sure profit
of π̃ − V0 > 0 or, in other words, an arbitrage.

It also becomes clear from these considerations what the seller of an attainable
option H needs to do in order to eliminate his risk, in other words to hedge the
option H. All he needs to do is to buy the replication strategy θ for π = V0, which
now serves as his hedging strategy. Then, at expiration time T the seller will hold a
portfolio with value θ̄T · X̄T = H, which he can use to settle the claim H.

Remark 3.22. Theorem 3.20 provides not only the price of an attainable claim (i.e.
its value at time t = 0), but also its value at any time t ∈ {0, . . . , T}, which is given
by Vt = EQ

[
H | Ft

]
, which equals the value of a replicating strategy at time t.

We have now discussed pricing market models that are complete in the following
sense.

Definition 3.23. An arbitrage-free market model is called complete if every Euro-
pean contingent claim is attainable.

Theorem 3.24 (Second Fundamental Theorem of Asset Pricing). An arbitrage-free
market model is complete if and only if there exists exactly one equivalent martingale
measure, i.e. |P| = 1.

Proof. See [7, Section 5.4]. �

In the next section we will study the prototype of a complete market model, the
Cox-Ross-Rubinstein binomial model. However, in discrete time only a very limited
class of models turn out to be complete. For incomplete models pricing is more
difficult (see e.g. [7, Theorem 5.30]).
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4. THE COX-ROSS-RUBINSTEIN BINOMIAL MODEL

In this section we study the binomial model, a particularly simple model, intro-
duced by Cox, Ross and Rubinstein in [4]. It involves a riskless bond

S0
t := (1 + r)t, t = 0, . . . , T,

with r > −1 and one risky asset S1 of the form

S1
t = S1

0

t∏
k=1

(1 +Rk),

where the initial value S1
0 > 0 is a given constant and (Rt)t∈{0,...T} is a family of

random variables taking only two possible values a, b ∈ R with −1 < a < b. Thus,
the stock price jumps from S1

t−1 either to the higher value S1
t = S1

t−1(1 + b) or to
the lower value S1

t = S1
t−1(1 + a). The random variable

Rt =
S1
t − S1

t−1

S1
t−1

describes the return in the t-th trading period, t = 1, . . . , T . In this context, we
are going to derive explicit formulas for the arbitrage-free prices and replicating
strategies of various contingent claims.

We now construct the model on the sample space

Ω := {−1, 1}T =
{
ω = (y1, . . . , yT ) | yi ∈ {−1, 1}

}
.

Denote by

Yt(ω) := yt for ω = (y1, . . . , yT )

the projection on the t-th coordinate. Further, let

Rt(ω) := a
1− Yt(ω)

2
+ b

1 + Yt(ω)

2
=

{
a if Yt(ω) = −1,

b if Yt(ω) = 1.

Now the price process of the risky asset at time T is modelled by

S1
t = S1

0

t∏
k=1

(1 +Rk),

where the initial value S1
0 > 0 is a given constant. The discounted value process is

given by

Xt =
S1
t

S0
t

= S1
0

t∏
k=1

1 +Rk
1 + r

.

As a filtration we take

Ft := σ(S1
0 , . . . , S

1
t ) = σ(X0, . . . , Xt), t = 0, . . . , T.
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Then, note that F0 = {∅,Ω},

Ft = σ(Y1, . . . , Yt) = σ(R1, . . . , Rt), t = 1, . . . , T.

and F = FT coincides with the power set of Ω. Now we fix any probability measure
P on (Ω,F) such that

P
[
{ω}

]
> 0, ∀ω ∈ Ω,

or, in other words,

P
[
R1 = c1, . . . , RT = cT

]
> 0, ∀(c1, . . . , cT ) ∈ {a, b}T .

Definition 4.1. This model is called binomial model or CRR model (for Cox, Ross,
Rubinstein).

Theorem 4.2. The CRR model is arbitrage-free if and only if a < r < b. In this
case, there exists a unique equivalent martingale measure Q, i.e. P = {Q}, and Q is
characterised by the fact that the random variables R1, . . . , RT are independent under
Q with common distribution

Q[Rt = b] = p∗ :=
r − a
b− a

, t = 0, . . . , T.

Proof. First note that a measure Q ∈ P if and only if X is a martingale under Q, i.e.

Xt = EQ
[
Xt+1 | Ft

]
= Xt EQ

[
1 +Rt+1

1 + r

∣∣∣Ft] Q-a.s.

for all t ≤ T − 1, which is equivalent to

r = EQ
[
Rt+1 | Ft

]
= bQ

[
Rt+1 = b | Ft

]
+ a

(
1−Q

[
Rt+1 = b | Ft

])
.

This can be rewritten as

Q
[
Rt+1 = b | Ft

]
=
r − a
b− a

= p∗.

But since p∗ is a deterministic constant, it can be easily seen that this holds if and
only if the random variables R1, . . . , RT are i.i.d. with Q[Rt = b] = p∗. In particular,
there can be at most one martingale measure for X.

If the model is arbitrage-free, then there exists Q ∈ P. Since Q ≈ P we must
have Q[Rt = b] = p∗ ∈ (0, 1), so a < r < b.

Conversely, if a < r < b then we can define a measure Q ≈ P on (Ω,F) by setting

Q
[
{ω}

]
:= (p∗)k (1− p∗)T−k > 0,

where k denotes the number of components of ω = (y1, . . . , yT ) that are equal
to +1. Then, under Q, Y1, . . . , YT and hence R1, . . . , RT are independent random
variables with common distribution Q[Yt = 1] = Q[Rt = b] = p∗, so Q ∈ P and thus
there is no arbitrage opportunity. �
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From now on we only consider CRR models that are arbitrage-free, so we assume
that a < r < b and denote by Q the unique equivalent martingale measure.

Now we turn to the problem of pricing and hedging a given contingent claim
C. Let H = C/(1 + r)T be the discounted claim, which can be written as H =

h(S1
0 , S

1
1 , . . . , S

1
T ) for some suitable function h.

Proposition 4.3. The value process

Vt = EQ
[
H | Ft

]
, t = 0, . . . , T,

of a replicating strategy for H is of the form

Vt(ω) = vt
(
S1

0 , S
1
1(ω), . . . , S1

t (ω)
)
,

where the function vt is given by

vt(x0, . . . , xt) = EQ

[
h
(
x0, . . . , xt, xt ·

S1
1

S1
0

, . . . , xt ·
S1
T−t
S1

0

)]
. (4.1)

Proof. Since the equivalent martingale measure is unique, the model is complete
and the every contingent claim is attainable, and by Theorem 3.20 the value process
of any replicating strategy is given by Vt = EQ

[
H | Ft

]
. Thus,

Vt = EQ

[
h
(
S1

0 , . . . , S
1
t , S

1
t ·

S1
t+1

S1
t

, . . . , S1
t ·

S1
T

S1
t

) ∣∣∣Ft] .
Recall that S1

0 , S
1
1 , . . . S

1
t are Ft-measurable and note that S1

t+s/S
1
t is independent

of Ft and has under Q the same distribution as

S1
s

S1
0

=

s∏
k=1

(1 +Rk).

The claim follows now from Proposition 2.17. �

Since the value process V is characterised by the recursion

VT = H, Vt = EQ
[
Vt+1 | Ft

]
,

we obtain the following recursion formula for the function vt in Proposition 4.3,

vT
(
x0, . . . , xT

)
= h(x0, . . . , xT ),

and for t < T ,

vt
(
x0, . . . , xt

)
(4.2)

= p∗ vt+1

(
x0, x1, . . . , xt, xt(1 + b)

)
+ (1− p∗) vt+1

(
x0, x1, . . . , xt, xt(1 + a)

)
.
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Indeed, for t < T ,

vt(S
1
0 , . . . , S

1
t ) = EQ

[
H | Ft

]
= EQ

[
EQ
[
H | Ft+1

] ∣∣Ft]
= EQ

[
vt+1(S1

0 , . . . , S
1
t+1) | Ft

]
= EQ

[
vt+1

(
S1

0 , . . . , S
1
t , S

1
t ·

S1
t+1

S1
t

) ∣∣∣Ft]
= p∗ vt+1

(
S1

0 , S
1
1 , . . . , S

1
t , S

1
t (1 + b)

)
+ (1− p∗) vt+1

(
S1

0 , S
1
1 , . . . , S

1
t , S

1
t (1 + a)

)
.

Example 4.4. Suppose that H = h(S1
T ) only depends on the terminal value S1

T of
the stock price, then Vt depends only on the value S1

t of the stock at time t , i.e.
Vt(ω) = vt(S

1
t (ω)) and the formula (4.1) reduces to

vt(xt) = EQ

[
h
(
xt
S1
T−t
S1

0

)]

=

T−t∑
k=0

h
(
xt (1 + a)T−t−k (1 + b)k

)(T − t
k

)
(p∗)k (1− p∗)T−t−k.

In particular, the unique arbitrage-free price of H is given by

π(H) = v0(S1
0) =

T∑
k=0

h
(
S1

0 (1 + a)T−k (1 + b)k
)(T

k

)
(p∗)k (1− p∗)T−k.

For instance, by choosing h(x) = (x−K)+ or h(x) = (K − x)+ we get explicit for-
mulas for the arbitrage-free prices of a European call or European put, respectively.

Next we derive a hedging strategy for a discounted claim H = h(X0, . . . , XT ). By
hedging strategy we mean a self-financing trading strategy the seller of an option
can use in order to secure his position at maturity time T . For instance, if the option
is attainable, any replicating strategy can serve as an hedging strategy.

Proposition 4.5. The hedging strategy is given by

θt(ω) = ∆t(S
1
0 , S

1
1(ω), . . . , S1

t−1(ω)),

where

∆t

(
x0, x1, . . . , xt−1

)
= (1 + r)t

vt
(
x0, x1, . . . , xt−1, xt−1(1 + b)

)
− vt

(
x0, x1, . . . , xt−1, xt−1(1 + a)

)
xt−1

(
b− a

) .

The term ∆t may be regarded as a discrete derivative of the value function vt
with respect to the possible stock price changes. In financial language, a hedging
strategy based on a derivative of the value process is often called a Delta hedge.

