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0. MOTIVATION

An investor needs a certain quantity of a share (or currency, good, ...), however
not right now at time t = 0 but at a later time t = 1. The price of the share S(ω)

at t = 1 is random and uncertain, but already now at time t = 0 one has to make
some calcultations with it, which leads to the presence of risk. (Example: 500 USD
are roughly 365 GBP today, but in one year?) A possible solution for the investor
would be to purchase a financial derivative such as

• Forward contract: The owner of a forward contract has the right and the
obligation to buy a share at time t = 1 for a delivery price K specified at
time t = 0. Thus, the owner of the forward contract gains the difference
between the actual market price S(ω) and the delivery price K if S(ω) is
larger than K. If S(ω) < K, the owner loses the amount K − S(ω) to the
issuer of the forward contract. Hence, a forward contract corresponds to
the random payoff

C(ω) = S(ω)−K.

• Call option: The owner of a call option has the right but not the obligation
to buy a share at time t = 1 for a the strike price K specified at time t = 0.
Thus, if S(ω) > K at time t = 1 the owner of the call gains again S(ω)−K,
but if S(ω) ≤ K the owner buys the share from the market, and the call
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2 MARTINGALE THEORY FOR FINANCE

becomes worthless in this case. Hence, at time t = 1 the random payoff of
the call option is given by

C(ω) =
(
S(ω)−K

)+
=

{
S(ω)−K if S(ω) > K,

0 otherwise.

What would be now a fair price for such a financial derivative?

A classical approach to this problem is to regard the random payoff C(ω) as a
’lottery’ modelled as a random variable on a probability space (Ω,F ,P) with some
’objective’ probability measure P. Then the fair price is given the expected dis-
counted payoff E[ C

1+r ], where r ≥ 0 is the interest rate for both fund and loans from
t = 0 to t = 1. Here we implicitly assume that both interest rates are the same,
which seems reasonable for large investors. The economic reason for working with
discounted prices is that one should distinguish between payments at time t = 0

and ones at time t = 1. Usually, people tend to prefer a certain amount today over
the same amount paid at a later time, and this preference is reflected in the interest
rate r paid by the riskless bond (riskless asset, bank account). An investment of the
amount 1/(1 + r) at time zero in the bond results in value 1 at time t = 1.

Less classical approaches also take a subjective assessment of the risk by the
involved agents (in this case buyer and seller of the derivative) into account, which
leads to the usage of so-called utility functions.

In this lecture we will mainly focus on a more modern approach to option pricing.
First let us assume for simplicity that the primary risk (the share in our example) can
only be traded at t = 0 and t = 1. The idea is that the fair price of the derivative
should equal the value of a so-called replicating strategy which may serve as a
hedging strategy. Denote by

• θ1 the number of shares held between t = 0 and t = 1,
• θ0 the balance on a bank account with interest rate r.

Note that we allow both θi ≥ 0 and θi < 0, where θ1 < 0 corresponds to a short sale
of the share. Further, if π1 denotes the price for one share at time t = 0, then the
price of the strategy at t = 0 is

θ0 + θ1π1 =: V0,

and the random value V (ω) of the strategy at t = 1 is given by

θ0(1 + r) + θ1S(ω) = V (ω).

In order for a trading strategy (θ0, θ1) to be a replicating strategy for a derivative
with random payoff function C, we require that for every possible event ω ∈ Ω the
value C of the derivative equals the value of the trading strategy, so

C(ω) = V (ω), ∀ω ∈ Ω.
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In the example of a forward contract, i.e. C = S −K this means

S(ω)−K = V (ω) = θ0(1 + r) + θ1S(ω), ∀ω ∈ Ω,

which implies

θ1 = 1, θ0 = − K

1 + r
, V0 = π1 − K

1 + r
.

In particular, if the seller of C is using this strategy, all the risk is eliminated and
the fair price π(C) of C is given by V0 since V0 is the amount the seller needs for
buying this strategy at t = 0. Moreover, π(C) = V0 is the unique fair price for C as
any other price would lead to arbitrage, i.e. a riskless opportunity to make profit,
which should be excluded in any reasonable market model.

For example, consider a price π̃ > V0. Then, at time t = 0 one could sell the
forward contract for π̃ and buy the above hedging strategy for V0. At time t = 1

the strategy leads to a portfolio with one share and a balance of −K in the bank
account. Now we sell the share to the buyer of the forward for the delivery price K
and repay the loan. We are left with a sure profit of (π̃− V0)(1 + r) > 0, so we have
an arbitrage. These considerations lead us to the questions we will mainly address
in this lecture course.

• How can arbitrage-free markets be characterised mathematically?
• How can one determine fair prices for options and derivatives?

1. REVIEW OF BASIC PROBABILITY AND MEASURE THEORY

1.1. Probability spaces and random variables. First of all, we recall the notion
of a probability space. Let Ω be a non-empty set. As an example, if we model the
random price of a share in the context of a financial market, Ω can be thought of
the set of all possible prices of the share, so for instance Ω1 := {0, 0.01, 0.02, . . .}
or Ω2 := [0,∞). If we consider several shares, say d, then suitable choices for Ω

would be Ωd
i , i = 1, 2. If we observe one share over T trading periods, meaning

to look at the price at times t = 0, 1, . . . , T , we can take Ω as the set of mappings
from {0, 1, . . . , T} to Ωi, i = 1, 2. Finally, if the price process evolves continuously
in time (meaning that there is a price available at every time t ∈ [0, T ] rather than
just for finitely many discrete times t ∈ {0, 1, . . . , T} as in the previous case), then
Ω can be chosen as set of function on [0, T ] with values in Ωi, or, if we suppose the
price process always to be continuous, the set of continuous functions on [0, T ] with
values in Ω2.

Definition 1.1. Let Ω be a non-empty set. A family F of subsets of Ω is called a
σ-algebra if:

(i) Ω ∈ F .
(ii) If A ∈ F then Ac := Ω \A ∈ F .

(iii) If An ∈ F for all n ∈ N then
⋃
n∈NAn ∈ F .
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A set Ω together with a σ-algebra F of subsets of Ω is called a measurable space
(Ω,F).

It is easy to see that the intersection of an arbitrary non-empty family of σ-
algebras is again a σ-algebra. This gives rise to the following typical construction
of σ-algebras. Let C be an arbitrary system of subsets of Ω. Then we say that C
generates a σ-algebra σ(C) defined as the smallest σ-algebra that contains C,

σ(C) :=
⋂

A σ-algebra
A⊃C

A.

Examples. (i) Let Ω = R. The Borel σ-algebra B(R) is the σ-algebra generated by
the open intervals,

B(R) = σ
(
{(a, b), a, b ∈ R, a < b}

)
.

Its elements are called Borel sets. The Borel σ-algebra B(R) is also generated by
other families of subsets of R, for instance the set of closed intervals, half-open
intervals or the system of sets {(−∞, x], x ∈ R}.

(ii) For any Ω and any function X : Ω→ R,

σ(X) :=
{
{X ∈ A}, A ∈ B(R)},

is a σ-algebra, called the σ-algebra generated by X. (Here and below we write
{X ∈ A} shorthand for {ω ∈ Ω : X(ω) ∈ A} or X−1(A), respectively.)

(iii) Let Ω = {ω |ω : {0, . . . , T} → [0,∞)} be set of all non-negative functions on
{0, . . . , T}. Define

Xt : Ω→ [0,∞) ω 7→ Xt(ω) = ω(t), t ∈ {0, . . . , T}.

Then, σ(Xt) is the σ-algebra of all events observable at time t, and

Ft := σ
( t⋃
s=0

σ(Xs)
)

the σ-algebra of all events observable up to time t.

Definition 1.2. Let (Ω,F) be a measurable space. A function X : Ω → R is called
measurable or a random variable if σ(X) ⊂ F , i.e. {X ∈ A} ∈ F for all A ∈ B(R).

Remark 1.3. In order to verify that X : Ω→ R is measurable it is sufficient to check
that {X ∈ A} ∈ F for all A ∈ E for any system E such that σ(E) = B(R). For
instance, X is measurable if and only if {X ≤ x} ∈ F for all x ∈ R.

Definition 1.4. Let (Ω,F) be a measurable space. A map P : F → [0, 1] is called a
probability measure if

(i) P[Ω] = 1.
(ii) For any countable family (An)n≥0 of mutually disjoint elements of F ,

P
( ∞⋃
n=0

An

)
=

∞∑
n=0

P(An), (σ-additivity).
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A triple (Ω,F ,P) is called a probability space.

For a set A and sequence of sets (An)n≥0 we write An ↑ A if A0 ⊆ A1 ⊆ A2 ⊆ · · ·
and A =

⋃∞
n=0An, and we write An ↓ A if A0 ⊇ A1 ⊇ A2 ⊇ · · · and A =

⋂∞
n=0An.

Proposition 1.5. Let (Ω,F ,P) be a probability space. Further, let A ∈ F and (An)n≥0

be a sequence of elements in F .
(i) If An ↑ A then limn→∞ P(An) = P(A).

(ii) If An ↓ A then limn→∞ P(An) = P(A).
(iii) P

(⋃∞
n=0An

)
≤
∑∞

n=0 P(An) (sub-additivity).

Proof. Exercise. �

Next we recall a very powerful uniqueness criterion for measures.

Theorem 1.6. Let P and Q be two probability measures on a measurable space (Ω,F),
and let C ⊂ F be closed under finite intersections (i.e. for any A,B ∈ C we also have
that A∩B ∈ C). Suppose that P(A) = Q(A) for all A ∈ C. Then P(A) = Q(A) for all
A ∈ σ(C).

Example 1.7. (i) Let (Ω,F) be a measurable space and ω0 ∈ Ω be fixed. Then, the
probability measure δω0 defined as

δω0(A) :=

{
1 if ω0 ∈ A,

0 if ω0 ∈ Ac,
A ∈ F ,

is called Dirac-measure in ω0.
(ii) Let Ω be a countable set and F be the power set of Ω (i.e. the family of all

subsets of Ω). Then, every probability measure P on (Ω,F) is uniquely determined
by a weight function p : Ω → [0, 1] satisfying

∑
ω∈Ω p(ω) = 1. More precisely, for

any A ∈ F ,

P(A) =
∑
ω∈A

p(ω).

(iii) Uniform distribution on (0, 1). Let Ω = (0, 1), F = B((0, 1)) be the Borel
σ-algebra and P be the Lebesgue measure on (0, 1). Then, for any 0 < a < b < 1,

P
(
(a, b]

)
= b− a,

which uniquely determines P by Theorem 1.6.

Definition 1.8. Let X be a random variable on (Ω,F ,P).

(i) The probability measure µ on (R,B(R)) defined as

µ(A) := P(X ∈ A), A ∈ B(R),

is called the distribution or the law of X (notation: µ = P ◦X−1).
(ii) The function F : R→ [0, 1] defined by

F (x) := P(X ≤ x) = µ((−∞, x]), x ∈ R,

is called the distribution function of X.
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Note that by Theorem 1.6 the law of a random variable is uniquely determined by
its distribution function. Further, it is easy to see that the distribution function F of a
random variableX is monotone increasing, right-continuous with limx→∞ F (x) = 1

and limx→−∞ F (x) = 0.

1.2. Integration with respect to probability measures.

1.2.1. Definition of the integral. We fix a probability space (Ω,F ,P). We will now
review the definition of the integral of a random variable X against a probability
measure P, which will be denoted by

∫
X dP. This will be carried out in three steps.

For any A ∈ F , we recall that the indicator function 1lA : Ω→ {0, 1} is defined as

1lA(ω) :=

{
1 if ω ∈ A,

0 if ω ∈ Ac.

Step 1: Integral of non-negative discrete random variables. Let X be a non-negative
discrete random variable taking values in {x1, x2, . . . xn} and set Ai := {X = xi}.
Then X is of the form

X(ω) =
n∑
i=1

xi 1lAi(ω).

Then we define the integral
∫
X dP =

∫
X(ω) P(dω) of X by∫

X dP :=
n∑
i=1

xi P(Ai) =
n∑
i=1

xi P(X = xi).

One can check that this definition does not depend on the chosen representation of
X. The integral is also monotone, i.e.

∫
X dP ≤

∫
Y dP for any two discrete random

variables X and Y with X ≤ Y .

Step 2: Integral of non-negative random variables. Let X be a non-negative random
variable. Then there exists a sequence (Xn)n≥0 of non-negative discrete random
variables such that Xn ↑ X pointwise as n→∞. Indeed, one can take, for instance,

Xn :=

n2n∑
k=1

(k − 1) 2−n 1l{(k−1)2−n≤X<k2−n} + n1l{X≥n}.

Then the integral
∫
X dP =

∫
X(ω) P(dω) is defined as∫

X dP := lim
n→∞

∫
Xn dP ∈ [0,∞].

Note that the right hand side is well defined as a limit of a monotone sequence.
Again, one can check that the integral does not depend on the particular choice of
the sequence (Xn). Thus, the integral of a non-negative random variable is always
defined, but it is possibly infinite. In particular, the integral is monotone, i.e. if
X ≤ Y then

∫
X dP ≤

∫
Y dP, and linear, i.e. for a, b > 0 we have

∫
(aX+ bY ) dP =

a
∫
X dP+b

∫
Y dP. For A ∈ F we also write

∫
AX dP :=

∫
(1lAX) dP.
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Step 3: The general case.

Definition 1.9. A random variable is called P-integrable if
∫
|X| dP < ∞. In this

case we write X ∈ L1(Ω,F ,P) (or X ∈ L1(P), X ∈ L1 in short).

Since |X| = X+ +X− (with X+ = max(X, 0) and X− = max(−X, 0)), we have
X ∈ L1(P) if and only if

∫
X+ dP < ∞ and

∫
X− dP < ∞. For X ∈ L1(P) the

integral
∫
X dP =

∫
X(ω) P(dω) is defined by∫

X dP :=

∫
X+ dP−

∫
X− dP .

For A ∈ F we also write
∫
AX dP :=

∫
(1lAX) dP for the integral of X over A. We

now collect a few properties of the integral.

Proposition 1.10. Let X,Y ∈ L1.

(i) Monotonicity: X ≤ Y ⇒
∫
X dP ≤

∫
Y dP.

(ii) Linearity: aX + bY ∈ L1 and
∫

(aX + bY ) dP = a
∫
X dP+b

∫
Y dP for all

a, b ∈ R.
(iii) Additivity:

∫
A∪BX dP =

∫
AX dP+

∫
BX dP for all A,B ∈ F with A∩B = ∅.

Definition 1.11. A property, which the elements of Ω may or may not have, is
said to hold P-almost surely (P-a.s. in short), if the set of all ω ∈ Ω, for which the
property does not hold, is contained in a set N ∈ F with P(N) = 0.