Proof. By Proposition 3.11 we have that for each ω = (y1, . . . , yT ) ∈ {−1, 1}T any
self-financing strategy θ̄ must satisfy

θt(ω) ·
(
Xt(ω)−Xt−1(ω)

)
= Vt(ω)− Vt−1(ω). (4.3)
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In this equation the random variables θt, Xt−1 and Vt−1 depend only on the first
t− 1 components of ω. For a fixed t we now define

ω± := (y1, . . . , yt−1,±1, yt+1, . . . , yT ).

Plugging ω+ and ω− into (4.3) gives

θt(ω)
(
Xt−1(ω)

1 + b

1 + r
−Xt−1(ω)

)
= Vt(ω

+)− Vt−1(ω)

θt(ω)
(
Xt−1(ω)

1 + a

1 + r
−Xt−1(ω)

)
= Vt(ω

−)− Vt−1(ω).

Taking the difference and solving for θt(ω) gives

θt(ω) =
(
1 + r

) Vt(ω+)− Vt(ω−)

(b− a)Xt−1(ω)
=
(
1 + r

)t Vt(ω+)− Vt(ω−)

(b− a)S1
t−1(ω)

,

and the claim follows. �

The recursion formula (4.2) can be used for the numeric computation of the
value process of a contingent claim. Nevertheless, for the value process of certain
exotic options which depend on the maximum of the stock price, it is possible to get
some quite explicit analytic formulas if we make the additional assumption that

(1 + a)(1 + b) = 1. (4.4)

Further, as the price formulas only depend on the equivalent martingale measure Q,
of course, and not on the original measure P, we may now introduce as an auxiliary
probability measure the uniform distribution

P
[
{ω}

]
:=

1

|Ω|
= 2−T , ∀ω ∈ Ω = {−1, 1}T .

We still denote Yt(ω) := yt for ω = (y1, . . . , yT ) the projection onto the t-th coordi-
nate of ω (also called coordinate process). Then, under the uniform distribution P,
we have that Y1, . . . , YT are i.i.d. random variables with P[Yt = 1] = P[Yt = −1] = 1

2 .
Hence, the stochastic process Z defined by

Z0 := 0, Zt := Y1 + · · ·+ Yt, t = 1, . . . , T,

is a symmetric simple random walk on Z. Further, due to (4.4) the price process of
the risky asset can be written as

S1
t (ω) = S1

0

t∏
k=1

(1 +Rk(ω)) = S1
0

(
1 + b

)Zt(ω)
.

Moreover, by path counting we have that

P
[
Zt = k

]
=

2−t
(

t
t+k

2

)
if t+ k is even,

0 else.
(4.5)

The next result is the key to numerous explicit results on the distribution of the
one-dimensional simple random walk Z. For its statement, it will be convenient to
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FIGURE 2. The reflection principle for the simple random walk

assume that Z is defined up to time T+1, which alway can be achieved by enlarging
the probability space (Ω,F ,P).

Theorem 4.6 (Reflection principle for simple random walk). For all k ≥ 1 and l ≥ 0,

P
[

max
0≤t≤T

Zt ≥ k and ZT = k − l
]

= P
[
ZT = k + l

]
(4.6)

and

P
[

max
0≤t≤T

Zt = k and ZT = k − l
]

=
2(k + l + 1)

T + 1
P
[
ZT+1 = 1 + k + l

]
. (4.7)

Proof. The proof is based on the fact that the uniform distribution P is preserved
under bijections between paths. Define

τ(ω) := inf
{
t ≥ 0 |Zt(ω) = k

}
,

and

Ak,l :=
{
ω ∈ Ω | τ(ω) ≤ T, ZT (ω) = k − l

}
.

For ω = (y1, . . . , yT ) ∈ Ak,l set

φ(ω) := (y1, . . . , yτ(ω),−yτ(ω)+1, . . . ,−yT ).

Intuitively, for ω ∈ Ak,l the two trajectories
(
Zt(ω)

)
t=0,...,T

and
(
Zt(φ(ω))

)
t=0,...,T

coincide up to time τ(ω), but from then on the latter path is obtained by reflecting
the original one on the horizontal axis at level k (see Figure 2). In particular, note
that

φ : Ak,l →
{
ZT = k + l, τ(ω) ≤ T} =

l≥0

{
ZT = k + l

}
is a bijection. Therefore,

P[Ak,l] =
|Ak,l|
|Ω|

=
|φ(Ak,l)|
|Ω|

= P
[
ZT = k + l

]
,
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so we obtain (4.6).

In order to show (4.7) we first observe that it trivial as both sides become zero if
T + k + l is odd. Otherwise, we set j = (T + k + l)/2 and use (4.6) and (4.5) to
obtain that

P
[

max
0≤t≤T

Zt = k, ZT = k − l
]

= P
[

max
0≤t≤T

Zt ≥ k, ZT = k − l
]
− P

[
max

0≤t≤T
Zt ≥ k + 1, ZT = k − l

]
= P

[
ZT = k + l

]
− P

[
ZT = k + l + 2

]
= 2−T

(
T

j

)
− 2−T

(
T

j + 1

)
= 2−T

(
T + 1

j + 1

)
2j + 1− T
T + 1

=
2(k + l + 1)

T + 1
P
[
ZT+1 = 1 + k + l

]
,

which is the claim. �

Next we observe that the density of the equivalent martingale measure Q with
respect to P is a function of the terminal value of the random walk Z. This will be
the key for applying the reflection principle to the problem of pricing exotic options
involving the maximum of the stock price.

Lemma 4.7. The density of Q with respect to P is given by

dQ
dP

= 2T (p∗)
T+ZT

2 (1− p∗)
T−ZT

2 .

Remark 4.8. The proof of Lemma 4.7 will be based on the following fact. Let Ω

be a countable set, F be the power set of Ω and P be any probability measure on
(Ω,F) with P [{ω}] > 0 for all ω ∈ Ω. Then every probability measure Q on (Ω,F)

is absolutely continuous with respect to P and the density is given by

dQ

dP
(ω) = φ(ω) :=

Q[{ω}]
P [{ω}]

, ω ∈ Ω.

Indeed, for any A ∈ F ,

Q[A] =
∑
ω∈A

Q
[
{ω}

]
=
∑
ω∈A

Q
[
{ω}

]
P
[
{ω}

] P [{ω}] =
∑
ω∈A

φ(ω)P
[
{ω}

]
= EP

[
φ1lA

]
=

∫
A
φ dP.

Proof of Lemma 4.7. For each ω = (y1, . . . , yT ) ∈ Ω, which contains exactly k com-
ponents with yi = +1,

Q
[
{ω}

]
= (p∗)k (1− p∗)T−k.

But for such an ω we have ZT (ω) = k − (T − k) = 2k − T , so k = (ZT (ω) + T )/2.
Since P

[
{ω}

]
= 2−T , the result follows from the previous remark. �
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Example 4.9 (Up-and-in call option). Consider an up-and-in call of the form

Ccall
ui =

{(
S1
T −K

)+ if max0≤t≤T S
1
t ≥ B,

0 else,

where B > S1
0 ∨K denotes the barrier and K > 0 the strike price. We may assume

without loss of generality that B lies within the range of possible asset prices, i.e.
B = S1

0(1 + b)k for some k ∈ N. Our aim is to calculate the arbitrage-free price

π(Ccall
ui ) =

1

(1 + r)T
EQ
[
Ccall

ui

]
.

First recall that S1
T = S1

0 (1 + b)ZT . Further, notice that ZT can only take values
−T, 2− T, 4− T, . . . , T . Thus,

EQ
[
Ccall

ui

]
= EQ

[(
S1
T −K

)+
1l{max0≤t≤T S

1
t≥B}

]
=

T∑
l=0

(
S1

0(1 + b)2l−T −K
)+ Q

[
max

0≤t≤T
Zt ≥ k, ZT = 2l − T

]
=

T∑
l=0

(
S1

0(1 + b)2l−T −K
)+

2T (p∗)l(1− p∗)T−l P
[

max
0≤t≤T

Zt ≥ k, ZT = 2l − T
]
,

where we used Lemma 4.7 in the last step. Denote by lk the largest integer l such
that 2l− T ≤ k. Then, for l ≤ lk trivially 2l− T = k− j for j := k+ T − 2l ≥ 0, and
we may use the reflection principle in Theorem 4.6 and (4.5) to obtain

P
[

max
0≤t≤T

Zt ≥ k, ZT = 2l − T
]

= P
[
ZT = k + j

]
= P

[
ZT = 2(k − l) + T

]
=

{
2−T

(
T

T+k−l
)

if l ≥ k,

0 else.

On the other hand, if l > lk then 2l − T > k and therefore

P
[

max
0≤t≤T

Zt ≥ k, ZT = 2l − T
]

= P
[
ZT = 2l − T

]
= 2−T

(
T

l

)
.

Hence, by combining the previous three equations we finally get

π(Ccall
ui ) =

1

(1 + r)T

[
lk∑
l=k

(
S1

0(1 + b)2l−T −K
)+

(p∗)l(1− p∗)T−l
(

T

T + k − l

)

+

T∑
l=lk+1

(
S1

0(1 + b)2l−T −K
)+

(p∗)l(1− p∗)T−l
(
T

l

) .
Similarly, one can obtain formulas for barrier options with a lower stock price

barrier such as down-and-out put options or down-and-in calls. Lookback options
can be handled in this manner, too (see exercises).
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5. DYNAMIC PROGRAMMING

See Section 5 in [8] or Section 1 in [14].

6. BROWNIAN MOTION

The binomial model for a share is a discrete-time model, and as such it is a
poor approximation to the reality of a market, where trading happens in an almost
continuous fashion. We might try to make the binomial model describe such a
market better by thinking of the time period as being very short, such as one second,
or even one microsecond; if we did this, there would be a very large number of
moves of the share in an hour. Recall that under the equivalent martingale measure
the share price in the binomial model, or more precisely its logarithm, is a random
walk (its steps are independent identically distributed random variables), and in
view of the Central Limit Theorem, it would not be surprising if there existed some
(distributional) limit of the binomial random walk as the time periods became ever
shorter. It would also be expected that the Gaussian distribution should feature
largely in that limit process, and indeed it does. This chapter introduces the basic
ideas about a continuous-time process called Brownian motion, in terms of which
the most common continuous-time model of a share is defined. Using this model,
various derivative prices can be computed in closed form; the celebrated Black-
Scholes formula for the price of a European call option is the prime example. More
generally, prices of more complicated options on the share can be computed by
solving a partial differential equation (PDE).

It might be thought that we can now operate entirely with our sophisticated
Brownian motion model, and forget about the much simpler binomial model, but
this is far from being the case. Usually, the pricing PDE which arises for a given
derivative must be solved numerically, and this requires us to discretise the PDE
in some way. To do this, we can either discretise the derivatives in the PDE using
some finite-difference approximation and then solve the resulting system of linear
equations, or we can approximate the Brownian motion process by some random
walk, and then solve the pricing problem for that process by the usual dynamic-
programming methodology. The first computes an approximation to the solution
to the problem we wanted to solve; the second computes the exact solution to an
approximating problem. These slightly different points of view are both valuable;
for basic pricing problems, the PDE technology is faster and more accurate, but if
the problem is more complicated, the second approach is more robust.

We finish these motivating remarks with a very short overview about the history
of Brownian motion.

1827: Robert Brown observes the jittery motion of a grain of pollen in water
1900: Louis Bachelier discusses in his Ph.D.-thesis the use of Brownian motion as

a model for share prices.



46 STOCHASTIC FINANCIAL MODELS

1905: Albert Einstein formulates a diffusion equation for the motion of particles
in a fluid. A particle in water undergoes an enormous number of bom-
bardments by the fast-moving molecules in the fluid, roughly of the order
of 1013 collisions per second (at room temperature). So the particle per-
forms a random walk on a very short scale. The increments of this random
walk should have mean zero and the variance should be propertional to the
number of collisions, i.e. proportional to the elapsed time. Let Xt denote
the position of the particle at time t and x its initial position. In view of
the huge number of collisions and the weak strength of every single push,
the central limit theorem would suggest that it is reasonable to assume that
Xt ∼ N (x, σ2t) for some σ > 0. Furthermore, the evolution of the motion
of the particle on disjoint time intervals should be independent.

1923: Norbert Wiener provides a mathematical model for Brownian motion.
1965: Paul Samuelson suggest a geometric Brownian motion as a model for share

prices, more precisely,

St = S0 exp(σBt + µt),

where B is a Brownian motion, µ ∈ R a drift and σ > 0 a volatility param-
eter.

6.1. Definition and basic properties.

Definition 6.1. A stochastic process (Bt)t≥0 defined on a probability space (Ω,F ,P)

is called Brownian motion or Wiener process if

(a) B0 = 0, P-a.s.
(b) For P-a.e. ω, the map t 7→ Bt(ω) is continuous.
(c) For any n ∈ N and any 0 = t0 < t1 < · · · < tn, the increments Bt1 , Bt2 −

Bt1 , ..., Btn − Btn−1 are independent and each increment Bti − Bti−1 ∼
N (0, ti − ti−1), so it is a Gaussian random variable with mean zero and
variance ti − ti−1.

Remark 6.2. (i) Brownian motion is a Markov process with the transition probility
density given by

pt(x, y) =
1√
2πt

exp
(
− (y − x)2

2t

)
, t > 0, x, y ∈ R, (6.1)

so for any n ∈ N and any 0 < t1 < · · · < tn the distribution of (Bt1 , . . . , Btn) is given
by

P
[
Bt1 ∈ A1, . . . , Btn ∈ An

]
=

∫
A1

∫
A2

· · ·
∫
An

pt1(0, x1) pt2−t1(x1, x2) · · · ptn−tn−1(xn−1, xn) dxn · · · dx1

for all A1, . . . , An ∈ B(R).
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(ii) In the definition, B0 = 0 is not essential; for general x ∈ R we call (x+Bt)t≥0

a Brownian motion started at x and use the notation

Px[Bt ∈ dy] = pt(x, y) dy.

(iii) Brownian motion is a martingale with respect to its natural filtration defined
by Ft = σ(Bs, s ≤ t). Indeed, for 0 ≤ s ≤ t,

E
[
Bt | Fs

]
= Bs + E

[
Bt −Bs | Fs

]
= Bs + E

[
Bt −Bs

]
= Bs,

where we used that the increment Bt −Bs is independent of Fs.
(iv) In the definition, the condition (b) stating that B has continuous sample

paths is in fact an additional requirement and does not follow from (a) and (c).
Indeed, let B be a Brownian motion and set

B̄t(ω) := Bt(ω) 1lR\Q(Bt(ω)), t > 0.

Then, for every t, B̄t has the same distribution as Bt, so B̄ satisfies conditions
(a) and (c) but B̄ is obviously not continuous. One can even show that it is not
continuous at any point.

Alternatively, we could describe Brownian motion as follows.

Lemma 6.3. Brownian motion is the Gaussian process5 (Bt)t≥0 with values in R such
that

(a) B0 = 0, P-a.s.
(b) For P-a.e. ω, the map t 7→ Bt(ω) is continuous.
(c) E[Bt] = 0 and E[BtBs] = t ∧ s for all s, t ≥ 0.

Proof. Let B be Brownian motion as defined in Definiton 6.1. Then properties (a)
and (b) are obviously satisfied. To show that (c) holds, we may assume without loss
of generality that t > s. Then

E
[
BtBs

]
= E

[
(Bt −Bs)Bs +B2

s

]
= E[Bt −Bs] E[Bs] + E

[
B2
s

]
= 0 + s = s ∧ t,

where we used that Bt − Bs and Bs are independent and centred and Bs has vari-
ance s.

To prove the converse, i.e. that any process with the properties given in the state-
ment is a Brownian motion, we can just use the fact that the law of a Gaussian
process is uniquely determined by its mean and covariance (see e.g. [2, Section 3]).
Thus the process has the same law as Brownian motion and has only continuous
paths (by (b)), so it is Brownian motion. �

Once we have Brownian motion in one dimension, we can trivially define Brow-
nian motion in d dimensions.

5A stochastic process (Xt)t≥0 is called a Gaussian process if for any n ∈ N and any 0 < t1 < · · · < tn
the vector (Xt1 , . . . , Xtn) is normally distributed.
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Definition 6.4. A d-dimensional Brownian motion is a stochastic process (Bt)t≥0

with values in Rd, such that if B = (B1, . . . , Bd), then the components Bi are
mutually independent Brownian motions in R.

The question remains whether such a process actually exists.

Theorem 6.5. Brownian motion exists.

We will not give a formal proof here; some nice short constructions of Brownian
motion can be found, for instance, in [2, Section 6] or [11, Section 7]. However,
the maybe most natural approach would require a good amount of preparation, so
we only sketch the main idea here.

Let (Yi)i∈N be i.i.d. with E[Yi] = 0 and variance E[Y 2
i ] = 1. Consider the random

walk X defined by X0 := 0 and Xk :=
∑k

i=1 Yi, k ≥ 1 and let

X
(n)
t :=

1

n
Xbn2tc +

tn2 − btn2c
n

(
Xbn2tc+1 −Xbn2tc

)
, t ≥ 0,

that is, X(n)
tk

= Xk/n for tk = k/n2, k ≥ 0, and on each interval [tk, tk+1], X(n) inter-
polates linearly between Xk/n and Xk+1/n. Then, Donsker’s invariance principle
(Donsker, 1952) states that (

X(n)
)
t≥0

⇒
n→∞

(
Bt
)
t≥0

where B is a Brownian motion (and ⇒ denotes convergence in distribution). If
we would just consider the sequence X(n)

1 , i.e. the case t = 1, this is exactly the
Central Limit Theorem, since B1 ∼ N (0, 1). But Donsker’s theorem is in fact a
much stronger result as it provides such a convergence simultaneously for all t ≥ 0.
Therefore the theorem is also called Functional Central Limit Theorem. Equvalently,
this result could be also formulated as follows. The rescaled random walk X(n)

and the Brownian motion B may be regarded as random variables taking values
in the path space C([0,∞),R). Then Donsker’s theorem says that the distribution
P ◦(X(n)

· )−1 of the entire path of the rescaled random walk, which is a measure on
C([0,∞),R), converges weakly to the distribution of Brownian motion, which also
called the Wiener measure.

As a consequence, on an intuitive level Brownian motion looks locally like a
random walk on a very large time scale, so the paths are very rough. The next
proposition provides a more precise statement. We recall that a function f : R→ R
is locally Hölder continuous of order α for α ∈ [0, 1] if, for every L > 0,

sup

{
|f(t)− f(s)|
|t− s|α

, |t|, |s| ≤ L, t 6= s

}
<∞.

If α = 1, then f is locally Lipschitz-continuous.

Proposition 6.6. Let B be a Brownian motion. Then, almost surely,

(i) for all α < 1/2, B is locally Hölder continuous of order α,
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(ii) for all α ≥ 1/2, B is nowhere Hölder continuous of order α. In particular, B is
nowhere differentiable.

Proof. See e.g. [11, Theorem 7.7.2]. �

Proposition 6.7. Let B be a Brownian motion. Then each of the following processes
are also Brownian motions.

(i) B1
t := −Bt,

(ii) B2
t := cBt/c2 for any c > 0 (scale invariance),

(iii) B3
t := tB1/t for t > 0 and B3

0 := 0 (time-inversion),
(iv) B4

t := BT+t −BT for any T ≥ 0 fixed.

Proof. We leave the proofs for (i), (ii) and (iv) to the reader as an exercise. To see
(iii) we note first that B3 is a Gaussian process with mean E[B3

t ] = 0 for all t ≥ 0

and covariance

cov(B3
s , B

3
t ) = E

[
B3
sB

3
t

]
= s t E

[
B1/sB1/t

]
= s t 1

t = s, 0 < s ≤ t.

Hence, again using the fact that the law of a Gaussian process is determined by its
mean and covariance, we get that for any 0 ≤ t1 < · · · < tn the law of (B3

t1 , . . . , B
3
tn)

is the same as the law of (Bt1 , . . . , Btn). Further, the paths t 7→ B3
t are almost sure

continuous on (0,∞). It remains to show the continuity at t = 0. Let Q+ :=

Q∩ (0,∞), (At)t∈Q+ be a collection of sets in B(R) and {sn, n ≥ 1} be a numbering
of the elements in Q+. Then, by the monotone continuity of the measure P,

P
[ ⋂
t∈Q+

{
B3
t ∈ At

}]
= lim

N→∞
P
[ N⋂
n=1

{
B3
sn ∈ Asn

}]
= lim

N→∞
P
[ N⋂
n=1

{
Bsn ∈ Asn

}]

= P
[ ⋂
t∈Q+

{
Bt ∈ At

}]
.