Example 1.12. Let X,Y and Xn, n ∈ N, be random variables. Then

(i) X = Y P-a.s. ⇐⇒ P({ω : X(ω) 6= Y (ω)}) = 0.
(ii) limn→∞Xn = X P-a.s. ⇐⇒ P({ω : limn→∞Xn(ω) does not exist or is not

equal to X(ω)}) = 0.

Theorem 1.13. Let X,Y ∈ L1.

(i) X = Y P-a.s. ⇒
∫
X dP =

∫
Y dP.

(ii) X ≥ Y and
∫
X dP =

∫
Y dP⇒ X = Y P-a.s.

1.2.2. Convergence theorems. We will now address the following question. Suppose
that Xn → X P-a.s. Is it true that

∫
Xn dP →

∫
X dP? In other words, are we

allowed to interchange limit and integration? In general the answer is no as the
following example shows.

Example 1.14. Let Ω = (0, 1), F = B((0, 1)) be the Borel σ-algebra and P be the
Lebesgue measure on (0, 1) (cf. Example 1.7-(iii) above). Consider

Xn(ω) =

{
n if 1

n ≤ ω ≤
2
n ,

0 otherwise.

Then, Xn(ω)→ X(ω) := 0 for all ω ∈ (0, 1), but∫
Xn dP = 1 6→

∫
X dP = 0.
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But there are many cases where the question above has a positive answer.

Theorem 1.15 (Monotone convergence). Let X,X1, X2, . . . be random variables
such that

X1 ≤ X2 ≤ X3 ≤ . . . P-a.s. and lim
n→∞

Xn = X P-a.s.

Then

lim
n→∞

∫
Xn dP =

∫
X dP .

Lemma 1.16 (Fatou’s lemma). Let (Xn)n∈N be a sequence of non-negative random
variables. Then ∫

lim inf
n→∞

Xn dP ≤ lim inf
n→∞

∫
Xn dP .

The proof is by applying monotone convergence to the non-decreasing sequence of
random variables (infm≥nXm : n ∈ N).

Theorem 1.17 (Dominated convergence). Let X,X1, X2, . . . be random variables
such that limn→∞Xn = X P-a.s. Suppose that there exists a random variable Y ∈ L1

such that |Xn| ≤ Y for all n. Then

lim
n→∞

∫
Xn dP =

∫
X dP .

The proof is by applying Fatou’s lemma to the two sequences of non-negative ran-
dom variables (Y ±Xn)n∈N, we omit the details here.

1.2.3. Product spaces and Fubini’s theorem. Fubini’s theorem is an always impor-
tant tool for the computation of integrals on product spaces. Let (Ω1,F1,P1) and
(Ω2,F2,P2) be two probability spaces. The product σ-algebra F1 ⊗ F2 is the σ-
algebra on Ω1 × Ω2 generated by subsets of the form A1 × A2 for A1 ∈ F1 and
A2 ∈ F2.

Theorem 1.18 (Product measure). There exists a unique measure P = P1⊗P2 on
F1 ⊗F2 such that, for all A1 ∈ F1 and A2 ∈ F2,

P(A1 ×A2) = P1(A1)P2(A2).

We only state here Fubini’s theorem for non-negative random variables.

Theorem 1.19 (Fubini-Tonnelli). Let X be a non-negative random variable on (Ω1×
Ω2,F1 ⊗F2,P1⊗P2). Then

Y (ω1) :=

∫
Ω2

X(ω1, ω2) P2(dω2) and Z(ω2) :=

∫
Ω1

X(ω1, ω2) P1(dω1)

are measurable with respect to F1 and F2, respectively, and∫
Ω1×Ω2

X d(P1⊗P2) =

∫
Ω1

Y dP1 =

∫
Ω2

Z dP2 .
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This is more usually written as∫
Ω1

(∫
Ω2

X(ω1, ω2)P2(dω2)

)
P1(dω1) =

∫
Ω2

(∫
Ω1

X(ω1, ω2),P1(dω1)

)
P2(dω2),

so the order of integration can be exchanged if X is non-negative. A similar state-
ment holds if X ∈ L1(P1⊗P2).

1.2.4. Expected value and Jensen’s inequality. In the context of random variables on
probability spaces the integral is usually called the expected value.

Definition 1.20. Let X be a random variable on a probability space (Ω,F ,P). If
X ≥ 0 or X ∈ L1(Ω,F ,P), then E[X] :=

∫
X dP is called the expected value or

expectation of X.

From now on we will mostly use this terminology for the integral of a random
variable. While most of the above discussion on integration directly extends to more
general measure spaces, the next result is restricted to probability measures (or at
least to finite measures).

Theorem 1.21 (Jensen’s inequality). Let X ∈ L1(Ω,F ,P), and let φ : R → R be a
convex function. Then,

φ
(
E[X]

)
≤ E

[
φ(X)

]
.

1.3. Measures with densities. Consider a non-negative measurable function φ :

Ω→ [0,∞) with E[φ] = 1. Then, the mapping Q : F → [0,∞) defined by

Q[A] :=

∫
A
φ dP = E

[
φ1lA

]
, A ∈ F , (1.1)

is a probability measure on (Ω,F). Indeed, Q(Ω) = E[φ] = 1, so Q only takes
values in [0, 1], and for any sequence (An)n≥1 of mutually disjoint sets in F and
A =

⋃∞
n=1An,

Q(A) =

∫
A
φ dP = lim

n→∞

∫
⋃n
k=1 Ak

φ dP = lim
n→∞

n∑
k=1

∫
Ak

φ dP =

∞∑
k=1

Q(Ak),

so Q is σ-additive. Here we used the monotone convergence theorem in the second
step and the additivity of the integral (see Proposition 1.10-(iii)) in the third step.
Moreover, note that for any A ∈ F ,

P[A] = 0 ⇒ Q[A] = 0,

since P(A) = 0 implies that φ1lA = 0 P-a.s., which in turn implies that 0 = E[φ1lA] =

Q(A). Hence, the measure Q defined in (1.1) above is absolutely continuous with
respect to P in the following sense.

Definition 1.22. Let P and Q be two probability measures on (Ω,F). We say that
Q is absolutely continuous with respect to P if

P[A] = 0 ⇒ Q[A] = 0, ∀A ∈ F .
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In this case we also write Q� P.

It turns out that all probability measures that are absolutely continuous with
respect to P are of the form (1.1).

Theorem 1.23 (Radon-Nikodym). Let P and Q be two probability measures on
(Ω,F). Then the following are equivalent.

(i) Q� P.
(ii) There exists an F -measurable function φ ≥ 0 with E[φ] = 1 such that

Q[A] =

∫
A
φ dP = E

[
φ1lA

]
, ∀A ∈ F .

The function φ is called density or Radon-Nikodym derivative and is often
denoted by φ(ω) = dQ

dP (ω).

Proof. We have shown the implication (ii) ⇒ (i) right before Definition 1.22. The
other implication is more difficult, see, for instance, in [2, Chapter 17]. �

Remark 1.24. (i) The density φ = dQ/dP is uniquely determined by P and Q up to
P-null sets, i.e. for any other F -measurable function φ̃ satisfying Q(A) = E[φ̃1lA] we
have P[φ̃ = φ] = 1.

(ii) Theorem 1.23 also holds for a more general class of measures. For instance,
if we still assume P to be a probability measure then the statement holds for any
measure Q. In this case the P-integral of the density is not necessarily equal to one.

From now on we write EQ and EP for the expectation w.r.t. to the probability
measures Q and P, respectively. When writing E without subscript we mean, as
before, the expectation w.r.t. P.

Proposition 1.25. Let Q� P with density φ and let X be a random variable.

(i) If X ≥ 0 then

EQ[X] = EP[φX]. (1.2)

(ii) X ∈ L1(Q) if and only if φX ∈ L1(P) and in this case (1.2) holds.

Sketch of proof. The proof follows the usual extension argument in measure theory.
First, it is clear from the definition of the density that (1.2) holds if X is an indicator
function. By the linearity of the expectation this immediately extends to random
variables of the form X =

∑n
i=1 xi 1lAi with Ai ∈ F , xi ≥ 0, n ∈ N. For every X ≥ 0

there exists a sequence (Xn) of such ’simple’ functions such that Xn ↑ X, so we
apply the monotone convergence theorem twice to see that

EQ[X] = lim
n→∞

EQ[Xn] = lim
n→∞

EP[φXn] = EP[φX],

which proves (i). Statement (ii) follows from (i) by decomposing X into its positive
and negative part. �
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Example 1.26. (i) Let Ω be a countable set, F be the power set of Ω and P be any
probability measure on (Ω,F) with P[{ω}] > 0 for all ω ∈ Ω. Then every probability
measure Q on (Ω,F) is absolutely continuous with respect to P and the density is
given by

dQ
dP

(ω) = φ(ω) :=
Q[{ω}]
P[{ω}]

, ω ∈ Ω.

Indeed, for any A ∈ F ,

Q[A] =
∑
ω∈A

Q
[
{ω}

]
=
∑
ω∈A

Q
[
{ω}

]
P
[
{ω}

] P
[
{ω}

]
=
∑
ω∈A

φ(ω) P
[
{ω}

]
= EP

[
φ1lA

]
.

(ii) Let Ω = (0, 1), F = B((0, 1)) be the Borel σ-algebra and P be the Lebesgue
measure on (0, 1). Then, Q � P if and only if there exists a Borel-measurable
function φ : (0, 1) → [0,∞) satisfying

∫
φdP =

∫ 1
0 φ(x) dx = 1 so that Q(A) =∫

A φ(x) dx.1

Remark 1.27. Let P and Q be two probability measures on (Ω,F) with Q � P.
Then there exists an F -measurable function φ ≥ 0 such that EQ[Y ] = E[φY ] for all
random variables Y ≥ 0. Consider now a σ-algebra F0 ⊆ F . Then, P and Q are also
probability measures on (Ω,F0) with Q� P on F0, i.e. Q(A) = 0 for allA ∈ F0 with
P(A) = 0. By the Radon-Nikodym theorem there exists an F0-measurable function
φ0 ≥ 0 such that EQ[Y0] = E[φ0Y0] for all F0 measurable random variables Y0 ≥ 0.
In particular, E[φY0] = E[φ0Y0] or all F0 measurable random variables Y0 ≥ 0, but
φ 6= φ0 in general.

Lemma 1.28. Let Q� P. Then dQ
dP > 0, Q-a.s. (but not necessarily P-a.s.)

Proof. Set φ := dQ
dP . Then, for any random variable X ≥ 0,

EQ[X] = E[φX] = E[φX1l{φ>0}] = EQ[X1l{φ>0}].

We get the claim by choosing X = 1l{φ=0}. �

Definition 1.29. Let P and Q be two probability measures on (Ω,F). We say that
Q is equivalent to P if Q� P and P� Q, that is

P[A] = 0 ⇔ Q[A] = 0, ∀A ∈ F .

In this case we write Q ≈ P.

Proposition 1.30. Let Q� P. Then Q ≈ P if and only if dQ
dP > 0, P-a.s. In this case

dP
dQ

=
(dQ

dP

)−1
.

1In analysis, a function f : (0, 1) → R of the form f(x) =
∫ x
0
φ(y) dy is absolutely continuous in

the following sense. For all ε > 0 exists δ > 0 such that
∑n
i=1 |f(bi) − f(ai)| < ε for all disjoint

intervals [a1, b1], . . . , [an, bn] ⊂ (0, 1) with
∑n
i=1 |bi − ai| < δ. This is the reason for the terminology.
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Proof. First note that φ := dQ
dP > 0, Q-a.s., by Lemma 1.28. Hence, for all measurable

X ≥ 0,

EQ
[
φ−1X

]
= EQ

[
φ−1X1l{φ>0}

]
= E

[
φ−1X1l{φ>0}φ

]
= E

[
X1l{φ>0}

]
,

and this is equal to E[X] for all X ≥ 0 if and only if P[φ = 0] = 0. �

2. CONDITIONAL EXPECTATIONS

Let X be a random variable on a probability space (Ω,F ,P). Then, its expected
value E[X], provided it exists, serves as a prediction for the random outcome of X.

Our goal is now to introduce an object, which allows us to improve the prediction
for X if additional information is available. In the special case where this additional
information can be encoded in a single event B having positive probability, this can
be achieved rather easily by conditioning on B.

Definition 2.1. Let B ∈ F with P[B] > 0. Then, for any A ∈ F ,

P
[
A |B

]
=

P[A ∩B]

P[B]

is called conditional probability of A given B and for a random variable X,

E
[
X |B

]
=

E[X1lB]

P[B]

is called the conditional expectation of X given B.

P
[
· |B

]
is again a probability distribution and E

[
X |B

]
is the expected value

of X under P
[
· |B

]
. If we regard P[A] as a prediction about the occurence of A

and the expected value as a prediction for the value of a random variable, then the
conditional probability and the conditional expectation are improved predictions
under the assumption that we know that the event B occurs.

We will now generalise the notion of conditional expectations and conditional
probabilities considerably, because so far it only allows us to condition on events of
positive probability which is too restrictive. We will first discuss the easier discrete
case before we will give the general definition.

2.1. The elementary case. A typical problem might be the following situation.

Example 2.2. The day after tomorrow it will be decided whether a certain event A
occurs (for instance A = {Dow Jones ≥ 10000}). Already today we can compute
P[A]. But what prediction would we make tomorrow night, when we have more
information available (e.g. the value of the Dow Jones in the evening)? Then we
would like to consider the conditional probability

P
[
A |Dow Jones tomorrow = x

]
, x = 0, 1, . . .

as a function of x.
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As mentioned before, our goal is to formalise predicitions under additional in-
formation. But how do we model additional information? We will use a σ-algebra
F0 ⊂ F . This σ-algebra contains the events, about which we will know tomorrow
(in the context of Example 2.2 above) if they occur or not, so for instance

F0 = σ
(
{Dow Jones tomorrow = x}, x = 0, 1, . . .

)
.

More generally, let now B1, B2, . . . be a decomposition of Ω into w.l.o.g. disjoint
sets Bi ∈ F and set

F0 := σ(B1, B2, . . .) =
{

all possible unions of Bi’s
}
⊆ F .

Recall that by definition σ(B1, B2, . . .) denotes the smallest σ-algebra in which all
the sets B1, B2, . . . are contained.

Definition 2.3. The random variable

E
[
X | F0

]
(ω) :=

∑
i:P[Bi]>0

E
[
X |Bi

]
1lBi(ω) (2.1)

is called conditional expectation of X given F0.

Example 2.4. If F0 = {∅,Ω}, then E
[
X | F0

]
(ω) = E[X].

We briefly recall what it means for a real-valued random variable to be measur-
able with respect to a σ-algebra.

Definition 2.5. Let A ⊆ F be a σ-algebra over Ω. Then, a random variable Y :

Ω→ R is A-measurable if {Y ≤ c} ∈ A for all c ∈ R.

Proposition 2.6. The random variable X0 = E
[
X | F0

]
has the following properties.

(i) X0 is F0-measurable.
(ii) For all A ∈ F0,

E
[
X1lA

]
= E

[
X01lA

]
.

Proof. (i) For every i we have that 1lBi is F0-measurable. Since X0 is a linear com-
bination of such functions, it is F0-measurable as well.

(ii) Let us first consider the case that A = Bi for any i such that P[Bi] > 0. Then,

E
[
X1lA

]
= E

[
X1lBi

]
= E

[
X |Bi

]
P[Bi] = E

[
X |Bi

]
E[1lBi ]

= E
[
E
[
X |Bi

]︸ ︷︷ ︸
=X0 on Bi

1lBi

]
= E

[
X01lA

]
.

For general A ∈ F0, 1lA can be written as a (possibly infinite) sum of 1lBi ’s (re-
call that the sets B1, B2, . . . are disjoint), so (ii) follows from the linearity of the
expectation and the monotone convergence theorem. �
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Example 2.7. (i) Consider the probability space ((0, 1],B((0, 1]), λ), where B((0, 1])

denotes the Borel-σ-algebra and λ the Lebesgue-measure. For any n ∈ N, let F0 =

σ(( kn ,
k+1
n ], k = 0, . . . , n − 1). Then, on each interval ( kn ,

k+1
n ] the random variable

E
[
X | F0

]
is constant and coincides with the average of X over this interval.

(ii) Let Z : Ω→ {z1, z2, . . .} ⊂ R and

F0 = σ(Z) = σ
(
{Z = zi}, i = 1, 2, . . .).

(In general, for any real-valued random variable Z, σ(Z) = σ({Z ≤ c}, c ∈ R)

denotes the smallest σ-algebra with respect to which Z is measurable.) Then,

E
[
X |Z

]
:= E

[
X |σ(Z)

]
=

∑
i:P[Z=zi]>0

E
[
X |Z = zi

]
1l{Z=zi}.

In particular, E
[
X |Z

]
(ω) = E

[
X |Z = Z(ω)

]
, so E

[
X |Z

]
describe the expectation

of X if Z is known.
However, if Z would have a continuous distribution (e.g. N (0, 1), then P[Z =

z] = 0 for all z ∈ R and E
[
X |Z

]
is not defined yet.

2.2. The general case. Let (Ω,F ,P) be a probability space and F0 ⊆ F be a σ-
algebra.

Definition 2.8. Let X ≥ 0 be a random variable. A random variable X0 is called (a
version of) the conditional expectation of X given F0 if

(i) X0 is F0-measurable.
(ii) For all A ∈ F0,

E
[
X1lA

]
= E

[
X01lA

]
. (2.2)

In this case we write X0 = E
[
X | F0

]
.

If X ∈ L1(Ω,P), i.e. E[|X|] < ∞, (but not necessarily non-negative) we decom-
pose X into its positive and negative part X = X+ −X− and define

E
[
X | F0

]
:= E

[
X+ | F0

]
− E

[
X− | F0

]
.

Remark 2.9. (i) If F0 = σ(C) for any C ⊆ F , then it suffices to check condition (ii)
for all A ∈ C.

(ii) If F0 = σ(Z) for any random variable Z, then E
[
X |Z

]
:= E

[
X |σ(Z)

]
is σ(Z)-measurable by condition (i). In particular, by the so-called factorisation
lemma (see e.g. [2]) it is of the form f(Z) for some function f . It is then common
to define

E
[
X |Z = z

]
:= f(z).

(iii) If X ∈ L1 then E
[
X | F0

]
∈ L1. Indeed, if X ≥ 0, by choosing A = Ω in (2.2)

we have

E
[
X
]

= E
[
E
[
X | F0

]]
.

For general X ∈ L1 we can use again the decompostion X = X+ −X−.
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(iv) The weakest possible condition on X under which a definition of conditional
expectation can make sense is that E[X+] < ∞ or E[X−] < ∞. (Note that X ∈ L1

if and only if both hold.) In this case E
[
X | F0

]
can still be defined to be a random

variable X0 satisfying (i) and (ii) in Definition 2.8.

Theorem 2.10 (Existence and uniqueness). For any X ≥ 0 the following hold.

(i) The conditional expectation E
[
X | F0

]
exists.

(ii) Any two versions of E
[
X | F0

]
coincide P-a.s.

Proof. (i) The existence follows from the Radon-Nikodym theorem. Define µ(A) =∫
AX dP, A ∈ F . Then µ is a measure and µ � P on F . In particular, µ � P

also on F0. We apply Theorem 1.23 (in the more general version mentioned in
Remark 1.24-(ii)) on the space (Ω,F0) to obtain that there exists an F0-measurable
function

X0 =
dµ

dP

∣∣∣
F0

such that µ(A0) =

∫
A0

X0 dP, ∀A0 ∈ F0.

In other words,
∫
A0
X dP =

∫
A0
X0 dP or E

[
X1lA

]
= E

[
X01lA

]
for all A0 ∈ F0 (cf.

Remark 1.27 choosing Q = µ, φ0 = X0 and Y0 = 1lA0).
(ii) follows from (2.2) and the fact that the Radon-Nikodym density is unique up

to P- null sets. If X ∈ L1 this can also be seen directly as follows.
Let X0 and X̃0 be as in Definition 2.8. By Remark 2.9 we have X0, X̃0 ∈ L1. Then

A0 := {X0 > X̃0} ∈ F0 and

E
[
X01lA0

]
= E

[
X1lA0

]
= E

[
X̃01lA0

]
.

Thus,

E
[

(X0 − X̃0)︸ ︷︷ ︸
>0 on A0

1lA0

]
= 0,

which implies P[A0] = 0. Similarly it can be shown that P[X0 < X̃0] = 0. �

2.3. Properties of conditional expectations.

Proposition 2.11. The conditional expectation has the following properties.

(i) If F0 is P-trivial, i.e. P[A] ∈ {0, 1} for all A ∈ F0, then E
[
X | F0

]
= E[X] P-a.s.

(ii) Linearity: E
[
aX + bY | F0

]
= aE

[
X | F0

]
+ bE

[
Y | F0

]
P-a.s.

(iii) Monotonicity: X ≤ Y P-a.s.⇒ E
[
X | F0

]
≤ E

[
Y | F0

]
P-a.s.

(iv) Monotone continuity: If 0 ≤ X1 ≤ X2 ≤ . . . P-a.s., then

E
[

lim
n→∞

Xn | F0

]
= lim

n→∞
E
[
Xn | F0

]
P-a.s.

(v) Fatou: If 0 ≤ Xn P-a.s. for all n ∈ N, then

E
[

lim inf
n→∞

Xn | F0

]
≤ lim inf

n→∞
E
[
Xn | F0

]
P-a.s.
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(vi) Dominated convergence: If there exists Y ∈ L1 such that |Xn| ≤ Y P-a.s. for all
n ∈ N, then

lim
n→∞

Xn = X P-a.s. ⇒ lim
n→∞

E
[
Xn | F0

]
= E

[
X | F0

]
P-a.s.

(vii) Jensen’s inequality: Let h : R→ R be convex, then

h
(
E
[
X | F0

])
≤ E

[
h(X) | F0

]
P-a.s.

Proof. (i) follows directly from the definition of the conditional expectation.
(ii) The right hand side is F0-measurable, and for any A ∈ F0, using the linearity

of E we have

E
[
1lA

(
aE
[
X | F0

]
+ bE

[
X | F0

])]
= aE

[
1lA E

[
X | F0

]]
+ bE

[
1lA E

[
Y | F0

]]
= aE

[
1lAX

]
+ bE

[
1lAY

]
= E

[
1lA(aX + bY )

]
.

Hence, the right hand side fulfils the conditions in Definition 2.8.
(iii) We have Y = X + Z for some random variable Z ≥ 0. By linearity

E
[
Y | F0

]
= E

[
X | F0

]
+ E

[
Z | F0

]
, and E

[
Z | F0

]
is easily seen to be non-negative

from its definition.
(iv) By monotonicity E

[
Xn | F0

]
↑ limn→∞ E

[
Xn | F0

]
which is F0-measurable.

For any A ∈ F0, we use the monotone convergence theorem to obtain that

E
[
1lA lim

n→∞
E
[
Xn | F0

]]
= lim

n→∞
E
[
1lA E

[
Xn | F0

]]
= lim

n→∞
E
[
1lAXn

]
= E

[
1lA lim

n→∞
Xn

]
.

Hence, limn→∞ E
[
Xn | F0

]
fulfils the conditions in Definition 2.8.

Statements (v) and (vi) follow now exactly as the corresponding properties of
the expected value. Jensen’s inequality (vii) can be shown similarly as for the usual
expected value. �

Proposition 2.12. Let Y0 ≥ 0 be F0-measurable. Then,

E
[
Y0X | F0

]
= Y0 E

[
X | F0

]
P-a.s., (2.3)

so F0-measurable random variables behave like constants. In particular,

E
[
Y0 | F0

]
= Y0 P-a.s.

Proof. Clearly the right hand side of (2.3) is F0-measurable, so we only need to
check condition (ii) in Definition 2.8. Let us first consider the case Y0 = 1lA0 for any
A0 ∈ F0. Then for any A ∈ F0,

E
[
Y0X 1lA

]
= E

[
X 1lA ∩A0︸ ︷︷ ︸

∈F0

]
= E

[
E[X | F0] 1lA∩A0

]
= E

[(
Y0 E[X | F0]

)
1lA
]
.

For general Y0 the statement follows by linearity and approximation. �
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Proposition 2.13 (’Projectivity’ or ’Tower property’ of conditional expectations). Let
F0 ⊆ F1 ⊆ F be σ-algebras. Then,

E
[
X | F0

]
= E

[
E
[
X | F1

] ∣∣F0

]
P-a.s.

Proof. Again, since conditional expectations are P-a.s. unique, it suffices to identify
the right hand side as the conditional expectation of X given F0 by verifying the
(i) and (ii) in Definition 2.8. The right hand side is clearly F0 measurable since it
is itself a conditional expectation given F0. To see (ii) let A ∈ F0. Then, clearly
A ∈ F1 and therefore

E
[
X 1lA

]
= E

[
E
[
X | F1

]
1lA
]

= E
[
E
[
E
[
X | F1

] ∣∣F0

]
1lA

]
.

�

Proposition 2.14. Let X be independent of F0
2. Then,

E
[
X | F0

]
= E[X] P-a.s.

Proof. E[X] is constant and therefore F0-measurable. For A ∈ F0 we have by inde-
pendence and the linearity of the expected value that

E
[
X 1lA

]
= E[1lA] E[X] = E

[
E[X] 1lA

]
.

�

In practice, conditional expectations are difficult to compute explicitly. However,
in two situations there are explicit formulas, namely in the discrete case discussed
at the beginning, see (2.1), or when the random variables involved admit densities,
which we now state without proof.

Proposition 2.15. LetX and Y be real-valued random variables with densities fX and
fY . Assume that (X,Y ) admits a joint density fXY . Then the conditional distribution
of X given Y is a random distribution with density

fX|Y (x) :=

{
fXY (x,Y (ω)
fY (Y (ω)) if fY (Y (ω)) 6= 0,

0 else,

and the conditional expectation of X given Y is

E
[
X |Y

]
=

∫
R
x fX|Y (x) dx.

For later use we end this section with another useful result on conditional expec-
tations.

2i.e. P[A∩B] = P[A] ·P[B] for all A ∈ σ(X) and all B ∈ F0. If for instance F0 = σ(Y ) this means
that X and Y are independent random variables.
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Proposition 2.16. Let F : R2 → [0,∞) be measurable, X be independent of F0 and
Y be F0-measurable. Then

E
[
F (X,Y ) | F0

]
(ω) = E

[
F (X,Y (ω))

]
P-a.s.

More precisely, if we set Φ(y) := E
[
F (X, y)

]
, y ∈ R, then

E
[
F (X,Y ) | F0

]
(ω) = Φ(Y (ω)) P-a.s.

Proof. Let first F be of the form F (x, y) = f(x)g(y) for any measurable f, g : R →
[0,∞). Then,

E
[
F (X,Y ) | F0

]
(ω) = g(Y (ω)) E

[
f(X) | F0

]
(ω) = g(Y (ω)) E

[
f(X)

]
= E

[
g(Y (ω)) f(X)

]
= Φ(Y (ω)).

For general F the statement now follows from a monotone class argument. �

3. MARTINGALES IN DISCRETE TIME

3.1. Definition and examples. In this section we introduce the fundamental con-
cept of martingales, which will keep playing a central role in our investigation of
models for financial markets. Martingales are “truly random” stochastic processes,
in the sense that their observation in the past does not allow for useful prediction
of the future. By useful we mean here that no gambling strategies can be devised
that would allow for systematic gains.

By a stochastic process (in discrete time) we mean a sequence of random vari-
ables (Xn)n≥0 defined on a probability space (Ω,F ,P). We now equip this proba-
bility space with a filtration.

Definition 3.1. A filtration (Fn)n≥0 is an increasing family of σ-algebras, that is
Fn ⊆ Fn+1 ⊆ F for all n ≥ 0.

Set
F∞ := σ(Fn : n ≥ 0).

Then F∞ ⊆ F . We allow the possibility that F∞ 6= F . In almost all situations
the index n represents time. Then the σ-algebra Fn contains all the events that
are observable up to time n, so Fn models the information available at time n. A
stochastic process X = (Xn)n≥0 naturally induces a filtration (FXn )n≥0 defined via
FXn := σ(X0, . . . Xn). For example, if X models the price process of a risky asset,
say a share, then FXn represents the information about all prices up to time n.

Example 3.2. Consider the simple symmetric random walk X on Z started from
X0 := 0, that is Xn =

∑n
k=1 Zk, n ≥ 1, where (Zk)k≥1 are i.i.d. random variable

with P[Zk = 1] = P[Zk = −1] = 1
2 . Then, FXn = σ(X1, . . . Xn) = σ(Z1, . . . Zn),

n ≥ 1, defines a filtration and{
X1 ≤ 0, X3 ≥ 2

}
∈ FX3 but

{
X4 > 0} 6∈ FX3 .