Hence, also the distribution of (B3
t , t ∈ Q+) is the same as the distribution of (Bt, t ∈

Q+). In particular,

lim
t↓0
t∈Q+

B3
t = 0, P-a.s.

But Q+ is dense in (0,∞) and B3 is almost surely continuous on (0,∞), so that

0 = lim
t↓0
t∈Q+

B3
t = lim

t↓0
B3
t , P-a.s.

Thus, B3 is also continuous at t = 0. �

Corollary 6.8 (Law of large numbers). Let B be a Brownian motion. Then,

lim
t→∞

Bt
t

= 0, P-a.s.
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Proof. Let B3 be as in Proposition 6.7, then

lim
t→∞

Bt
t

= lim
t→∞

B3
1/t = B3

0 = 0, P-a.s.

�

Proposition 6.9. Let B be a Brownian motion. Then,

P
[

sup
t≥0

Bt =∞
]

= 1.

Proof. Set Z := supt≥0Bt and B̃t := c−1Bc2t for any c > 0. Then by scaling invari-
ance

Z = sup
t≥0

Bt = sup
t≥0

Bc2t = c sup
t≥0

B̃t
(d)
= c sup

t≥0
Bt = cZ.

In particular, P[Z ≤ z] = P[cZ ≤ z] for all z > 0, so the distribution function
F (z) = P[Z ≤ z] of Z is constant on (0,∞), which shows that Z ∈ {0,+∞} a.s.

Recall that B′t = B1+t − B1 is another Brownian motion, so Z ′ = supt≥0B
′
t

has the same law as Z. In particular Z ′ ∈ {0,∞} a.s. It suffices to show that
P[Z = 0] = 0. Note that on the event {Z = 0} we have Z ′ 6= +∞ and therefore
Z ′ = 0. Furthermore, {Z = 0} ⊆ {B1 ≤ 0}. Hence, also using the fact that
Brownian motion has independent increments we get

P[Z = 0] = P[Z = 0, Z ′ = 0] ≤ P
[
B1 ≤ 0, sup

t≥0
B1+t −B1 = 0

]
= P[B1 ≤ 0]P

[
sup
t≥0

B1+t −B1 = 0
]

=
1

2
P[Z = 0],

which implies P[Z = 0] = 0. �

6.2. The Reflection principle. In Proposition 4.6 we have seen already the reflec-
tion principle for a simple random walk. As Brownian motion may be regarded as
a pendant of the simple random walk in continuous time, as analogous statement
also holds for Brownian motion, which we will discuss in this section.

We will need the fact that Brownian motion enjoys the so-called strong Markov
property, i.e. the Markov property can also be applied on random times provided
they are stopping times, so we can split expectations between past and future also
at stopping times.

To be more specific, for any stopping time τ with respect to the filtration gener-
ated by a Brownian motion B on (Ω,F ,P) we define

Fτ :=
{
A ∈ F : A ∩ {τ ≤ t} ∈ Ft, ∀t ≥ 0

}
,

which is the σ-algebra of events observable up time τ .

Theorem 6.10 (Strong Markov property). Let (Bt)t≥0 be an (Ft)t≥0-Brownian mo-
tion and let τ be a stopping time such that τ < ∞ P-a.s. Then (Bτ+t)t≥0 is an
(Fτ+t)t≥0-Brownian motion. In particular, (Bτ+t − Bτ )t≥0 is a Brownian motion in-
dependent of Fτ (cf. Proposition 6.7 for the special case τ = T constant).
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FIGURE 3. The reflection principle for Brownian motion

Proof. See [11, Theorem 7.5.1]. �

For any a > 0 let

τa := inf
{
t ≥ 0 : Bt = a

}
denote the first hitting time of a. Then τa is a stopping time which is almost surely
finite by Proposition 6.9.

Theorem 6.11. Let (Bt)t≥0 be a Brownian motion starting from 0 and let a > 0.
Define

B̃t :=

{
Bt, if t < τa,

2a−Bt, if t ≥ τa.

Then (B̃t)t≥0 is also a Brownian motion starting from 0.

Proof. Set Yt := Bt for t ≤ τa and Zt = Bτa+t − Bτa = Bτa+t − a for t ≥ 0. By
the strong Markov property in Theorem 6.10 Z is a Brownian motion independent
of Y . Of course, −Z is also a Brownian motion (and also independent of Y ) and
therefore (Y, Z) and (Y,−Z) have the same distribution.

For any time t0 > 0 let Φt0 : C([0, t0])× C([0,∞))→ C([0,∞)) be defined via

(y, z) 7→
(
Φt0(y, z)t

)
t≥0

with Φt0(y, z)t :=

{
yt if t ≤ t0,

yt0 + zt−t0 if t > t0.

Intuitively, the mapping Φt0 takes two continuous paths y and z and glues them
together at time t0, provided both paths y and z are starting at zero.

In particular, notice that Φτa(Y,Z) and Φτa(Y,−Z) have the same distribution.
But Φτa(Y,Z) = B and Φτa(Y,−Z) = B̃ (see Figure 3). �

.
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Corollary 6.12. Let (Bt)t≥0 be a Brownian motion. Then, for any a, y ≥ 0 and t ≥ 0,

P
[

max
0≤s≤t

Bs ≥ a, Bt ≤ a− y
]

= P
[
Bt ≥ a+ y

]
.

Proof. Using Theorem 6.11 we have

P
[

max
0≤s≤t

Bs ≥ a, Bt ≤ a− y
]

= P
[

max
0≤s≤t

B̃s ≥ a, B̃t ≤ a− y
]

= P
[

max
0≤s≤t

Bs ≥ a, Bt ≥ a+ y
]

= P
[
Bt ≥ a+ y

]
.

Here we used in the second step that after τa the paths of B̃ are obtained from the
paths of B by reflection at the horizontal axis at level a (see Figure 3). �

As an immediate application of the reflection principle we compute the Laplace
transform of τa.

Corollary 6.13. For any a > 0 and λ > 0,

E
[
e−λτa

]
= e−a

√
2λ.

Proof. By using Corollary 6.12 and fact that Bt ∼ N (0, t) for any t > 0 we have for
any a > 0,

P[τa ≤ t] = P
[

max
0≤s≤t

Bs ≥ a
]

= P
[

max
0≤s≤t

Bs ≥ a, Bt ≤ a
]

+ P
[

max
0≤s≤t

Bs ≥ a, Bt ≥ a
]

= 2 P[Bt ≥ a] = 2
(
1− Φ( a√

t
)
)
,

where Φ denotes the distribution function of the standard normal distribution.
Since the right hand side is differentiable in t, we see that the density of the random
variable τa (with respect to Lebesgue measure) is given by

P[τa ∈ dt] = −∂t
[
2Φ
(
a√
t

)]
= −2Φ′

(
a√
t

) (
− a

2
√
t3

)
=

a√
2πt3

e−a
2/2t.

Hence,

E
[
e−λτa

]
=

∫ ∞
0

e−λt
a√
2πt3

e−a
2/2t dt = e−a

√
2λ,

where the last step can be confirmed by a (tedious) direct computation, which
we leave as an exercise. The statement can also be proved by using the optional
stopping theorem (exercise). �

6.3. Change of measure: The Cameron-Martin theorem. In this section it will
be convenient to specify the underlying probability space, similarly as we did in
Section 4. Let Ω = C([0, T ]) the path space of continuous function on [0, T ] and
denote by B the coordinate process, that is Bt(ω) = ωt for t ∈ [0, T ] and ω ∈ Ω. We
endow Ω with the σ-algebra F = σ(Bt, 0 ≤ t ≤ T ), which can be shown to coincide
with the Borel σ-algebra on C([0, T ]) (with respect to the topology induced by the
uniform convergence on [0, T ]). Finally, let P be the probability measure on (Ω,F)
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under which the coordinate processB is a Brownian motion. This measure is known
as Wiener measure and its existence follows along with the existence of Brownian
motion from Donsker’s invariance principle, for instance (cf. the discussion below
Theorem 6.5).

Consider now a Brownian motion with drift at speed c, that is

Bt + c t, 0 ≤ t ≤ T,

for any c ∈ R. Recall that the transition density of the Brownian motion B is given
by

pt(x, y) := pt(x− y) :=
1√
2πt

exp

(
− (y − x)2

2t

)
, t > 0, x, y ∈ R.

We now compute the finite dimensional distributions of the process (Bt + ct)t∈[0,T ].
For any 0 = t0 < t1 < · · · < tn = T and any A1, . . . , An ∈ B(R) we have

P
[
Bt1 + ct1 ∈ A1, . . . , Btn + ctn ∈ An

]
=

∫
A1−ct1

· · ·
∫
An−ctn

pt1(x1) pt2−t1(x2 − x1) · · · ptn−tn−1(xn − xn−1) dxn · · · dx1

=

∫
A1

· · ·
∫
An

pt1(y1 − ct1) pt2−t1(y2 − y1 − c(t2 − t1)) · · ·

× ptn−tn−1(yn − yn−1 − c(tn − tn−1)) dyn · · · dy1,

where we used the substitution yi = xi + cti. Since

pti−ti−1

(
yi − yi−1 − c(ti − ti−1)

)
= pti−ti−1(yi − yi−1) exp

(
c (yi − yi−1)− c2

2 (ti − ti−1)
)

and
∑n

i=1 ti − ti−1 = tn = T and
∑n

i=1 yi − yi−1 = yn with y0 := 0, this becomes

P
[
Bt1 + ct1 ∈ A1, . . . , Btn + ctn ∈ An

]
=

∫
A1

· · ·
∫
An

pt1(y1) pt2−t1(y2 − y1) · · ·

× ptn−tn−1(yn − yn−1) exp
(
cyn − c2

2 tn
)

dyn · · · dy1

= E
[
1l{Bt1∈A1,...,Btn∈An} exp

(
cBtn − c2

2 tn
)]

with tn = T . We have just shown that any cylindrical functional F , that is a func-
tional F : C([0, T ])→ R of the form

F (ω) =

{
1 if ωt1 ∈ A1, . . . , ωtn ∈ An,

0 else,

satisfies

E
[
F
(
Bt + ct : 0 ≤ t ≤ T

)]
= E

[
F
(
Bt : 0 ≤ t ≤ T

)
exp

(
cBT − c2

2 T
)]
.
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By linearity and approximation arguments this can be extended to all bounded and
measurable F : C([0, T ])→ R. Choosing F = 1lA for any A ∈ F we get

P(c)[A] := P
[(
Bt + ct : 0 ≤ t ≤ T

)
∈ A

]
=

∫
A

exp
(
cBT − c2

2 T
)

dP .

Thus, the measures P(c) and P are equivalent with Radon-Nikodym density given by

dP(c)

dP
= exp

(
cBT − c2

2 T
)
.

To summarize, under the Wiener measure P the paths in C(0, T ]) have the distribu-
tion of a Brownian motion while under the measure P(c) the paths in C(0, T ]) have
the distribution of a Brownian motion with drift c. We have arrived at

Theorem 6.14 (Cameron-Martin theorem). For any c ∈ R, T > 0 and any bounded
and measurable F : C([0, T ])→ R,

E
[
F
(
Bt + ct : 0 ≤ t ≤ T

)]
= E

[
F
(
Bt : 0 ≤ t ≤ T

)
exp

(
cBT − c2

2 T
)]

= EP(c)

[
F
(
Bt : 0 ≤ t ≤ T

)]
.

For later use we establish the following consequence from the Cameron-Martin
theorem and the reflection principle. We denote by Px the probability measure on
the path space Ω = C([0, T ]), under which the coordinate process B is a Brownian
motion starting at x and by Ex the associated expectation operator.

Lemma 6.15. For any c ∈ R and T > 0 define B̃t = Bt + ct, t ∈ [0, T ]. Then, for any
x, y > a,

Px
[
B̃T ∈ dy, min

0≤s≤T
B̃s ≥ a

]
= ec(y−x)− c

2

2
T
(
pT (x, y)− pT (x, 2a− y)

)
dy,

where pT (x, y) still denotes the transition probabilities as defined in (6.1).

Proof. Note that by the reflection principle

Px
[
BT ≥ y, min

0≤s≤T
Bs < a

]
= Px

[
BT ≤ 2a− y

]
,

so that

Px
[
BT ≥ y, min

0≤s≤T
Bs ≥ a

]
= Px

[
BT ≥ y

]
− Px

[
BT ≤ 2a− y

]
.

Differentiating with respect to y gives

Px
[
BT ∈ dy, min

0≤s≤T
Bs ≥ a

]
=
(
pT (x, y)− pT (x, 2a− y)

)
dy,

By the Cameron-Martin theorem we have for any bounded and measurable func-
tional F : C([0, T ])→ R,

E
[
F
(
B̃s : 0 ≤ s ≤ T

)]
= E

[
F
(
Bs : 0 ≤ s ≤ T

)
exp

(
c(BT −B0)− c2

2 T
)]
.
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Choosing now F (ω) = f(ωT )1l{mins≤T ωs≥a} for any bounded, measurable f : R →
R, this implies∫

R
f(y) Px

[
B̃T ∈ dy, min

0≤s≤T
B̃s ≥ a

]
=

∫
R
f(y) ec(y−x)− c

2

2 T Px
[
BT ∈ dy, min

0≤s≤T
Bs ≥ a

]
=

∫
R
f(y) ec(y−x)− c

2

2 T
(
pT (x, y)− pT (x, 2a− y)

)
dy,

which is the claim. �

6.4. Martingales associated with Brownian motion. Let B still be a Brownian
motion. We have seen that the processes (B2

t − t)t≥0 and
(

exp(λBt − λ2

2 t)
)
t≥0

,
λ ∈ R, are martingales (see exercises). Both processes are of the form f(t, Bt) with
f(t, y) = y2− t and f(t, y) = exp(λy− λ2

2 t), respectively. It is not a coincidence that
both functions satisfy the partial differential equation

Lf = 0,

where

Lf := ∂tf + 1
2∂yyf.

In fact, the next result shows that both processes are just two examples of a much
larger class of martingales.

Theorem 6.16. Let f ∈ C1,2
b ([0,∞)×R) and let (Bt)t≥0 be a Brownian motion. Then,

the process (Mt)t≥0 defined by

Mt := f(t, Bt)− f(0, B0)−
∫ t

0
Lf(s,Bs) ds, t ≥ 0,

is a continuous martingale.

Proof. The following proof is taken from [11, Theorem 7.4.4]. It is straightforward
to see that (Mt)t≥0 is continuous, adapted and integrable. It remains to show, for
s, t ≥ 0, that

E
[
Ms+t −Ms | Fs

]
= 0, P-a.s.

Fix s ≥ 0 and set

f̃(t, x) := f(s+ t, x), B̃t := Bs+t, F̃t = Fs+t.

Then B̃ is an (F̃t)t≥0-Brownian motion starting at B̃0 = Bs and Ms+t −Ms = M̃t,
where

M̃t = f(s+ t, Bs+t)− f(s,Bs)−
∫ s+t

s
Lf(r,Br) dr

= f̃(t, B̃t)− f̃(0, B̃0)−
∫ t

0
Lf̃(r, B̃r) dr.
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We have to show E[M̃t | F̃0] = 0 almost surely. Since this is the same problem for
all s ≥ 0, it will suffice to show that E[Mt | F0] = 0 almost surely. Now E[Mt | F0] =

m(B0) almost surely, where m(x) = Ex[Mt] and the subscript x specifies the case
B0 = x. So it will suffice to show that Ex[Mt] = 0 for all x ∈ R.

Now Ex[Ms]→ 0 as s→ 0, so it will suffice to show that Ex[Mt −Ms] = 0 for all
x ∈ R and all 0 < s < t. We compute

Ex
[
Mt −Ms

]
= Ex

[
f(t, Bt)− f(s,Bs)−

∫ t

s
Lf(r,Br) dr

]
= Ex

[
f(t, Bt)

]
− Ex

[
f(s,Bs)

]
− Ex

[ ∫ t

s
(∂t + 1

2∂yy)f(r,Br) dr
]

= Ex
[
f(t, Bt)

]
− Ex

[
f(s,Bs)

]
−
∫ t

s

∫
R
pr(x, y) ∂tf(r, y) dy dr

− 1
2

∫ t

s

∫
R
pr(x, y) ∂yyf(r, y) dy dr.

Note that, for any x ∈ R, p·(x, ·) satisfies the heat equation ∂tp = 1
2∂yyp. Thus, on

integrating by parts with respect to time,∫ t

s

∫
R
pr(x, y) ∂tf(r, y) dy dr =

∫
R
pr(x, y) f(r, y)

∣∣∣∣t
r=s

−
∫ t

s
∂tpr(x, y) f(r, y) dr dy

= Ex
[
f(t, Bt)

]
− Ex

[
f(s,Bs)

]
− 1

2

∫ t

s

∫
R
∂yypr(x, y) f(r, y) dy dr,

and by integrating by parts twice in R we obtain

1
2

∫ t

s

∫
R
pr(x, y) ∂yyf(r, y) dy dr = 1

2

∫ t

s

∫
R
∂yypr(x, y) f(r, y) dy dr.

By combining the last three equalities we get Ex[Mt −Ms] = 0 as required. �

Remark 6.17. (i) The conditions of boundedness on f and its derivatives can be
relaxed, while taking care that (Mt)t≥0 remains integrable and the integrations by
parts remain valid. There is a natural alternative proof via Itô’s formula once one
has access to stochastic calculus.

(ii) The same proof also works in arbitrary dimensions, so for a d-dimensional
Brownian motion B = (B1, . . . , Bd) and any suitable function f the process

f(t, Bt)− f(0, B0)−
∫ t

0

(
∂t + 1

2∆
)
f(r,Br) dr

is a continuous martingale.

7. THE BLACK-SCHOLES MODEL

In 1965 Paul Samuelson proposed the following market model in continuous
time. There is a riskless bond

S0
t = ert, 0 ≤ t ≤ T,
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with interest rate r ≥ 0 and one risky asset with price process given

St = S0 exp(σBt + µt), 0 ≤ t ≤ T,

where B denotes a Brownian motion on (Ω,F ,P), µ ∈ R a drift, σ > 0 a volatility
parameter and S0 > 0 the initial price of the asset.

Fisher Black and Myron Scholes (1973) and Robert Merton (1973) added the
crucial replication argument which leads to a complete pricing and hedging theory.
Merton and Scholes received the 1997 Nobel Memorial Prize in Economic Sciences
for their work (sadly, Black was ineligible for the prize because of his death in
1995).

7.1. Black-Scholes via change of measure. Our goal is to determine the price πC
at time t = 0 of a contingent claim C dependent on the entire path (St)t∈[0,T ] with
maturity at time t = T . In analogy to the general results obtained in Section 3 for
the discrete time-setting, we suppose that

πC = EQ

[ C
erT

]
,

where Q is an equivalent martingale measure, that is Q ≈ P and the discounted
price process

Xt = e−rtSt = S0 exp
(
σBt + (µ− r)t

)
, 0 ≤ t ≤ T,

is a Q-martingale with respect to the natural filtration (Ft)t≥0 generated by (St)t≥0 .
How can we find such a measure Q? First, recall that for a Brownian motion W the
process exp(λWt − λ2

2 t) is a martingale for every λ ∈ R (see exercises). We define
the measure Q by dQ := exp(cBT − c2

2 T ) dP, which is short for

Q[A] :=

∫
A

exp
(
cBT − c2

2 T
)

dP = E
[

exp
(
cBT − c2

2 T
)
1lA

]
,

for some c ∈ R to be chosen later. In particular, Q is equivalent to P since the
density dQ

dP = exp(cBT − c2

2 T ) > 0 P-a.s. (see Theorem 3.2 (ii)).
By the Cameron-Martin theorem we have for any bounded and measurable func-

tional F : C([0, T ])→ R,

E
[
F
(
Bt : 0 ≤ t ≤ T

)]
= E

[
F
(
Wt : 0 ≤ t ≤ T

)
exp

(
cBT − c2

2 T
)]

= EQ

[
F
(
Wt : 0 ≤ t ≤ T

)]
,

with Wt := Bt − ct, t ∈ [0, T ]. (We apply here Theorem 6.14 on the functional
F̃ (ω) = F ((ωt − ct)t≤T .) In particular, W is a Brownian motion under the measure
Q. Now we choose c such that

σc+ µ− r = −σ
2

2
⇐⇒ c =

r − σ2

2 − µ
σ

.
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Hence,

Xt = e−rtSt = S0 exp
(
σBt + (µ− r)t

)
= S0 exp

(
σWt + (σc+ µ− r)t

)
= S0 exp

(
σWt − σ2

2 t
)
,

which is a Q-martingale. Thus, Q is an equivalent martingale measure, which can
also be shown to be unique.