Since X0 = 0 is deterministic, FXn = σ(X0, . . . Xn) and we could have started the
filtration with the trivial σ-algebra F0 = σ(X0) = {∅,Ω}.
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Definition 3.3. A stochastic processX = (Xn)n≥0 is said to be adapted to a filtration
(Fn)n≥0 if Xn is Fn-measurable for all n ≥ 0.

Note that every stochastic process (Xn)n≥0 is adapted to the filtration if FXn ⊆ Fn
for all n. In particular, (Xn)n≥0 is always adapted to (FXn )n≥0. Now we define
martingales.

Definition 3.4. Let (Fn)n≥0 be a filtration on (Ω,F ,P). A stochastic process X =

(Xn)n≥0 on (Ω,F , (Fn)n≥0,P) is a martingale (or P-martingale) if and only if the
following hold.

(a) X is adapted, that is Xn is Fn-measurable for every n.
(b) X is integrable, i.e. E[|Xn|] <∞ for every n.
(c) The martingale property holds, i.e. for all n ≥ 0,

E[Xn+1 | Fn] = Xn, P-a.s.

If (a) and (b) hold, but instead of (c) we have that E[Xn+1 | Fn] ≥ Xn (resp.
E[Xn+1 | Fn] ≤ Xn), then the process X is called a submartingale (resp. a super-
martingale).

Remark 3.5. (i) If X is a martingale. then E[Xm] = E[Xn] for all 0 ≤ m ≤ n, for
a submartingale we have E[Xm] ≤ E[Xn] , finally, for a supermartingale E[Xm] ≥
E[Xn].

(ii) The martingale property (c) is equivalent to

E[Xn −Xm | Fm] = 0, P-a.s., ∀0 ≤ m ≤ n,

so a martingale is a mathematical model for a fair game in the sense that based on
the information available at time m the expected future profit is zero.

(iii) A martingale X = (Xn)n=0,...,N with a finite time range {0, . . . , N} is deter-
mined by XN via Xn = E[XN | Fn]. Conversely, every F ∈ L1(Ω,FN ,P) defines a
martingale via

Xn := E[F | Fn], n = 0, . . . , N.

Example 3.6. Let Z1, Z2 . . . , be independent random variables with Zk ∈ L1 and
E[Zk] = 0 for all k ≥ 1. Set

X0 := 0, Xn :=
n∑
k=1

Zk, n ≥ 1

and Fn = FXn = σ(X0, . . . , Xn), n ≥ 0. Obviously, X is adapted to (Fn)n≥0 and
Xn ∈ L1 for all n ≥ 0 since E[|Zk|] <∞ for all k and therefore

E[|Xn|] ≤
n∑
k=1

E[|Zk|] <∞.

Further, for n ≥ 0,

E
[
Xn+1 | Fn

]
= E

[
Xn + Zn+1 | Fn

]
= Xn + E

[
Zn+1 | Fn

]
= Xn + E

[
Zn+1

]
= Xn,
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where we used in the third step that Zn+1 is independent of Fn. So X is a martin-
gale. Note that in the special case Zk ∈ {−1, 1} with P[Zk = 1] = P[Zk = −1] = 1

2

the process X becomes the simple random walk on Z.

Definition 3.7. A stochastic process (Cn)n≥1 is called previsible3 (or predictable)
with respect to a filtration (Fn)n≥0, if Cn is Fn−1-measurable for all n ≥ 1.

Proposition 3.8. Let (Ω,F , (Fn)n≥0,P) be a filtered probability space.

(i) Let X = (Xn)n≥0 be a martingale and let (Cn)n≥1 be a bounded previsible pro-
cess. Then, the process Y = (Yn)n≥0 defined by

Yn :=
n∑
k=1

Ck
(
Xk −Xk−1

)
, Y0 := 0,

is a martingale.
(ii) If X is a submartingale (resp. supermartingale) and (Cn)n≥1 is a bounded pre-

visible and non-negative, then Y is a submartingale (resp. supermartingale).

Proof. (i) Since (Cn)n≥1 is bounded, i.e. there exists c > 0 such that |Cn| ≤ c P-a.s.
for all n, we have by triangle inequality and integrability of the martingale X that

E
[
|Yn|

]
≤

n∑
k=1

E
[
|Ck| |Xk −Xk−1|

]
≤ c

n∑
k=1

(
E[|Xk|] + E[|Xk−1]

)
< ∞,

so Yn ∈ L1 for all n. For all k ≤ n the random variables Ck, Xk−1 and Xk are all
Fn-measurable, so Yn is Fn-measurable, which means that Y is adapted. Finally,
for n ≥ 1,

E
[
Yn − Yn−1 | Fn−1

]
= E

[
Cn(Xn −Xn−1) | Fn−1

]
= Cn E

[
Xn −Xn−1 | Fn−1

]
= 0. (3.1)

Here we used that Cn is Fn−1-measurable in the second step and the martingale
property in the last step.

(ii) Since Cn is now assumed to be non-negative, we have in the last step of
(3.1) that Cn E

[
Xn − Xn−1 | Fn−1

]
is non-negative if X is a submartingale and

non-positive if M is a supermartingale. �

Remark 3.9. (i) Sometimes the process (Cn)n≥1 represents a gambling strategy. If
X models the price process of a share, then Yn represents the wealth at time n.

(ii) Y is a discrete time version of the stochastic integral ’
∫
C dM ’.

3.2. Martingale convergence. Let X = (Xn)n≥0 be a real-valued stochastic pro-
cess on (Ω,F ,P) adapted to a filtration (Fn)n≥0. Consider an interval [a, b]. We
want to count the number of times a process crosses this interval from below.

3The teminology previsible refers to the fact thatCn can be foreseen from the information available
at time n− 1
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Definition 3.10. Let a < b ∈ R. We say that an upcrossing of [a, b] occurs between
times m and n, if

(i) Xm < a, Xn > b,
(ii) for all k such that m < k < n, Xk ∈ [a, b].

We denote by UN (X, [a, b]) the number of uprossings in the time interval [0, N ].
Now we consider the previsible process (Cn)n≥1 defined by

C1 := 1l{X0<a}, Cn := 1l{Cn−1=1}1l{Xn−1≤b} + 1l{Cn−1=0}1l{Xn−1<a}, n ≥ 2.

(3.2)

This process represents a winning strategy: wait until the process (say, price of a
share) drops below a. Buy the stock, and hold it until its price exceeds b; sell, wait
until the price drops below a, and so on. The associated wealth process is given by

Wn =
n∑
k=1

Ck
(
Xk −Xk−1

)
, W0 := 0.

Now each time there is an upcrossing of [a, b] we win at least (b− a). Thus, at time
N , we have

WN ≥ (b− a)UN (X, [a, b])− |a−XN | 1l{XN<a}, (3.3)

where the last term count is the maximum loss that we could have incurred if we
are invested at time N and the price is below a.

Naive intuition would suggest that in the long run, the first term must win. The
next theorem says that this is false, if we are in a fair or disadvantageous game.

Theorem 3.11 (Doob’s upcrossing lemma). Let X be a supermartingale. Then for
any a < b ∈ R,

E
[
UN (X, [a, b])

]
≤

E
[(
XN − a

)−]
b− a

. (3.4)

Proof. The process (Cn)n≥1 defined in (3.2) is obviously bounded, non-negative and
previsible, so by Proposition 3.8 (ii) the wealth process (Wn)n≥0 is a supermartin-
gale with W0 = 0. Therefore E[WN ] ≤ 0 and taking expectation in (3.3) gives
(3.4). �

For any interval [a, b], we define the monotone limit

U∞(X, [a, b]) := lim
N→∞

UN (X, [a, b]).

Corollary 3.12. Let (Xn)n≥0 be an L1-bounded supermartingale, i.e. supn E[|Xn|] <
∞. Then

E
[
U∞(X, [a, b])

]
≤
|a|+ supn E

[
|Xn|

]
b− a

<∞. (3.5)

In particular, P
[
U∞(X, [a, b]) =∞

]
= 0.
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Note that the requirement supn E[|Xn|] < ∞ is strictly stronger than just asking
that for all n, E[|Xn|] <∞.

Proof. This follows directly from Theorem 3.11 and the monotone convergence the-
orem since supn E

[(
Xn − a

)−] ≤ |a|+ supn E
[
|Xn|

]
. �

This is quite impressive: a (super-)martingale that is L1-bounded cannot cross
any interval infinitely often. The next result is even more striking, and in fact one
of the most important results about martingales.

Theorem 3.13 (Doob’s supermartingale convergence theorem). Let (Xn)n≥0 be an
L1-bounded supermartingale. Then there exists an integrable F∞-measurable random
variable X∞ such that, P-a.s., Xn → X∞ as n→∞.

Proof. Define

Λ :=
{
ω : Xn(ω) does not converge to a limit in [−∞,∞]

}
=
{
ω : lim sup

n
Xn(ω) > lim inf

n
Xn(ω)

}
=

⋃
a,b∈Q:a<b

{
ω : lim sup

n
Xn(ω) > b > a > lim inf

n
Xn(ω)

}
=:

⋃
a,b∈Q:a<b

Λa,b.

But

Λa,b ⊂
{
ω : U∞(X, [a, b])(ω) =∞

}
.

Therefore, by Corollary 3.12, P[Λa,b] = 0, and thus also

P
[ ⋃
a,b∈Q:a<b

Λa,b

]
= 0,

since countable unions of null-sets are null-sets. Thus P[Λ] = 0 and the limit X∞ :=

limnXn exists in [−∞,∞] with probability one and is F∞-measurable. It remains
to show that it is integrable. To do this, we use Fatous lemma:

E
[
|X∞|

]
= E

[
lim inf

n
|Xn|

]
≤ lim inf

n
E
[
|Xn|

]
≤ sup

n
E
[
|Xn|

]
<∞.

So X∞ is integrable. �

Remark 3.14. Doobs convergence theorem implies that positive supermartingale
always converge a.s. This is because the supermartingale property ensures in this
case that E[|Xn|] = E[Xn] ≤ E[X0], so the uniform boundedness in L1 is always
guaranteed.

3.3. Stopping times and optional stopping. In a stochastic process we often want
to consider random times that are determined by the occurrence of a particular
event. If this event depends only on what happens ’in the past’, we call it a stopping
time. Stopping times are nice, since we can determine their occurrence as we ob-
serve the process; so if we are only interested in them, we can stop the process at
this moment, hence the name.
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Definition 3.15. A map τ : Ω → {0, 1, . . .} ∪ {∞} is called a stopping time (with
respect to a filtration (Fn)n≥0) if {τ ≤ n} ∈ Fn for all n ≥ 0 or, equivalently,
{τ = n} ∈ Fn for all n ≥ 0.

Example 3.16. The most important examples of stopping times are hitting times.
Let (Xn)n≥0 be an adapted process, and let B ∈ B(R). Define

τB(ω) := inf
{
n > 0 : Xn(ω) ∈ B

}
with inf ∅ := +∞. Then τB is a stopping time.

Definition 3.17. Let (Xn)n≥0 be a stochastic process and τ be a stopping time. We
define the stopped process Xτ via

Xτ
n(ω) := Xn∧τ(ω)(ω).

Proposition 3.18. Let (Xn)n≥0 be a (sub-)martingale and τ be a stopping time. Then
the stopped process Xτ is a (sub-)martingale.

Proof. Exercise! �

Theorem 3.19 (Doob’s Optional stopping theorem). Let (Xn)n≥0 be a martingale
and τ be a stopping time. Then, Xτ ∈ L1 and

E[Xτ ] = E[X0],

if one of the following conditions holds.

(a) τ is a.s. bounded (i.e. there exists N ∈ N such that τ(ω) ≤ N for P-a.e. ω ∈ Ω).
(b) Xτ is bounded and τ is a.s. finite.
(c) E[τ ] <∞ and for some K <∞,∣∣Xn(ω)−Xn−1(ω)

∣∣ ≤ K, ∀n ∈ N, ω ∈ Ω.

Proof. By Proposition 3.18 the stopped process Xτ
n = Xτ∧n is a martingale. In

particular, its expected value is constant in n, so that

E
[
Xτ∧n

]
= E

[
Xτ
n

]
= E

[
Xτ

0

]
= E

[
X0

]
. (3.6)

Consider the case (a). By assumption τ is a.s. bounded, so there exists N ∈ N
such that τ(ω) ≤ N for P-a.e. ω ∈ Ω. Then, choosing n = N in (3.6) on the event
{τ ≤ N} gives the claim.

In case (b) we have limnXτ∧n = Xτ on the event {τ < ∞} and therefore P-a.s.
Since Xτ is bounded, we get by the dominated convergence theorem

lim
n→∞

E
[
Xτ∧n

]
= E

[
lim
n→∞

Xτ∧n
]

= E
[
Xτ

]
,

which together with (3.6) implies the result.
In the last case, (c), we observe that∣∣Xτ∧n −X0

∣∣ =
∣∣∣ τ∧n∑
k=1

(Xk −Xk−1)
∣∣∣ ≤ Kτ,
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and by assumption E[Kτ ] < ∞. So again by the dominated convergence theorem
we can pass to the limit in (3.6). �

Remark 3.20. (i) By similar arguments Theorem 3.19 extends immediately to super-
resp. submartingales in which case the conclusion reads

E[Xτ ] ≤ E[X0] resp. E[Xτ ] ≥ E[X0].

(ii) Theorem 3.19 may look strange and contradict the ’no strategy’ idea. Take a
simple random walk (Sn)n≥0 on Z (i.e. a series of fair games), and define a stopping
time τ = inf{n : Sn = 10}. Then clearly E[Sτ ] = 10 6= E[S0] = 0! So we conclude,
using (c), that E[τ ] = +∞. In fact, the ’sure’ gain if we achieve our goal is offset by
the fact that on average, it takes infinitely long to reach it (of course, most games
will end quickly, but chances are that some may take very very long!).

(iii) Condition (b) in Theorem 3.19 can be relaxed. In fact, it suffices that Xτ is
bounded by an integrable random variable, i.e. |Xτ∧n| ≤ Y a.s. for some Y ∈ L1.
The proof remains unchanged as the dominated convergence theorem still applies
in this situation.

The following variant of the optional stopping theorem is also often used.

Theorem 3.21 (Hunt’s optional stopping theorem). Let X be a supermartingale and
let σ and τ be bounded stopping times with σ ≤ τ . Then E[Xτ ] ≤ E[Xσ].