To summarize, under Q the price process (St)t∈[0,T ] is of the form

St = S0 exp
(
σWt +

(
r − 1

2σ
2
)
t
)
,

where W is a Q-Brownian motion. Note that for pricing of a contingent claim
only the behaviour of the price process under the equivalent martingale measure is
relevant.

Consider now, as an example, a European option of the form C = f(ST ) with
expiry T > 0 for any bounded, continuous function f : [0,∞) → [0,∞). Then the
Black-Scholes price πC = e−rT EQ

[
f(ST )

]
of C is given by

πC = e−rT EQ

[
f
(
S0 exp

(
σWT +

(
r − 1

2σ
2
)
T
))]

. (7.1)

Since WT ∼ N (0, T ), so WT =
√
TY with Y ∼ N (0, 1), it follows that πC =

v(T, S0), where

v(t, x) := e−rt
∫ ∞
−∞

f
(
x exp

(
σ
√
ty + (r − 1

2σ
2)t
)) 1√

2π
e−y

2/2 dy (7.2)

for t ∈ [0, T ], x ∈ R. Of course, for this argument to work, the payoff function f

does not have to be continuous or bounded. It suffices that EQ
[
f(ST )

]
<∞, which

is already guaranteed if f has polynomial volume growth, that is there exist c > 0

and p ≥ 0 such that f(x) ≤ c
(
1+x

)p for all x ≥ 0. In particular, we can use formula
(7.1) to compute the price of a call option with f(x) =

(
x−K

)+.

7.2. The Black-Scholes Model as limit of the Binomial Model. The Black-Scholes
model also arises as a natural limit of certain binomial models after a suitable scal-
ing, meaning that the number of intermediate trading periods becomes large and
their durations becomes small. This should not come as big surprise. In the CRR
model the price process is a random walk and in the Black-Scholes model it is gov-
erned by a Brownian motion, which can obtained as scaling limit of random walks.

Throughout this section, T will not denote the number of trading periods in a
fixed discrete-time market model but rather a physical date. We divide the interval
[0, T ] into N · T equidistant time steps 1

N ,
2
N , . . . ,

NT
N . Then the i-th trading period

corresponds to the ’real time interval’
(
i−1
N , iN

)
. Now consider a family of multi-

period CRR-models, indexed by N ∈ N, with parameters

rN :=
r

N
, aN := − σ√

N
, bN :=

σ√
N
, pN :=

1

2
+

1

2

µ

σ
√
N
,
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where r ≥ 0 is the instantaneous interest rate, µ ∈ R a drift and σ > 0 a volatility
parameter. We denote by (S0

i,N )i=0,...,NT the riskless bond and by (S1
i,N )i=0,...,NT the

risky asset. The initial prices are assumed not to depend on N , i.e. S1
0,N = S1

0 for
some constant S1

0 > 0.
The question is whether the prices of contingent claims in the approximating

market models converge asN tends to infinity. It will turn out that they do converge
towards the Black-Scholes prices derived in the last section. First, we note that

S0
NT,N =

(
1 + rN

)NT
=
(
1 + r

N

)NT −→
N→∞

erT , (7.3)

and

S1
NT,N = S1

0

NT∏
i=1

(
1 +R

(N)
i

)
= S1

0 exp

( NT∑
i=1

log
(
1 +R

(N)
i

))
,

where

R
(N)
i =

S1
i,N − S1

i−1,N

S1
i−1,N

denotes the return in the i-th trading period. For everyN , the returns (R
(N)
i )i=1,...NT

are i.i.d. random variables with

R
(N)
i =


σ√
N

with probability 1
2 + 1

2
µ

σ
√
N

= pN ,

− σ√
N

with probability 1
2 −

1
2

µ

σ
√
N

= 1− pN .

Since log(1 + r) = r − 1
2r

2 +O(r3) for r → 0, we have for sufficiently large N ,

log

(
S1
NT,N

S1
0

)
=

NT∑
i=1

(
R

(N)
i − 1

2

(
R

(N)
i

)2)
+ εN,T (7.4)

where |εN,T | ≤ c/
√
N for some constant c > 0 not depending on N . Further, we

compute

E
[
R

(N)
i

]
=

1

2

(
1 +

µ

σ
√
N

) σ√
N

+
1

2

(
1− µ

σ
√
N

)(
− σ√

N

)
=

µ

N

and

E
[(
R

(N)
i

)2]
=
σ2

N
, var

[
R

(N)
i

]
=
σ2

N
− µ2

N2
,

so that

E
[
R

(N)
i − 1

2

(
R

(N)
i

)2]
=
µ− 1

2σ
2

N
,

var
(
R

(N)
i − 1

2

(
R

(N)
i

)2)
= var

(
R

(N)
i − 1

2

σ2

N

)
= var

(
R

(N)
i

)
=
σ2

N
− µ2

N2
.

(7.5)

We are aiming to take the limit N → ∞ in the right hand side of (7.4), which
consists of a sum of the i.i.d. random variables R(N)

i − 1
2

(
R

(N)
i

)2 and a negligable
remainder term εN,T . The idea is to apply the central limit theorem, but this is in
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fact problematic and we need to be careful here, because (7.5) shows that mean and
variance of the R(N)

i − 1
2

(
R

(N)
i

)2 do depend on N . Such a situation is not covered
by the classical central limit theorem, but the following more general version will
be applicable here.

Theorem 7.1. Suppose that for each N ∈ N we are given N independent random
variables Y (N)

1 , . . . , Y
(N)
N on a probability space (Ω,A, P ), which satisfies the following

conditions.

(i) There are constants γN such that γN → 0 and |Y (N)
i | ≤ γN P -a.s.

(ii)
∑N

i=1E
[
Y

(N)
i

]
→ m for some m ∈ R as N →∞.

(iii)
∑N

i=1 var
[
Y

(N)
i

]
→ σ2 for some σ > 0 as N →∞.

Then the distributions of

ZN :=
N∑
i=1

Y
(N)
i , N = 1, 2, . . . ,

converge weakly to the normal distribution with mean m and variance σ2.

Proof. See, for instance, the corollary to Theorem 7.1.2 of [3]. �

We apply Theorem 7.1 on the random variables Y (N)
i = R

(N)
i − 1

2

(
R

(N)
i

)2 in (7.4).

Indeed, condition (i) is satisfied as |R(N)
i | ≤ σ/

√
N and conditions (ii) and (iii) are

immediate from (7.5) with m = (µ− 1
2σ

2)T and σ2 = σ2T . Thus, log
(S1

NT,N

S1
0

)
con-

verges in distribution towards a N
(
(µ − 1

2σ
2)T, σ2T

)
-distributed random variable.

This implies that6

S1
NT,N

d−→ S1
0 exp

(
σBT +

(
µ− 1

2σ
2
)
T
)

as N →∞,

where BT is a N (0, T )-distributed random variable.
However, for each N the prices of contingent claims in the approximating model

are expectations under the equivalent martingale measure QN , which by Theo-
rem 4.2 is specified by

p∗N =
rN − aN
bN − aN

=

r
N + σ√

N

2 σ√
N

=
1

2
+

1

2

r

σ
√
N
.

We can simply replace pN by p∗N in the above argument (or even simpler replace µ
by r) to obtain that under the measure QN ,

S1
NT,N

d−→ S1
0 exp

(
σWT +

(
r − 1

2σ
2
)
T
)

as N →∞, (7.6)

where WT is a N (0, T )-distributed random variable.

6We use the fact that if a sequence of random variable (Xn) converges in distribution to a random
variable X, then for any continuous function f the sequence (f(Xn)) converges in distribution to
f(X). In the present case f(x) = S1

0 exp(x).
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Let us now consider a derivative which is defined in terms of a function f of the
risky asset’s terminal value. In each approximating model, this corresponds to a
contingent claim

C(N) = f(S1
NT,N ).

Theorem 7.2. Let f be bounded and continuous. Then the limit of the arbitrage-free
prices of C(N) = f(S1

NT,N ) for N → ∞ is given by the Black-Scholes price v(T, S1
0),

where as before

v(T, x) := e−rT
∫ ∞
−∞

f
(
x exp

(
σ
√
Ty + (r − 1

2σ
2)T
)) 1√

2π
e−y

2/2 dy, x ∈ R.

Proof. Since f is bounded and continuous, (7.3) and (7.6) immediately imply that

lim
N→∞

EQN

[
C(N)

(1 + rN )NT

]
= E

[
e−rT f

(
S1

0 exp
(
σ
√
TW + (r − 1

2σ
2)T
))]

,

where W is a N (0, 1)-distributed random variable. �

Remark 7.3. (i) Under suitable conditions, a much stronger version of the conver-
gence in (7.6) holds in form of a functional central limit theorem. Let us consider
each discrete-time model as a continuous process S̃(N) = (S̃

(N)
t )0≤t≤T defined as

S̃
(N)
t = S1

i,N at the date t = i
N , and by linear interpolation in between. Then the

laws of the processes S̃(N), considered as C([0, T ])-valued random variables, con-
verge weakly towards the process (St)0≤t≤T given by

St = S0 exp
(
σWt +

(
r − 1

2σ
2
)
t
)
,

where W is a Brownian motion. So the limit coincide with the price process in the
Black-Scholes model under the equivalent martingale measure.

(ii) Again the assumption that f needs to be bounded in Theorem 7.2 is quite re-
strictive as it excludes the call option, for instance. It turns out that the assumption
can be relaxed and that Theorem 7.2 also holds for continuous payoff functions f
for which there exist c > 0 and q ∈ [0, 2) such that f(x) ≤ c

(
1 + x

)q for all x ≥ 0,
see [7, Proposition 5.59].

Hedging in the Black-Scholes model. In the Black-Scholes model consider an attain-
able contingent claim of the form C = f(ST ) with replicating strategy (or hedg-
ing strategy) θ̄ = (θ0, θ). Then the (discounted) value process of θ̄ is given by
Vt = v(T − t, St) with v defined in (7.2). Since the Black-Scholes model may be
regarded as a limit of binomial models in the sense of (7.6), Theorem 7.2 and
Remark 7.3, in view of the hedging strategy for the CRR model derived in Proposi-
tion 4.5, one can argue that the hedging strategy is given by

θt(ω) = ∆
(
T − t, St(ω)

)
, θ0

t (ω) = v(T − t, St(ω))− θt(ω)e−rtSt,

where

∆(t, x) :=
∂

∂x
v(t, x), t ∈ [0, T ], x ∈ R.
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In the financial language this is called ’Delta hedging’.

7.3. Black-Scholes pricing formula for European Calls and Puts. We now derive
an explicit formula for the Black-Scholes price of the European call option Ccall =(
ST −K

)+. For that purpose we simply choose f(x) = (x−K)+ in (7.1) and (7.2),
so

v(T, x) = e−rT EQ

[(
x exp

(
σ
√
TW +

(
r − 1

2σ
2
)
T
)
−K

)+
]
,

where W is N (0, 1)-distributed under Q. Substituting K̃ = e−rTK/x and σ̃ = σ
√
T

we get

v(T, x) =
x√
2π

∫ ∞
−∞

(
eσ̃y−

1
2
σ̃2 − K̃

)+
e−y

2/2 dy

=
x√
2π

∫ ∞
log K̃+1

2 σ̃
2

σ̃

(
eσ̃y−

1
2
σ̃2 − K̃

)
e−y

2/2 dy

=
x√
2π

∫ ∞
−d−

e−
(y−σ̃)2

2 dy − xK̃
(
1− Φ(−d−)

)
= xΦ(d+)−Ke−rTΦ(d−),

where Φ denotes the distribution function of the standard normal distribution,

d− = d−(T, x) :=
log( xK ) + (r − 1

2σ
2)T

σ
√
T

= −
log K̃ + 1

2 σ̃
2

σ̃

and

d+ = d+(T, x) := d−(T, x) + σ
√
T =

log( xK ) + (r + 1
2σ

2)T

σ
√
T

.

To summarize, the Black-Scholes price for a European call option with strike price
K is given by v(T, S0) where

v(T, x) = xΦ(d+)−Ke−rTΦ(d−) (7.7)

with

d± = d±(T, x) :=
log( xK ) + (r ± 1

2σ
2)T

σ
√
T

,

and for any t ∈ [0, T ] the value of the option at time t is given by v(T − t, St).
Now we turn to pricing European put options Cput =

(
K − ST

)+. Since we
have computed already the price of the corresponding call option we can use the
so-called put-call parity, which refers to the fact that

Ccall − Cput =
(
ST −K

)+ − (K − ST )+ = ST −K,

and the right-hand side equals the pay-off of a forward contract (cf. Section 0) with
price S0− e−rTK (note that the contingent claim C = ST can be trivially replicated
just by holding one unit of the risky asset which requires an initial investment S0).
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Hence, the price π(Cput) for Cput can be obtained from the price π(Ccall) for the
call Ccall, namely

π(Cput) = π(Ccall)−
(
S0 − e−rTK

)
= S0 Φ(d+)−Ke−rTΦ(d−)− S0 + e−rTK

= e−rTKΦ(−d−)− S0Φ(−d+).

We can also determine a hedging strategy θ̄ for the call option if we use the ’Delta
hedging’ discussed at the end of Section 7.2, which gives θt = ∆(T − t, St). The
Delta of the call option Ccall =

(
ST −K

)+ can be computed by differentiating the
value function in (7.7) with respect to x,

∆(t, x) :=
∂

∂x
v(t, x) = Φ

(
d+(t, x)

)
.

In particular, note that θt ∈ (0, 1) a.s. (’long in stock’).
The Gamma of the call option is given by

Γ(t, x) :=
∂

∂x
∆(t, x) =

∂2

∂x2
v(t, x) = ϕ

(
d+(t, x)

) 1

xσ
√
t
,

where ϕ = Φ′ denotes the density of the standard normal distribution. Large
Gamma values occur in regions where the Delta changes rapidly, corresponding
to the need for frequent readjustments of the Delta hedging portfolio. It follows
that x 7→ v(t, x) is strictly convex.

Another important parameter is the Theta

Θ(t, x) :=
∂

∂t
v(t, x) =

xσ

2
√
t
ϕ(d+(t, x)) +Kre−rtΦ

(
d−(t, x)

)
.

The fact that Θ > 0 corresponds to the observation that arbitrage-free prices of
European call options are typically increasing functions of the maturity. Note that
the parameters ∆,Γ and Θ are related by the equation

r v(t, x) = rx∆(t, x) +
1

2
σ2x2 Γ(t, x)−Θ(t, x).

Thus, the function v solves the following partial differential equation, often called
the Black-Scholes equation

rv = rx
∂v

∂x
+

1

2
σ2x2 ∂

2v

∂x2
− ∂v

∂t
.

Recall that the Black-Scholes price v(T, S0) was obtained as the expectation of
the discounted payoff e−rT (ST −K)+ under the equivalent martingale measure Q.
Thus, at first glance it may come as surprise that the Rho of the option

%(t, x) :=
∂

∂r
v(t, x) = Kte−rtΦ

(
d−(t, x)

)
is strictly positive, i.e. the price is increasing in r. Note, however, that the martingale
measure Q depends itself on the interest rate r.
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The parameter σ is called the volatility of the model and may be regarded as a
measure of the fluctuations in the stock price process. The price of a European call
option is an increasing function of the volatility as the Vega of the option

V(t, x) :=
∂

∂σ
v(t, x) = x

√
t ϕ
(
d+(x, t)

)
is strictly positive. The functions ∆,Γ,Θ, % and V are usually called the Greeks
(although ’vega’ is not a letter in the Greek alphabet). We refer to [7, Section 5.6]
for more details and some nice plots of the Greeks.

Remark 7.4 (Implied volatility). In practice,the prices for European call and put
options are known as they can be directly observed in the market, but the volatility
parameter σ is unknown. Since the Vega is striclty positive the function σ 7→ v(t, x)

is injective, and by inverting this function one can deduce a value for σ from the
observed market prices, the so-called implied volatility.

7.4. Pricing exotic options. Our next aim is to derive a formula for the Black-
Scholes price of a more exotic contingent claim of the form

C = φ
(
ST , inf

0≤t≤T
St
)
.

Recall that under Q the price process is of the form

St = S0 e
σWt+(r− 1

2
σ2)t = S0 e

σ(Wt+ct)

where c := (r − 1
2σ

2)/σ and W is a Q-Brownian motion. Thus, the Black-Scholes
prices of C is given by

π(C) = e−rT EQ

[
φ
(
ST , inf

0≤t≤T
St
)]

= e−rT EQ

[
φ
(
S0 exp

(
σ(WT + cT )

)
, S0 exp

(
σ inf

0≤t≤T
(Wt + ct)

))]
= e−rT EQ

[
φ
(
S0 e

σW̃T , S0 e
σYT
)]
,

where W̃t := Wt + ct, t ≥ 0, and YT := inf0≤t≤T W̃t. Recall that by Lemma 6.15,

Q
[
W̃T ∈ dx, YT ≥ y

]
= ecx−

c2

2
T
(
pT (0, x)− pT (0, 2y − x)

)
dx,

for y < 0 and x − y > 0. By differentiating with respect to y we get that the joint
density f of (W̃T , YT ) under Q is given by

f(x, y) =− ∂

∂y
Q
[
W̃T ∈ dx, YT ≥ y

]
=

∂

∂y

[
pT (0, 2y − x)

]
ecx−

c2

2
T

=
∂

∂y

[ 1√
2πT

e−
(2y−x)2

2T

]
ecx−

c2

2
T =

2(x− 2y)√
2πT 3

e−
(2y−x)2

2T ecx−
c2

2
T .

Hence, we obtain for the Black-Scholes price of C,

π(C) = e−rT
∫ 0

−∞

∫ ∞
y

φ
(
S0 e

σx, S0 e
σy
)
f(x, y) dx dy.
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We can rewrite the formula by using the change of variables (x, y) 7→ γ(x, y) =

(x− y, y) = (x′, y′) with detDγ = 1. In these coordinates the density becomes

g(x′, y′) := f ◦ γ−1(x′, y′) =
2(x′ − y′)√

2πT 3
e−

(x′−y′)2
2T ec(x

′+y′)− c
2

2
T , x′ > 0, y′ < 0,

and the formula for the Black-Scholes price reads

π(C) = e−rT
∫ ∞

0

∫ 0

−∞
φ
(
S0e

σ(x′+y′), S0 e
σy′
)
g(x′, y′) dy′ dx′.

As an example we derive a price formula for a European down-and-out option of
the form

C = h(ST ) 1l{inf0≤t≤T St>B}.

Let b ∈ R be such that B = S0e
σb. Then,

inf
0≤t≤T

St = S0e
σYT > B ⇐⇒ YT > b,

and by using again Lemma 6.15 we obtain

π(C) = e−rT EQ

[
h(ST ) 1l{inf0≤t≤T St>B}

]
= e−rT

∫ ∞
b

h
(
S0e

σx
)
Q
[
W̃T ∈ dx, YT ≥ b

]
= e−rT

∫ ∞
b

h
(
S0e

σx
)
ecx−

c2

2
T
(
pT (0, x)− pT (0, 2b− x)

)
dy.

7.5. The Black-Scholes PDE. In Theorem 6.16 we have seen that for a Brownian
motion (Bt)t≥0 and any f ∈ C1,2

b ([0,∞)× R) the process

f(t, Bt)− f(0, B0)−
∫ t

0
Lf(s,Bs) ds, t ≥ 0,

is a continuous martingale, where

Lf := ∂tf + 1
2∂

2
xx.