Proof. Fix n ≥ 0 such that τ ≤ n. Then

Xτ = Xσ +
∑

σ≤k<τ
(Xk+1 −Xk) = Xσ +

n∑
k=0

(Xk+1 −Xk)1l{σ≤k<τ}. (3.7)

Now {σ ≤ k} ∈ Fk and {τ > k} = {τ ≤ k}c ∈ Fk, so that {σ ≤ k < τ} ∈ Fk, and
by the supermartingale property of X,

E
[
(Xk+1 −Xk)1l{σ≤k<τ}

]
= E

[
E
[
(Xk+1 −Xk)1l{σ≤k<τ}

∣∣Fk]]
E
[
E
[
Xk+1 −Xk

∣∣Fk]1l{σ≤k<τ}] ≤ 0.

Hence, on taking expectations in (3.7), we obtain E[Xτ ] ≤ E[Xσ]. �

Again, note that X is a submartingale if and only if −X is a supermartingale, and
X is a martingale if and only both X and −X are supermartingales. So the optional
stopping theorem immediately implies a submartingale version with E[Xτ ] ≥ E[Xσ]

and a martingale version with E[Xτ ] = E[X0] = E[Xσ].

3.4. Doob’s maximal inequalities. Define, for a stochastic process X = (Xn)n≥0,

X∗n := sup
k≤n
|Xk|.

In the next two theorems, we see that the martingale (or submartingale) property
allows us to obtain estimates on this supremum in terms of expectations for Xn

itself.
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Theorem 3.22 (Doob’s maximal inequality). Let X be a martingale or non-negative
submartingale. Then, for all λ ≥ 0,

λP[X∗n ≥ λ] ≤ E
[
|Xn|1l{X∗n≥λ}

]
≤ E[|Xn|].

Proof. If X is a martingale, then |X| is a non-negative submartingale. It therefore
suffices to consider the case where X is non-negative. Set

τ = inf{k ≥ 0 : Xk ≥ λ} ∧ n.

Then τ is a bounded stopping time as τ ≤ n. So, by optional stopping,

E[Xn] ≥ E[Xτ ] = E
[
Xτ1l{X∗n≥λ}

]
+ E

[
Xτ1l{X∗n<λ}

]
≥ λP[X∗n ≥ λ] + E

[
Xn1l{X∗n<λ}

]
.

Hence
λP[X∗n ≥ λ] ≤ E[Xn1l{X∗n≥λ}] ≤ E[Xn].

�

Theorem 3.23 (Doob’s Lp-inequality). Let X be a martingale or non-negative sub-
martingale. Then, for all p > 1,

E
[
(X∗n)p

]
≤
( p

p− 1

)p
E
[
|Xn|p

]
.

Proof. If X is a martingale, then |X| is a non-negative submartingale. So it suffices
to consider the case where X is non-negative. Fix K ∈ (0,∞). By Fubini’s theorem,
Doob’s maximal inequality, and Hölder’s inequality,

E
[
(X∗n ∧K)p

]
= E

∫ K

0
pλp−11l{X∗n≥λ} dλ =

∫ K

0
pλp−1 P[X∗n ≥ λ] dλ

≤
∫ K

0
pλp−2 E

[
Xn1l{X∗n≥λ}

]
dλ =

p

p− 1
E
[
Xn(X∗n ∧K)p−1

]
≤ p

p− 1
E
[
Xp
n

]1/p E[(X∗n ∧K)p
](p−1)/p

.

We divide both sides by E
[
(X∗n ∧ K)p

](p−1)/p and obtain that E
[(
X∗n ∧ K

)p] ≤( p
p−1

)p E[Xp
n

]
. The result follows by monotone convergence on letting K →∞. �

Doob’s maximal and Lp inequalities have versions which apply, under the same
hypotheses, to the full supremum

X∗ = sup
n≥0
|Xn|.

Since X∗n ↑ X∗, on letting n→∞, we obtain, for all λ ≥ 0,

λP[X∗ > λ] = lim
n→∞

λP[X∗n > λ] ≤ sup
n≥0

E[|Xn|].

We can then replace λP[X∗ > λ] by λP[X∗ ≥ λ] by taking limits from the right in
λ. Similarly, for p ∈ (1,∞), by monotone convergence,

E
[
(X∗)p

]
≤
( p

p− 1

)p
sup
n≥0

E
[
|Xn|p

]
.
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3.5. Doob decomposition. One of the games when dealing with stochastic pro-
cesses is to “extract the martingale part”. There are several such decompositions,
but the following Doob decomposition is very important and its continuous time
analogue will be fundamental for the theory of stochastic integration.

Theorem 3.24 (Doob decomposition). Let X = (Xn)n≥0 be an adapted process on a
filtered probability space (Ω,F , (Fn)n≥0,P) such that E[|Xn|] <∞ for every n.

(i) The process X admits a P-a.s. unique decomposition

Xn = X0 +Mn +An, n ≥ 0,

where M = (Mn)n≥0 is a martingale with M0 = 0 and A = (An)n≥0 is a
previsible process with A0 = 0.

(ii) The process X is a submartingale, if and only if A is an increasing process in
the sense that, P-a.s., An ≤ An+1 for all n ≥ 0.

Proof. (i) We first show existence. Define

A0 := 0, An+1 −An = E
[
Xn+1 −Xn | Fn

]
, n ≥ 0.

Then, A is previsible and Mn := Xn −X0 − An defines a martingale. Indeed, M is
clearly adapted and integrable, and the martingale property holds since

E
[
Mn+1 −Mn | Fn

]
= E

[
(Xn+1 −Xn)− (An+1 −An) | Fn

]
= E

[
Xn+1 −Xn | Fn

]
− (An+1 −An) = 0, (3.8)

by the definition of A.
To see uniqueness, suppose we have another such decomposition Xn = X0 +

M ′n + A′n. Then, the difference A′n − An = Mn −M ′n is a martingale and A′n − An
is Fn−1-measurable for n ≥ 1. In particular,

A′n −An = E
[
A′n −An | Fn−1

]
= A′n−1 −An−1.

By induction it follows that A′n −An = A0 −A′0 = 0. This ends the proof of (i).
The assertion of (ii) is obvious from (3.8). �

The Doob decomposition gives rise to an important derived process associated
with a martingale X, namely the bracket 〈X〉. More precisely, let X be a martingale
in L2 with X0 = 0. Then X2 is a submartingale with Doob decomposition X2 =

M + 〈X〉, where M is a martingale that vanishes at zero and 〈X〉 is a previsible
process that vanishes at zero. The process 〈X〉 called the bracket of X. We will
come back to this point later when we discuss martingales in continuous time.

4. ARBITRAGE THEORY IN DISCRETE TIME

In this section we will give some answers to our two main questions in the context
of a multiperiod model in discrete time, that is we will develop a formula for prices
of financial derivative and give a characterisation of arbitrage-free market models.
For the latter we will discuss the so-called ’Fundamental Theorem of Asset Prices’,
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which states that a model is arbitrage-free if and only if the process discounted
asset prices is a martingale under some measure admitting the same null sets as
the original measure. As a warm-up we will discuss these results for a one-period
model first.

In the following, x · y = xT y =
∑d

i=1 xiyi with x, y ∈ Rd denotes the canonical
scalar product in Rd.

4.1. Single period model. Consider a single period market model with d risky
assets and one riskless bond. Their values at time t are denoted by S̄t = (S0

t , St) =

(S0
t , S

1
t , . . . , S

d
t ), t ∈ {0, 1}. The prices S̄0 at time t = 0 are deterministic. The bond

S0 has the value S0
0 = 1 at time t = 0 and the value S0

1 = 1 + r, r ≥ 0, at time t = 1.
The values of the risky assets at time t = 1 are represented by a vector of random
variables S1 = (S1

1 , . . . , S
d
1) on (Ω,F ,P).

At t = 0, an investor chooses a portfolio

θ̄ = (θ0, θ) = (θ0, . . . , θd) ∈ Rd+1,

where θi represents the number of units of asset i. We allow the components θi to
be negative. If θ0 < 0, this corresponds to a loan, and if θi < 0 for i ≥ 1, a quantity
of |θi| units of asset i is sold without owning them (short sale). At time t = 0 the
price to buy the portfolio equals θ̄ · S̄0 =

∑d
i=0 θ

iSi0, and at time t = 1 the portfolio
will have the value θ̄ · S̄1(ω) =

∑d
i=0 θ

iSi1(ω).

Definition 4.1. We say that a portfolio θ̄ = (θ0, θ) ∈ Rd+1 is an arbitrage opportunity
if θ̄ · S̄0 ≤ 0 but θ̄ · S̄1 ≥ 0 P-a.s. and P[θ̄ · S̄1 > 0] > 0.

Intuitively, an arbitrage opportunity is an investment strategy that yields with
positive probability a positive profit and is not exposed to any downside risk. The
existence of such an arbitrage opportunity may be regarded as a market inefficiency
in the sense that certain assets are not priced in a reasonable way. In real-world
markets, arbitrage opportunities are rather hard to find. If such an opportunity
would show up, it would generate a large demand, prices would adjust, and the
opportunity would disappear.

Remark 4.2. The probability measure P enters the definition of an arbitrage only
through the null sets of P. Thus, if θ̄ is an arbitrage under P then it is also an
arbitrage under any probability measure Q ≈ P.

The following lemma shows that in an arbitrage-free market any investment in
risky assets must be open to some downside risk if it yields with positive probability
a better result than investing the same amount in the risk-free asset.

Lemma 4.3. The following are equivalent.

(i) The market model admits an arbitrage opportunity.
(ii) There exists θ ∈ Rd such that

θ · S1 ≥ (1 + r) θ · S0 P-a.s. and P
[
θ · S1 > (1 + r) θ · S0

]
> 0.
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Proof. (i) ⇒ (ii): Let θ̄ ∈ Rd+1 be an arbitrage. Then, θ0 + θ · S0 = θ̄ · S̄0 ≤ 0, i.e.
θ0 ≤ −θ · S0. Therefore,

θ · S1 − (1 + r)θ · S0 ≥ θ · S1 + (1 + r)θ0 = θ̄ · S̄1.

Since θ̄ · S̄1 is P-a.s. non-negative and strictly positive with positive probability, the
same is true for θ · S1 − (1 + r)θ · S0.

(ii)⇒ (i): Let θ be as in (ii) and set θ0 := −θ · S0 so that θ̄ · S̄0 = 0. Then,

θ̄ · S̄1 = −(1 + r)θ · S0 + θ · S1,

which is P-a.s. non-negative and strictly positive with positive probability. Hence, θ̄
is an arbitrage. �

Theorem 4.4 (Fundamental Theorem of Asset Pricing (FTAP)). The following are
equivalent.

(i) There is no arbitrage.
(ii) There exists a probability measure Q ≈ P such that EQ[|S1|] <∞,

EQ

[ S̄1

1 + r

]
= S̄0, (4.1)

and the density dQ/dP is bounded.

The probability measure Q is referred to as a risk-neutral measure or an equivalent
martingale measure.

In (4.1) and below, for a random vector X = (X1, . . . , Xd) we use the shorthand
notation EQ[X] for the d-dimensional vector with components EQ[Xi], i = 1, . . . , d.
We first prove the simpler implication in Theorem 4.4.

Proof of Theorem 4.4. (ii) ⇒ (i): Let θ̄ ∈ Rd+1 be such that θ̄ · S̄1 ≥ 0 P-a.s. and
P[θ̄ · S̄1 > 0] > 0. Then, since Q ≈ P, we also have θ̄ · S̄1 ≥ 0 Q-a.s. and Q[θ̄ · S̄1 >

0] > 0. In particular, EQ[θ̄ · S̄1] > 0, and by condition (ii),

θ̄ · S̄0 =
EQ[θ̄ · S̄1]

1 + r
> 0,

so θ̄ · S̄0 is positive and thus θ̄ is not an arbitrage. �

Our proof of the other direction will require the following version of the separat-
ing hyperplane theorem.

Theorem 4.5. Suppose that C ⊂ Rd is a non-empty convex set with 0 6∈ C. Then there
exists θ ∈ Rd with θ · x ≥ 0 for all x ∈ C, and with θ · x0 > 0 for at least one x0 ∈ C.
Moreover, if infx∈C |x| > 0, then one can find θ ∈ Rd with infx∈C θ · x > 0.

Proof. See, for instance, [6, Proposition A.1]. �
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For abbreviation we introduce the vector Y = (Y 1, . . . , Y d) of discounted net
gains

Y i :=
Si1

1 + r
− Si0, i = 1, . . . , d.

Then, by Lemma 4.3 the market is arbitrage-free if and only if, for any θ ∈ Rd,

θ · Y ≥ 0, P-a.s. ⇒ θ · Y = 0, P-a.s. (4.2)

Moreover, note that for every risk-neutral measure Q we have EQ[|Y |] < ∞ and
EQ[Y ] = 0.

Proof of Theorem 4.4. (i) ⇒ (ii): We need to show that (4.2) implies the existence
of some Q ≈ P such that EQ[|Y |] <∞ and EQ[Y ] = 0.

Step 1. We first assume that Y is bounded. Let Q denote the convex set of all
probability measures Q ≈ P with bounded densities dQ/dP and

C :=
{
EQ[Y ], Q ∈ Q

}
.

Since Y is bounded, all these expectations are trivially finite. Note that C is a
convex set in Rd. Indeed, for any Q1,Q2 ∈ Q and α ∈ [0, 1], we have that Qα :=

αQ1 + (1− α)Q2 ∈ Q, and

αEQ1 [Y ] + (1− α)EQ2 [Y ] = E
[
Y
(
α
dQ1

dP
+ (1− α)

dQ2

dP

)]
= EQα [Y ] ∈ C,

where we used that
dQα

dP
= α

dQ1

dP
+ (1− α)

dQ2

dP
.

Our aim is to show that 0 ∈ C. Let us suppose that 0 6∈ C. Then, by Theorem 4.5
there exists θ ∈ Rd such that θ · x ≥ 0 for all x ∈ C, and with θ · x0 > 0 for some
x0 ∈ C. In other words, EQ[θ · Y ] ≥ 0 for all Q ∈ Q and EQ0 [θ · Y ] > 0 for some
Q0 ∈ Q. Clearly, since Q0 ≈ P, the latter condition yields P[θ ·Y > 0] > 0. We claim
that the first condition implies that

θ · Y ≥ 0, P-a.s., (4.3)

which contradicts our assumption (4.2) and will therefore prove that 0 ∈ C.
We now prove (4.3). Let A := {θ · Y < 0} and

φn :=
(

1− 1

n

)
1lA +

1

n
1lAc .

We define new probability measures Qn via

dQn

dP
:=

1

E[φn]
φn, n ≥ 2.