In particular,

E
[
f(t, Bt)− f(0, B0)−

∫ t

0
Lf(s,Bs) ds

]
= 0, ∀t ≥ 0.

In the context of the Black-Scholes model we are interested in the price process
(St)t≥0 under the equivalent martingale measure Q rather than a standard Brown-
ian motion. Recall that

St = S0 e
σWt+(r− 1

2
σ2)t

where W is a Q-Brownian motion. Our aim is to derive a version of Theorem 6.16
for the price process, that is to construct an analogous class of martingales associ-
ated with (St)t≥0. The idea is to use a change variables. More precisely, for any
u ∈ C1,2

b ([0,∞)× R) set

f(t, x) := u
(
t, s(t, x)

)
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where

s(t, x) := S0 e
σx+(r− 1

2
σ2)t

for fixed S0, σ and r. How does the differential operator L now transform to the
new coordinates? By the chain-rule

∂tf = ∂tu+ ∂ts ∂su = ∂tu+
(
r − 1

2σ
2
)
s ∂su

∂xf = ∂xs ∂su = σs ∂su

∂xxf = σ ∂xs ∂su+ σs ∂xs ∂ssu = σ2s ∂su+ σ2s2∂ssu,

so that

Lf = ∂tf + 1
2∂xxf

= ∂tu+
(
r − 1

2σ
2
)
s ∂su+ 1

2

(
σ2s ∂su+ σ2s2∂ssu

)
= ∂tu+ rs ∂su+ 1

2σ
2s2 ∂ssu =: Gu.

Thus, for all t ≥ 0,

u(t, St)− f(0, S0)−
∫ t

0
Gu(r, Sr) dr = f(t,Wt)− f(0,W0)−

∫ t

0
Lf(r,Wr) dr,

where the right hand side is a continuous Q-martingale by Theorem 6.16. There-
fore, also the left hand side is a continuous Q-martingale, and both sides have mean
zero under Q.

Now suppose that u solves the partial differential equation (PDE)

Gu = 0 on [0, T ]× R+

u(T, ·) = φ.
(7.8)

Then, the process (u(t, St))t∈[0,T ] is a martingale. Further, recall that (Ft)t≥0 denotes
the natural filtration generated by (St)t≥0 and note that (St)t≥0 is a Markov process
(since it can be obtained as the image of the Markov process W under a one-to-one
mapping). Hence, for 0 ≤ t ≤ T ,

EQ
[
φ(ST ) |St

]
= EQ

[
φ(ST ) | Ft

]
= EQ

[
u(T, ST ) | Ft

]
= u(t, St),

so for every s ∈ R+,

EQ
[
φ(ST ) |St = s

]
= u(t, s).

In particular, u(t, s) is the undiscounted value of a European option C = φ(ST ) with
maturity T conditioned on St = s and u(0, S0) = EQ

[
φ(ST )

]
is the undiscounted

price at time t = 0.
Conversely, one can also show that if we define u(t, s) := EQ

[
φ(ST ) |St = s

]
,

then u solves the PDE (7.8). However, the standard argument for such a result
requires some more advanced stochastic calculus, in particular Itô’s formula and
some facts about martingales in continuous time.

Let now

V (t, s) := e−r(T−t)u(t, s)
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be the discounted value at time t. Then, since Gu = 0,

∂tV = rV + e−r(T−t) ∂tu = rV + e−r(T−t)
(
− rs ∂su− 1

2σ
2s2 ∂ssu

)
= rV − rs ∂sV − 1

2σ
2s2 ∂ssV,

that is V solves the Black-Scholes-PDE

∂tV + rs ∂sV + 1
2σ

2s2 ∂ssV − rV = 0 (7.9)

with terminal condition V (T, ·) = φ.

Remark 7.5. In the special case of a European call option, i.e. φ(x) = (x−K)+ we
have seen already at the end of Section 7.3 that the value function v(T − t, x) of the
call given in (7.7) satisfies the Black-Scholes PDE.

Similarly, if we consider a Black-Scholes model with dividends at rate D > 0, i.e.

S̃t = S0 e
σWt+(r−D− 1

2
σ2)t, t ≥ 0,

then the undiscounted value of an option C = φ(S̃T ) at time t conditional on S̃t = s

is given by ũ(t, s), where ũ solves the PDE

G̃u = 0 on [0, T ]× R+

ũ(T, ·) = φ.

with

G̃ũ = ∂tũ+ (r −D)s ∂sũ+ 1
2σ

2s2 ∂ssũ

For the discounted value function we get Ṽ (t, s) = e−r(T−t)ũ(t, s), which satisfies
the PDE

∂tṼ + (r −D)s ∂sṼ + 1
2σ

2s2 ∂ssṼ − rṼ = 0.

Note that a naive replacement of r by r − D in (7.9) does not give the correct
equation. This is because the term −rV comes from discounting at riskfree rate r
and has nothing to do with dividends.

To summarise, we have seen that in the Black-Scholes model the value process
of an option C = φ(ST ) solves the Black-Scholes PDE (7.9) with terminal condition
V (T, ·) = φ. In order to find the Black-Scholes price for such an option, i.e. the
value function at time 0, one could try to solve the PDE, for which some numerical
methods are available.

7.6. Numerical schemes. From the discussion in Section 7.5 it should come not
as a surprise that the Black-Scholes PDE (7.9) can be reduced to a heat equation of
the form

∂tu+ ∂xxu = 0, on [0, T ]× [0, L]

u(0, ·) = g
(7.10)
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(see exercises). This comforts us in discussing numerical PDE schemes in the
simplest possible setting of the standard heat equation (7.10) with additional ini-
tial/boundary data

u(·, 0) = a, u(·, L) = b,

which are required for the implementation of numerical schemes.7 We are given
the grid {

(ik, jh), i = 1, . . . , Nt, j = 1, . . . , Nx

}
⊂ [0, T ]× [0, L]

with h = L/Nx and k = T/Nt. We seek for approximations U ij ≈ u(ik, jh). The
simplest approach is to replace the dervatives ∂t and ∂xx by finite differences. There
are several methods to implement that.

1) FTCS-method (Forward-difference-in-Time and Central-difference-in-Space).

U i+1
j − U ij
k

=
U ij+1 − 2U ij + U ij−1

h2
,

which readily rewrites as

U i+1
j = νU ij+1 + (1− 2ν)U ij + νU ij−1

with ν := k/h2. Note that for j = 0 and j = Nx we need to use the boundary
information

U i+1
0 = a

(
(i+ 1)k

)
, U i+1

Nx
= b
(
(i+ 1)k

)
.

2) BTCS-method (Backward-difference-in-Time and Central-difference-in-Space).

U ij − U
i−1
j

k
=
U ij+1 − 2U ij + U ij−1

h2
,

which after replacing i by i+ 1 rewrites as

U i+1
j − ν

(
U i+1
j+1 − 2U i+1

j + U i+1
j−1

)
= U ij .

In fact, here we need to solve a system of linear equations to get to the (i + 1)-st
time level.

7In the Black-Scholes model the value process of a European call option has boundary data
V (t, 0) = 0 and V (t, s) ∼ s as s → ∞ for all t ∈ [0, T ]. This suggests to approximate the Black-
Scholes PDE on [0, T ]× [0, L] for large L with boundary data V (·, 0) = 0 and V (·, L) = L.
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3) Crank-Nicolson method. Here the idea is to use a ’half-central’ approximation in
space, that is to replace the second discrete derivative (in space) on the right hand
side in FTCS or BTCS by the average of the second derivatives in time level i and
i+ 1.

U i+1
j − U ij
k

=
1

2

(
U ij+1 − 2U ij + U ij−1

h2
+
U i+1
j+1 − 2U i+1

j + U i+1
j−1

h2

)
,

and rearranging leads to

2(1 + ν)U i+1
j = ν U i+1

j+1 + ν U i+1
j−1 + ν U ij+1 + 2(1− ν)U ij + ν U ij−1.

Remark 7.6. For i = 1, . . . Nt, U i := (U ij)j=1,...,Nx−1 ∈ RNx−1 can be written as
follows.

1) In FTCS,

U i+1 = FU i + pi

for suitable F ∈ R(Nx−1)×(Nx−1) and pi ∈ RNx−1.
2) In BTCS,

BU i+1 = U i + qi

for suitable B ∈ R(Nx−1)×(Nx−1) and qi ∈ RNx−1.
3) In Crank-Nicolson,

(I +B)U i+1 = (F + I)U i + +pi + qi,

where I denotes the identity matrix.

Thus, in a sense the Crank-Nicolson method may be regarded as the ’sum’ of FTCS
and BTCS. We leave the proof as an exercise.

To compare this three schemes we need a notion of ’local accuracy’. It is defined
by sticking the exact solution into the difference formula under consideration, so
U ij is replaced by u(ik, jh). For instance, for FTCS we get by Taylor expansion that

Rij :=
u
(
(i+ 1)k, jh

)
− u(ik, jh)

k
−
u
(
ik, (j + 1)h

)
− 2u(ik, jh) + u

(
ik, (j − 1)h

)
h2

=∂tu(ik, jh) + 1
2 ∂ttu(ik, jh) k +O(k2)

− 1

h2

[
∂xu(ik, jh)h+

1

2
∂xxu(ik, jh)h2 + 1

6∂xxxu(ik, jh)h3 +O(h4)

− ∂xu(ik, jh)h+
1

2
∂xxu(ik, jh)h2 − 1

6∂xxxu(ik, jh)h3 +O(h4)
]

=1
2 ∂ttu(ik, jh) k +O(k2) +O(h2) = O(k) +O(h2),

where we also used that ∂tu = ∂xxu. A similar computation for BTCS gives local
accuracy

−1
2 ∂ttu(ik, jh) k +O(k2) +O(h2) = O(k) +O(h2).
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This suggests that simple averaging of FCTS and BTCS schemes leads to a scheme
with local accuracy of order O(k2)+O(h2). As discussed in Remark 7.6 above, such
an ’average’ of FCTS and BTCS corresponds exactly to the Crank-Nicolson method.
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