Since 0 < φn ≤ 1, we have Qn ∈ Q and therefore

0 ≤ EQn [θ · Y ] =
1

E[φn]
E[θ · Y φn].
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In particular, E[θ · Y φn] ≥ 0 for all n. Note that φn → 1lA, P-a.s., with A := {θ · Y <

0}. Since Y is bounded, we may apply the dominated convergence theorem to
obtain that

E
[
θ · Y 1l{θ·Y <0}

]
= lim

n→∞
E[θ · Y φn] ≥ 0.

This proves the claim (4.3) and completes the proof in the case where Y is bounded.
Step 2. If Y is not bounded, consider instead

Ỹ :=
Y

1 + |Y |
,

which is clearly bounded. From our assumption (4.2) it follows that for any θ ∈ Rd,

θ · Ỹ ≥ 0, P-a.s. ⇒ θ · Ỹ = 0, P-a.s.

Hence, we may apply Step 1 on Ỹ , which implies the existence of a probability
measure Q̃ ≈ P such that EQ̃[Ỹ ] = 0 and dQ̃/dP is bounded. Set

φ :=
c

1 + |Y |
dQ̃
dP

with c := 1/EQ̃[(1 + |Y |)−1] so that E[φ] = 1. Then dQ := φdP (i.e. Q(A) = E[φ1lA]

for A ∈ F), defines a probability measure Q� P with bounded density φ, that is

dQ
dP

= φ =
c

1 + |Y |
dQ̃
dP

> 0, P-a.s.

Thus, Q ≈ P. Moreover, since |Y |/(1 + |Y |) ≤ 1,

EQ
[
|Y |
]

= E
[
|Y |φ

]
= c E

[ |Y |
1 + |Y |

dQ̃
dP

]
≤ cE

[dQ̃
dP

]
= c <∞

and since Ỹ = Y/(1 + |Y |) by its definition,

EQ
[
Y
]

= E
[
Y φ
]

= c E
[ Y

1 + |Y |
dQ̃
dP

]
= c E

[
Ỹ
dQ̃
dP

]
= c EQ̃[Ỹ ] = 0.

Hence, Q is as desired, and the theorem is proved. �

Remark 4.6. (i) The strictly positive asset S0 above is referred to as a numéraire.
Here we considered a situation where there is a single riskless asset (referred to
variously as the money-market account, the bond, the bank account, . . . ) in the
market, and it is very common to use this asset as numéraire. It turns out that this
will serve for our present applications, but there are occasions when it is advanta-
geous to use other numéraires. The Fundamental Theorem of Asset Pricing holds
as long as S0

1 is strictly positive. Indeed, note that θ̄ is an arbitrage for S̄ if and only
if it is an arbitrage for S̃ defined by S̃it := Sit/S

0
t for i ∈ {0, 1, . . . , d}, t ∈ {0, 1}. The

FTAP also does not require the existence of a riskless asset, that is S0
1 could also be

random as long as it is strictly positive.
(ii) Note that the Fundamental Theorem of Asset Pricing does not make any claim

about uniqueness of Q when there is no arbitrage. This is because situations where
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there is a unique Q are rare and special; when Q is unique, the market is called
complete.

4.2. Multi-period model. Consider a multi-period model in which d+ 1 assets are
priced at times t = 0, 1, . . . , T . The price of asset i at time t is modelled by a
non-negative random variable Sit on a probability space (Ω,F ,P). We will write
S̄t = (S0

t , St) = (S0
t , . . . , S

d
t ), t ∈ {0, . . . , T}. The stochastic process (S̄t)t∈{0,...,T} is

assumed to be adapted to a filtration (Ft)t∈{0,...,T}. Further, we assume that F0 is
P-trivial, i.e. P[A] ∈ {0, 1} for all A ∈ F0. This condition holds if and only if all
F0-measurable random variable are P-a.s. constant.

Definition 4.7. A trading strategy is an Rd+1-valued, previsible process θ̄ = (θ0, θ) =

(θ0
t , . . . , θ

d
t )t=1,...,T , i.e. θ̄t is Ft−1-measurable for all t = 1, . . . , T .

The value θit of a trading strategy θ̄ corresponds to the quantity of shares of asset
i held between time t− 1 and time t. Thus, θitS

i
t−1 is the amount invested into asset

i at time t − 1, while θitS
i
t is the resulting value at time t. The total value of the

portfolio θ̄t at time t− 1 is

θ̄t · S̄t−1 =

d∑
i=0

θit S
i
t−1.

By time t, the value of the portfolio θ̄t has changed to

θ̄t · S̄t =

d∑
i=0

θit S
i
t .

The previsibility of θ̄ expresses the fact that investments must be allocated at the
beginning of each trading period, without anticipating future price increments.

Definition 4.8. A trading strategy θ̄ is called self-financing if

θ̄t · S̄t = θ̄t+1 · S̄t, ∀t = 1, . . . , T − 1. (4.4)

Intuitively, (4.4) means that the value of the portfolio at any time t equals the
amount invested at time t. It follows that the accumulated gains and losses resulting
from the price fluctuations are the only source of variations of the portfolio:

θ̄t+1 · S̄t+1 − θ̄t · S̄t = θ̄t+1 ·
(
S̄t+1 − S̄t

)
,

and summing up yields

θ̄t · S̄t = θ̄1 · S̄0 +

t∑
s=1

θ̄s ·
(
S̄s − S̄s−1

)
.

Here, the constant θ̄1·S̄0 can be interpreted as the initial investment for the purchase
of the portfolio θ̄1, while the second term may be regarded as a discrete stochastic
integral (cf. Proposition 3.8).
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We assume from now on that

S0
t > 0 P-a.s. for all t ∈ {0, . . . T}.

This assumption allows us to use asset 0 as numéraire. Now we define the discounted
price process

Xi
t :=

Sit
S0
t

, t = 0, . . . , T, i = 0, . . . , d.

Then X0
t ≡ 1, and Xt = (X1

t , . . . , X
d
t ) expresses the value of the remaining assets

in units of the numéraire.

Definition 4.9. The (discounted) value process V = (Vt)t=0,...,T of a trading strategy
θ̄ is given by

V0 := θ̄1 · X̄0, Vt := θ̄t · X̄t, t = 1, . . . , T.

Proposition 4.10. For a trading strategy θ̄ the following are equivalent.

(i) θ̄ is self-financing.
(ii) θ̄t · X̄t = θ̄t+1 · X̄t for t = 1, . . . , T − 1.

(iii) Vt = V0 +
∑t

s=1 θs · (Xs −Xs−1) for all t.

Proof. By dividing both sides of (4.4) by S0
t we easily see that (i) and (ii) are equiv-

alent. Moreover, (ii) holds if and only if

θ̄t+1 · X̄t+1 − θ̄t · X̄t = θ̄t+1 ·
(
X̄t+1 − X̄t

)
= θt+1 ·

(
Xt+1 −Xt

)
for t = 1, . . . , T − 1, and this identity is equivalent to (iii). �

We now define the notion of an arbitrage in the context of a multi-period model.

Definition 4.11. A self-financing strategy θ̄ is called an arbitrage opportunity if its
value process V satisfies

V0 ≤ 0, VT ≥ 0 P-a.s., and P
[
VT > 0

]
> 0.

Again we are aiming to characterise those market models that do not allow arbi-
trage opportunities.

Definition 4.12. A probability measure Q on (Ω,F) is called an equivalent mar-
tingale measure if Q ≈ P and the discounted price process X is a d-dimensional
martingale under Q. The set of all equivalent martingale measures is denoted by P.

Proposition 4.13. Let Q ∈ P and θ̄ be a self-financing strategy with value process V
satisfying VT ≥ 0 P-a.s. Then V is a Q-martingale and EQ[VT ] = V0.

Proof. Step 1. As a warm-up, we first suppose that θ̄ = (θ0, θ) with θ bounded, i.e.
maxt |θt| ≤ c <∞ for some c > 0. Then

Vt = V0 +

t∑
s=1

θs · (Xs −Xs−1),
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so that

|Vt| ≤ |V0|+ c
t∑

s=1

(
|Xs|+ |Xs−1|

)
.

Since X is a Q-martingale and EQ[|Xk|] < ∞ for each k, we have EQ[|Vt|] < ∞ for
every t. Moreover, for 0 ≤ t ≤ T − 1,

EQ
[
Vt+1 | Ft

]
= EQ

[
Vt + θt+1 · (Xt+1 −Xt) | Ft

]
= Vt + θt+1 · EQ

[
(Xt+1 −Xt) | Ft

]
= Vt,

where we used that Vt and θt+1 are Ft-measurable and X is a Q-martingale. Thus,
V is a Q-martingale.

Step 2. Now let θ̄ be as in the statement. In this step we will show that Vt ≥ 0 P-
a.s. for all t ∈ {0, . . . T} by backward induction. For t = T this holds by assumption.
Further, note that for any t we have by induction assumption

Vt−1 = Vt − θt · (Xt −Xt−1) ≥ −θt · (Xt −Xt−1).

For any c > 0 let θc be defined via θct := 1l{|θt|≤c}θt. Then EQ
[
Vt−11l{|θt|≤c} | Ft−1

]
is

well defined since

Vt−11l{|θt|≤c} = Vt1l{|θt|≤c} − θ
c
t · (Xt −Xt−1),

and the first term is non-negative by the induction assumption and the second term
is integrable. Thus,

Vt−11l{|θt|≤c} = EQ
[
Vt−11l{|θt|≤c} | Ft−1

]
≥ −EQ

[
θct · (Xt −Xt−1) | Ft−1

]
= 0.

Taking c ↑ ∞ yields Vt−1 ≥ 0 P-a.s.
Notice that Step 2 ensures that EQ[Vt | Ft−1] is well-defined for all t.

Step 3. We show the martingale property for V . Indeed, since θct is Ft−1-
measurable and X is a Q-martingale,

EQ
[
Vt1l{|θt|≤c} | Ft−1

]
= EQ

[
Vt−11l{|θt|≤c} + θct · (Xt −Xt−1) | Ft−1

]
= Vt−11l{|θt|≤c}.

Letting again c ↑ ∞ the monotone convergence theorem gives EQ[Vt | Ft−1] = Vt−1

P-a.s.

Step 4. Since we have assumed that F0 is P-trivial, i.e. P[A] ∈ {0, 1} for all
A ∈ F0, and Q ≈ P, clearly F0 is also Q-trivial. Hence, by Proposition 2.11 and
Step 3,

EQ[V1] = EQ
[
V1 | F0

]
= V0 <∞.

Moreover, we use repeatedly Step 3 to obtain

EQ[VT ] = EQ

[
EQ
[
VT | FT−1

]]
= EQ[VT−1] = · · · = EQ[V1] = V0 <∞.

Thus, EQ[Vt] < ∞ for all t and we have shown that V is a Q-martingale with
EQ[VT ] = V0. �
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Theorem 4.14 (Fundamental Theorem of Asset Pricing, FTAP). Assume that S0 is
an a.s. strictly positive numéraire, i.e. S0

t > 0 P-a.s. for all t = 0, . . . T . Then, the
following are equivalent.

(i) There is no arbitrage.
(ii) P 6= ∅, that is there exists a probability measure Q equivalent to P such that

the discounted price process X defined by

Xt :=
St
S0
t

, t = 0, . . . T,

is a Q-martingale.

Proof. (ii)⇒ (i): Let Q ∈ P and θ̄ be a self-financing strategy with a value process
V satisfying V0 ≤ 0 and VT ≥ 0 P-a.s. Then, by Proposition 4.13,

EQ[VT ] = V0 ≤ 0,

which implies VT = 0 P-a.s., so there is no arbitrage.
(i) ⇒ (ii): A nice proof in our current discrete time setting, which is based on

an application of the Hahn-Banach separation theorem, can be found in [6, Theo-
rem 5.17, Section 1.6]. In continuous time the proof is even much more compli-
cated, see [5]. �

4.3. European contingent claims.

Definition 4.15. A non-negative random variable C on (Ω,F ,P) is called a Euro-
pean contingent claim or European option. A European contingent claim C is called
a derivative of the underlying assets S0, S1, . . . , Sd if C is measurable with respect
to the σ-algebra generated by the price process (S̄t)t=0,...,T .

A European contingent claim has the interpretation of an asset which yields at
time T the amount C(ω), depending on the scenario ω of the market evolution. T
is called the expiration date or the maturity of C.

Example 4.16. (i) The owner of a European call option has the right, but not the
obligation, to buy a unit of an asset, say asset i, at time T for a strike price K. The
corresponding contingent claim is given by

Ccall =
(
SiT −K

)+
.

Conversely, a European put option gives the right, but not the obligation, to sell a
unit of an asset at time T for a fixed price K, called strike price. This corresponds
to a contingent claim of the form

Cput =
(
K − SiT

)+
.

(ii) The payoff of an Asian option depends on the average price

Siav :=
1

|T|
∑
i∈T

Sit
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of the underlying asset during a predetermined averaging period T ⊆ {0, . . . , T}.
Examples are

• Average price call:
(
Siav −K

)+,
• Average price put:

(
K − Siav

)+,
• Average strike call:

(
SiT − Siav

)+,
• Average strike put:

(
Siav − SiT

)+.

An average strike put can be used, for example, to secure the risk from selling at
time T a quantity of an asset which was bought at successive times over the period
T.

(iii) The payoff of a barrier option depends on whether the price of the underlying
asset reaches a certain level before maturity. Most barrier options are either knock-
out or knock-in options. A knock-out barrier option has a zero payoff once the price
of the underlying asset reaches a predetermined barrier B. For instance, the so-
called up-and-out call with strike price K has the payoff

Ccall
uo =

{(
SiT −K

)+ if max0≤t≤T S
i
t < B,

0 else.

Conversely, a knock-in option pays off only if the barrier B is reached. For instance,
a down-and-in put pays off

Cput
di =

{(
K − SiT

)+ if min0≤t≤T S
i
t < B,

0 else.

Down-and-out and up-and-in options are also traded.
(iv) Using a lookback option, one can trade the underlying asset at the maximal

or minimal price that occured during the life of the option. A lookback call has the
payoff

SiT − min
0≤t≤T

Sit

and a lookback put

max
0≤t≤T

Sit − SiT .

Definition 4.17. A European contingent claim C is called attainable or replicable if
there exists a self-financing strategy θ̄ whose terminal portfolio coincides with C,
i.e.

C = θ̄T · S̄T P-a.s.

Such a trading strategy θ̄ is called a replicating strategy for C.

The discounted value of a contingent claim C when using S0 as a numéraire is
given by

H :=
C

S0
T

,
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which is called the discounted European claim or just discounted claim associated
with C. Note that a contingent claim C is attainable if and only if the discount
claim H = C/S0

T is of the form

H =
θ̄T · S̄T
S0
T

= θ̄T · X̄T = VT = V0 +

T∑
t=1

θt ·
(
Xt −Xt−1

)
, (4.5)

where V denotes the value process of the replicating strategy θ̄ = (θ0, θ) (cf. Propo-
sition 4.10). In this case, we will also say that the discounted claim H is attainable
with replicating strategy θ̄.

From now on, we will assume that our market model is arbitrage-free or, equiva-
lently, that

P 6= ∅.

Theorem 4.18. Let H be an attainable discounted claim. Then

EQ[H] <∞ for all Q ∈ P.

Moreover, for each Q ∈ P the value process V of any replicating strategy satisfies

Vt = EQ
[
H | Ft

]
P-a.s., t = 0, . . . , T.

In particular, V is a non-negative Q-martingale.

Proof. From (4.5) we see that VT = H ≥ 0. Then, by Proposition 4.13 the value
process V is a Q-martingale for any Q ∈ P, so Vt = EQ

[
VT | Ft

]
= EQ

[
H | Ft

]
. �

Remark 4.19. The last result has two remarkable implications. First, note that
EQ
[
H | Ft

]
is independent of the replicating strategy, so all replicating strategies

have the same value process. Further, for any t = 0, . . . , T , since Vt = θ̄t · X̄t is
independent of the equivalent martingale measure Q, Vt is a version of EQ

[
H | Ft

]
for all Q ∈ P.

Pricing a contingent claim. Let us now turn to the problem of pricing a contingent
claim. Consider an attainable discounted claim H with replicating strategy θ̄. Then
the (discounted) initial investment

θ̄1 · X̄0 = V0 = EQ[H]

needed for the replication of H can be interpreted as the unique (discounted) ’fair
price’ of H.

In fact, any different price for H would create an arbitrage opportunity. For
instance, if the price π̃ of H would be larger than V0 = EQ[H], then at time t = 0

an investor could sell H for π̃ and buy the portfolio θ̄1 for V0. Then, at time t = 1

he could buy θ̄2 for θ̄1 · X̄1 and so on. At time t = T the terminal portfolio value
VT = θ̄T · X̄T suffices for settling the claim H at maturity T . This yields a sure profit
of π̃ − V0 > 0 or, in other words, an arbitrage.

It also becomes clear from these considerations what the seller of an attainable
option H needs to do in order to eliminate his risk, in other words to hedge the
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option H. All he needs to do is to buy the replication strategy θ for π = V0, which
now serves as his hedging strategy. Then, at expiration time T the seller will hold a
portfolio with value θ̄T · X̄T = H, which he can use to settle the claim H.

Example (Put-call parity). The so-called put-call parity is a relation between the
prices of a European call option Ccall =

(
SiT−K

)+ and the corresponding European
put options Cput =

(
K − SiT

)+. More precisely, notice that

Ccall − Cput =
(
SiT −K

)+ − (K − SiT )+ = SiT −K,

and the right-hand side equals the pay-off of a forward contract (cf. Section 0) with
price Si0 − K

(1+r)T
(note that the contingent claim C = SiT can be trivially replicated

just by holding one unit of the risky asset which requires an initial investment Si0).
Hence, the price π(Cput) for Cput can be obtained from the price π(Ccall) for the
call Ccall (or vice versa), namely

π(Cput) = π(Ccall)−
(
Si0 −

K

(1 + r)T

)
.

Complete markets. Theorem 4.18 provides not only the price of an attainable claim
(i.e. its value at time t = 0), but also its value at any time t ∈ {0, . . . , T}, which is
given by Vt = EQ

[
H | Ft

]
, which equals the value of a replicating strategy at time

t. We have now discussed pricing market models that are complete in the following
sense.

Definition 4.20. An arbitrage-free market model is called complete if every Euro-
pean contingent claim is attainable.

Theorem 4.21 (Second Fundamental Theorem of Asset Pricing). An arbitrage-free
market model is complete if and only if there exists exactly one equivalent martingale
measure, i.e. |P| = 1.

Proof. “⇒”: If the model is complete, then every discounted claim H is attainable.
Let H := 1lA for A ∈ F . Then there exists a self-financing replicating strategy with
initial investment

V0 = EQ[H] = Q(A)

for any Q ∈ P (see Theorem 4.18). Recall that V0 is independent of the particular
choice of Q (cf. Remark 4.19), so this determines Q(A) uniquely. Since A ∈ F is
arbitrary, there can only be one equivalent martingale measure.

“⇐”: See [6, Theorem 5.39]. �

Finally, we record the following property of complete markets which in the con-
text of stochastic analysis in continuous time is usually called the martingale repre-
sentation property.
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Proposition 4.22. Suppose the model is complete with unique equivalent martingale
measure Q. Then every Q-martingale M can be represented as a “stochastic integral”
of a d-dimensional previsible process θ,

Mt = M0 +

t∑
k=1

θk · (Xk −Xk−1), t = 0, . . . , T.

Proof. We decompose the terminal value MT of a Q-martingale M into its positive
and negative parts, that is MT = M+

T −M
−
T . Then we regard M+ and M− as two

discounted claims, which are attainable since the model is assumed to be complete.
Hence, there exist two d-dimensional previsible processes θ+ and θ− such that

M±T = V ±0 +
T∑
k=1

θ±k · (Xk −Xk−1),

for two non-negative constants V +
0 and V −0 (cf. (4.5)). By Theorem 4.18 the asso-

ciated value processes

V ±t = V ±0 +
t∑

k=1

θ±k · (Xk −Xk−1), t = 0, . . . , T,

are Q-martingales and we have that

Mt = EQ
[
MT | Ft

]
= EQ

[
M+
T −M

−
T | Ft

]
= V +

t − V
−
t .

Thus, the desired representation for M holds if we define θ to be the d-dimensional
previsible process θ := θ+ − θ−. �

In the next section we will study the prototype of a complete market model, the
Cox-Ross-Rubinstein binomial model. However, in discrete time only a very limited
class of models turn out to be complete. For incomplete models pricing is more
difficult (see e.g. [6, Theorem 5.30]).

5. THE COX-ROSS-RUBINSTEIN BINOMIAL MODEL

In this section we study the binomial model, a particularly simple model, intro-
duced by Cox, Ross and Rubinstein in [4]. It involves a riskless bond

S0
t := (1 + r)t, t = 0, . . . , T,

with r > −1 and one risky asset S1 of the form

S1
t = S1

0

t∏
k=1

(1 +Rk),

where the initial value S1
0 > 0 is a given constant and (Rt)t∈{0,...T} is a family of

random variables taking only two possible values a, b ∈ R with −1 < a < b. Thus,
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the stock price jumps from S1
t−1 either to the higher value S1

t = S1
t−1(1 + b) or to

the lower value S1
t = S1

t−1(1 + a). The random variable

Rt =
S1
t − S1

t−1

S1
t−1

describes the return in the t-th trading period, t = 1, . . . , T . In this context, we
are going to derive explicit formulas for the arbitrage-free prices and replicating
strategies of various contingent claims.

We now construct the model on the sample space

Ω := {−1, 1}T =
{
ω = (y1, . . . , yT ) | yi ∈ {−1, 1}

}
.

Denote by

Yt(ω) := yt for ω = (y1, . . . , yT )

the projection on the t-th coordinate. Further, let

Rt(ω) := a
1− Yt(ω)

2
+ b

1 + Yt(ω)

2
=

{
a if Yt(ω) = −1,

b if Yt(ω) = 1.

Now the price process of the risky asset at time T is modelled by

S1
t = S1

0

t∏
k=1

(1 +Rk),

where the initial value S1
0 > 0 is a given constant. The discounted value process is

given by

Xt =
S1
t

S0
t

= S1
0

t∏
k=1

1 +Rk
1 + r

.

As a filtration we take

Ft := σ(S1
0 , . . . , S

1
t ) = σ(X0, . . . , Xt), t = 0, . . . , T.

Then, note that F0 = {∅,Ω},

Ft = σ(Y1, . . . , Yt) = σ(R1, . . . , Rt), t = 1, . . . , T.

and F = FT coincides with the power set of Ω. Now we fix any probability measure
P on (Ω,F) such that

P
[
{ω}

]
> 0, ∀ω ∈ Ω,

or, in other words,

P
[
R1 = c1, . . . , RT = cT

]
> 0, ∀(c1, . . . , cT ) ∈ {a, b}T .

Definition 5.1. This model is called binomial model or CRR model (for Cox, Ross,
Rubinstein).
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Theorem 5.2. The CRR model is arbitrage-free if and only if a < r < b. In this
case, there exists a unique equivalent martingale measure Q, i.e. P = {Q}, and Q is
characterised by the fact that the random variables R1, . . . , RT are independent under
Q with common distribution

Q[Rt = b] = p∗ :=
r − a
b− a

, t = 0, . . . , T.

Proof. First note that a measure Q ∈ P if and only if X is a martingale under Q, i.e.

Xt = EQ
[
Xt+1 | Ft

]
= Xt EQ

[
1 +Rt+1

1 + r

∣∣∣Ft] Q-a.s.

for all t ≤ T − 1, which is equivalent to

r = EQ
[
Rt+1 | Ft

]
= bQ

[
Rt+1 = b | Ft

]
+ a

(
1−Q

[
Rt+1 = b | Ft

])
.

This can be rewritten as

Q
[
Rt+1 = b | Ft

]
=
r − a
b− a

= p∗.

But since p∗ is a deterministic constant, it can be easily seen that this holds if and
only if the random variables R1, . . . , RT are i.i.d. with Q[Rt = b] = p∗. In particular,
there can be at most one martingale measure for X.

If the model is arbitrage-free, then there exists Q ∈ P. Since Q ≈ P we must
have Q[Rt = b] = p∗ ∈ (0, 1), so a < r < b.

Conversely, if a < r < b then we can define a measure Q ≈ P on (Ω,F) by setting

Q
[
{ω}

]
:= (p∗)k (1− p∗)T−k > 0,

where k denotes the number of components of ω = (y1, . . . , yT ) that are equal
to +1. Then, under Q, Y1, . . . , YT and hence R1, . . . , RT are independent random
variables with common distribution Q[Yt = 1] = Q[Rt = b] = p∗, so Q ∈ P and thus
there is no arbitrage opportunity. �

From now on we only consider CRR models that are arbitrage-free, so we assume
that a < r < b and denote by Q the unique equivalent martingale measure.

Now we turn to the problem of pricing and hedging a given contingent claim
C. Let H = C/(1 + r)T be the discounted claim, which can be written as H =

h(S1
0 , S

1
1 , . . . , S

1
T ) for some suitable function h.

Proposition 5.3. The value process

Vt = EQ
[
H | Ft

]
, t = 0, . . . , T,

of a replicating strategy for H is of the form

Vt(ω) = vt
(
S1

0 , S
1
1(ω), . . . , S1

t (ω)
)
,

where the function vt is given by

vt(x0, . . . , xt) = EQ

[
h
(
x0, . . . , xt, xt ·

S1
1

S1
0

, . . . , xt ·
S1
T−t
S1

0

)]
. (5.1)
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Proof. Since the equivalent martingale measure is unique, the model is complete
and the every contingent claim is attainable, and by Theorem 4.18 the value process
of any replicating strategy is given by Vt = EQ

[
H | Ft

]
. Thus,

Vt = EQ

[
h
(
S1

0 , . . . , S
1
t , S

1
t ·

S1
t+1

S1
t

, . . . , S1
t ·

S1
T

S1
t

) ∣∣∣Ft] .
Recall that S1

0 , S
1
1 , . . . S

1
t are Ft-measurable and note that S1

t+s/S
1
t is independent

of Ft and has under Q the same distribution as

S1
s

S1
0

=
s∏

k=1

(1 +Rk).

The claim follows now from Proposition 2.16. �

Since the value process V is characterised by the recursion

VT = H, Vt = EQ
[
Vt+1 | Ft

]
,

we obtain the following recursion formula for the function vt in Proposition 5.3,

vT
(
x0, . . . , xT

)
= h(x0, . . . , xT ),

and for t < T ,

vt
(
x0, . . . , xt

)
(5.2)

= p∗ vt+1

(
x0, x1, . . . , xt, xt(1 + b)

)
+ (1− p∗) vt+1

(
x0, x1, . . . , xt, xt(1 + a)

)
.

Indeed, for t < T ,

vt(S
1
0 , . . . , S

1
t ) = EQ

[
H | Ft

]
= EQ

[
EQ
[
H | Ft+1

] ∣∣Ft]
= EQ

[
vt+1(S1

0 , . . . , S
1
t+1) | Ft

]
= EQ

[
vt+1

(
S1

0 , . . . , S
1
t , S

1
t ·

S1
t+1

S1
t

) ∣∣∣Ft]
= p∗ vt+1

(
S1

0 , S
1
1 , . . . , S

1
t , S

1
t (1 + b)

)
+ (1− p∗) vt+1

(
S1

0 , S
1
1 , . . . , S

1
t , S

1
t (1 + a)

)
.

Example 5.4. Suppose that H = h(S1
T ) only depends on the terminal value S1

T of
the stock price, then Vt depends only on the value S1

t of the stock at time t , i.e.
Vt(ω) = vt(S

1
t (ω)) and the formula (5.1) reduces to

vt(xt) = EQ

[
h
(
xt
S1
T−t
S1

0

)]

=
T−t∑
k=0

h
(
xt (1 + a)T−t−k (1 + b)k

)(T − t
k

)
(p∗)k (1− p∗)T−t−k.

In particular, the unique arbitrage-free price of H is given by

π(H) = v0(S1
0) =

T∑
k=0

h
(
S1

0 (1 + a)T−k (1 + b)k
)(T

k

)
(p∗)k (1− p∗)T−k.
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For instance, by choosing h(x) = (x −K)+/(1 + r)T or h(x) = (K − x)+/(1 + r)T

we get explicit formulas for the arbitrage-free prices of a European call or European
put, respectively.

Next we derive a hedging strategy for a discounted claim H = h(X0, . . . , XT ). By
hedging strategy we mean a self-financing trading strategy the seller of an option
can use in order to secure his position at maturity time T . For instance, if the option
is attainable, any replicating strategy can serve as a hedging strategy.

Proposition 5.5. The hedging strategy is given by

θt(ω) = ∆t(S
1
0 , S

1
1(ω), . . . , S1

t−1(ω)),

where

∆t

(
x0, x1, . . . , xt−1

)
= (1 + r)t

vt
(
x0, x1, . . . , xt−1, xt−1(1 + b)

)
− vt

(
x0, x1, . . . , xt−1, xt−1(1 + a)

)
xt−1

(
b− a

) .

The term ∆t may be regarded as a discrete derivative of the value function vt
with respect to the possible stock price changes. In financial language, a hedging
strategy based on a derivative of the value process is often called a Delta hedge.

Proof. By Proposition 4.10 we have that for each ω = (y1, . . . , yT ) ∈ {−1, 1}T any
self-financing strategy θ̄ must satisfy

θt(ω) ·
(
Xt(ω)−Xt−1(ω)

)
= Vt(ω)− Vt−1(ω). (5.3)

In this equation the random variables θt, Xt−1 and Vt−1 depend only on the first
t− 1 components of ω. For a fixed t we now define

ω± := (y1, . . . , yt−1,±1, yt+1, . . . , yT ).

Plugging ω+ and ω− into (5.3) gives

θt(ω)
(
Xt−1(ω)

1 + b

1 + r
−Xt−1(ω)

)
= Vt(ω

+)− Vt−1(ω)

θt(ω)
(
Xt−1(ω)

1 + a

1 + r
−Xt−1(ω)

)
= Vt(ω

−)− Vt−1(ω).

Taking the difference and solving for θt(ω) gives

θt(ω) =
(
1 + r

) Vt(ω+)− Vt(ω−)

(b− a)Xt−1(ω)
=
(
1 + r

)t Vt(ω+)− Vt(ω−)

(b− a)S1
t−1(ω)

,

and the claim follows. �

Remark 5.6. Proposition 5.5 only provides the number of shares of the risky asset to
be held in each trading period. However, the process θ0 describing the investment
in the bond can be directly deduced as the following discussion shows.
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If θ̄ is a self-financing trading strategy, then (θ̄t+1 − θ̄t) · X̄t = 0 for all t =

1, . . . , T − 1. In particular, the numéraire component satisfies

θ0
t+1 − θ0

t = −(θt+1 − θt) ·Xt, t = 1, . . . , T − 1, (5.4)

and

θ0
1 = V0 − θ1 ·X0. (5.5)

Thus, the entire process θ0 is determined by the initial investment V0 and the d-
dimensional process θ. Consequently, if a value V0 ∈ R and any d-dimensional
previsible process θ are given, we can define the process θ0 via (5.4) and (5.5) to
obtain a self-financing strategy θ̄ := (θ0, θ) with initial capital V0, and this construc-
tion is unique.

6. BROWNIAN MOTION

The binomial model for a share is a discrete-time model, and as such it is a
poor approximation to the reality of a market, where trading happens in an almost
continuous fashion. We might try to make the binomial model describe such a
market better by thinking of the time period as being very short, such as one second,
or even one microsecond; if we did this, there would be a very large number of
moves of the share in an hour. Recall that under the equivalent martingale measure
the share price in the binomial model, or more precisely its logarithm, is a random
walk (its steps are independent identically distributed random variables), and in
view of the Central Limit Theorem, it would not be surprising if there existed some
(distributional) limit of the binomial random walk as the time periods became ever
shorter. It would also be expected that the Gaussian distribution should feature
largely in that limit process, and indeed it does. This chapter introduces the basic
ideas about a continuous-time process called Brownian motion, in terms of which
the most common continuous-time model of a share is defined. Using this model,
various derivative prices can be computed in closed form; the celebrated Black-
Scholes formula for the price of a European call option is the prime example. We
finish these motivating remarks with a very short overview about the history of
Brownian motion.

1827: Robert Brown observes the jittery motion of a grain of pollen in water
1900: Louis Bachelier discusses in his Ph.D.-thesis the use of Brownian motion as

a model for share prices.
1905: Albert Einstein formulates a diffusion equation for the motion of particles

in a fluid. A particle in water undergoes an enormous number of bom-
bardments by the fast-moving molecules in the fluid, roughly of the order
of 1013 collisions per second (at room temperature). So the particle per-
forms a random walk on a very short scale. The increments of this random
walk should have mean zero and the variance should be propertional to the
number of collisions, i.e. proportional to the elapsed time. Let Xt denote
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the position of the particle at time t and x its initial position. In view of
the huge number of collisions and the weak strength of every single push,
the central limit theorem would suggest that it is reasonable to assume that
Xt ∼ N (x, σ2t) for some σ > 0. Furthermore, the evolution of the motion
of the particle on disjoint time intervals should be independent.

1923: Norbert Wiener provides a mathematical model for Brownian motion.
1965: Paul Samuelson suggest a geometric Brownian motion as a model for share

prices, more precisely,

St = S0 exp(σBt + µt),

where B is a Brownian motion, µ ∈ R a drift and σ > 0 a volatility param-
eter.

We now turn to the precise definition.

Definition 6.1. A stochastic process (Bt)t≥0 defined on a probability space (Ω,F ,P)

is called Brownian motion or Wiener process if

(a) B0 = 0, P-a.s.
(b) For any ω ∈ Ω, the map t 7→ Bt(ω) is continuous.
(c) For any n ∈ N and any 0 = t0 < t1 < · · · < tn, the increments Bt1 , Bt2 −

Bt1 , ..., Btn − Btn−1 are independent and each increment Bti − Bti−1 ∼
N (0, ti − ti−1), so it is a Gaussian random variable with mean zero and
variance ti − ti−1.

Remark 6.2. (i) Brownian motion is a Markov process with the transition probility
density given by

pt(x, y) =
1√
2πt

exp
(
− (y − x)2

2t

)
, t > 0, x, y ∈ R, (6.1)

so for any n ∈ N and any 0 < t1 < · · · < tn the distribution of (Bt1 , . . . , Btn) is given
by

P
[
Bt1 ∈ A1, . . . , Btn ∈ An

]
=

∫
A1

∫
A2

· · ·
∫
An

pt1(0, x1) pt2−t1(x1, x2) · · · ptn−tn−1(xn−1, xn) dxn · · · dx1

for all A1, . . . , An ∈ B(R).
(ii) In the definition, B0 = 0 is not essential; for general x ∈ R we call (x+Bt)t≥0

a Brownian motion started at x.
(iii) In the definition, the condition (b) stating that B has continuous sample

paths is in fact an additional requirement and does not follow from (a) and (c).
Indeed, let B be a Brownian motion and set

B̄t(ω) := Bt(ω) 1lR\Q(Bt(ω)), t > 0.
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Then, for every t, B̄t has the same distribution as Bt, so B̄ satisfies conditions
(a) and (c) but B̄ is obviously not continuous. One can even show that it is not
continuous at any point.

Alternatively, we could describe Brownian motion as follows.

Lemma 6.3. Brownian motion is the Gaussian process4 (Bt)t≥0 with values in R such
that

(a) B0 = 0, P-a.s.
(b) For P-a.e. ω, the map t 7→ Bt(ω) is continuous.
(c) E[Bt] = 0 and E[BtBs] = t ∧ s for all s, t ≥ 0.

Proof. Let B be Brownian motion as defined in Definiton 6.1. Then properties (a)
and (b) are obviously satisfied. To show that (c) holds, we may assume without loss
of generality that t > s. Then

E
[
BtBs

]
= E

[
(Bt −Bs)Bs +B2

s

]
= E[Bt −Bs] E[Bs] + E

[
B2
s

]
= 0 + s = s ∧ t,

where we used that Bt − Bs and Bs are independent and centred and Bs has vari-
ance s.

To prove the converse, i.e. that any process with the properties given in the state-
ment is a Brownian motion, we can just use the fact that the law of a Gaussian
process is uniquely determined by its mean and covariance (see e.g. [3, Section 3]).
Thus the process has the same law as Brownian motion and has only continuous
paths (by (b)), so it is Brownian motion. �

Once we have Brownian motion in one dimension, we can trivially define Brow-
nian motion in d dimensions.

Definition 6.4. A d-dimensional Brownian motion is a stochastic process (Bt)t≥0

with values in Rd, such that if B = (B1, . . . , Bd), then the components Bi are
mutually independent Brownian motions in R.

The question remains whether such a process actually exists.

Theorem 6.5. Brownian motion exists.

We will not give a formal proof here; some nice short constructions of Brownian
motion can be found, for instance, in [3, Section 6] or [8, Section 7]. However, the
maybe most natural approach would require a good amount of preparation, so we
only sketch the main idea here.

Let (Yi)i∈N be i.i.d. with E[Yi] = 0 and variance E[Y 2
i ] = 1. Consider the random

walk X defined by X0 := 0 and Xk :=
∑k

i=1 Yi, k ≥ 1 and let

X
(n)
t :=

1

n
Xbn2tc +

tn2 − btn2c
n

(
Xbn2tc+1 −Xbn2tc

)
, t ≥ 0,

4A stochastic process (Xt)t≥0 is called a Gaussian process if for any n ∈ N and any 0 < t1 < · · · < tn
the vector (Xt1 , . . . , Xtn) is normally distributed.
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that is, X(n)
tk

= Xk/n for tk = k/n2, k ≥ 0, and on each interval [tk, tk+1], X(n) inter-
polates linearly between Xk/n and Xk+1/n. Then, Donsker’s invariance principle
(Donsker, 1952) states that (

X(n)
)
t≥0

⇒
n→∞

(
Bt
)
t≥0

where B is a Brownian motion (and ⇒ denotes convergence in distribution). If
we would just consider the sequence X(n)

1 , i.e. the case t = 1, this is exactly the
Central Limit Theorem, since B1 ∼ N (0, 1). But Donsker’s theorem is in fact a
much stronger result as it provides such a convergence simultaneously for all t ≥ 0.
Therefore the theorem is also called Functional Central Limit Theorem. Equvalently,
this result could be also formulated as follows. The rescaled random walk X(n)

and the Brownian motion B may be regarded as random variables taking values
in the path space C([0,∞),R). Then Donsker’s theorem says that the distribution
P ◦(X(n)

· )−1 of the entire path of the rescaled random walk, which is a measure on
C([0,∞),R), converges weakly to the distribution of Brownian motion, which also
called the Wiener measure.

As a consequence, on an intuitive level Brownian motion looks locally like a
random walk on a very large time scale, so the paths are very rough. We will make
this now a bit more precise. For any t > 0 consider a partition Π of [0, t] of the form

Π =
{
t0, t1, . . . , tk

}
with 0 ≤ t0 < t1 < . . . < tk = t, k ∈ N,

and set |Π| := maxti ∈Π |ti − ti−1| (with t−1 := 0).

Definition 6.6. Let p ≥ 1 and let (Πn)n∈N be an increasing sequence of partitions
of [0, t] (i.e. Πn ⊆ Πn+1 for all n ∈ N) such that |Πn| → 0 as n → ∞. For any
f ∈ C([0, t]),

V p
t (f) := lim

n→∞
V p
t,Πn

(f),

where

V p
t,Πn

(f) :=
∑
ti∈Πn

∣∣f(ti)− f(ti−1)
∣∣p,

is called the p-variation of f .

There are two important special cases.
(i) In the case p = 1, note that V 1

t,Πn
(f) ≤ V 1

t,Πn+1
(f) for all n, so that V 1

t (f) =

supn V
1
t,Πn

(f). Further, we observe that V 1
t (f) is the length of the curve defined by f

on [0, t]. If V 1
t (f) <∞, then f is called a function of bounded variation (or function

of finite variation) on [0, t].
(ii) In the case p = 2, V 2(f) is called quadratic variation of f .

Remark 6.7. If p < p′ and V p
t (f) <∞ then V p′

t (f) = 0. (Exercise!)

Example 6.8. (i) If f is differentiable, then f is of bounded variation on any finite
interval (Exercise).
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(ii) If f is increasing (or decreasing), then f is of bounded variation on any finite
interval (Exercise).

Proposition 6.9. Let B be a Brownian motion and (Πn)n∈N be an increasing sequence
of partitions of [0, t] with |Πn| → 0 as n→∞. Then

lim
n→∞

V 2
t,Πn(B) = t in L2(P),

that is

lim
n→∞

E
[(
V 2
t,Πn(B)− t

)2]
= 0.

Proof. Let n initially be be fixed and let Πn =
{
t0, t1, . . . , tk

}
be a partition of [0, t].

For abbreviation we set ∆Bj := Btj − Btj−1 and ∆tj := tj − tj−1. Recall that
∆Bj ∼ N (0,∆tj) so that E

[
(∆Bj)

2
]

= ∆tj and E
[
(∆Bj)

4
]

= 3(∆tj)
2. Further,

note that
∑

i≤k ∆ti = t. Thus,

E
[(
V 2
t,Πn(B)− t

)2]
= E

[(∑
i≤k

(
∆Bi

)2 − t)2]

= E
[∑
i≤k

∑
j≤k

(
∆Bi

)2(
∆Bj

)2 − 2t
∑
i≤k

(
∆Bi

)2
+ t2

]
=
∑
i≤k

E
[
(∆Bi)

4
]︸ ︷︷ ︸

=3(∆tj)2

+
∑
i,j≤k
i6=j

E
[
(∆Bi)

2
]︸ ︷︷ ︸

=∆ti

E
[
(∆Bj)

2
]︸ ︷︷ ︸

=∆tj

−2t
∑
i≤k

E
[
(∆Bi)

2
]︸ ︷︷ ︸

=∆ti

+t2

≤ 3
∑
i≤k

(
∆ti
)2

+ t2 − 2t2 + t2

≤ 3 |Πn|
∑
i≤k

∆ti = 3 |Πn| t→ 0, as n→∞,

which gives the claim. �

By combining Proposition 6.9 with Remark 6.7 one can show that P-almost every
Brownian path is locally of infinite variation. To finish our discussion of regularity
of Brownian paths, we briefly mention their modulus of continuity. Recall that a
function f : R → R is locally Hölder continuous of order α for α ∈ [0, 1] if, for every
L > 0,

sup

{
|f(t)− f(s)|
|t− s|α

, |t|, |s| ≤ L, t 6= s

}
<∞.

If α = 1, then f is locally Lipschitz-continuous.

Proposition 6.10. Let B be a Brownian motion. Then, almost surely,

(i) for all α < 1/2, B is locally Hölder continuous of order α,
(ii) for all α ≥ 1/2, B is nowhere Hölder continuous of order α. In particular, B is

nowhere differentiable.

Proof. See e.g. [8, Theorem 7.7.2]. �



48 MARTINGALE THEORY FOR FINANCE

Proposition 6.11. Let B be a Brownian motion. Then each of the following processes
are also Brownian motions.

(i) B1
t := −Bt,

(ii) B2
t := cBt/c2 for any c > 0 (scale invariance),

(iii) B3
t := tB1/t for t > 0 and B3

0 := 0 (time-inversion),
(iv) B4

t := BT+t −BT for any T ≥ 0 fixed.

Proof. We leave the proofs for (i), (ii) and (iv) to the reader as an exercise. To see
(iii) we note first that B3 is a Gaussian process with mean E[B3

t ] = 0 for all t ≥ 0

and covariance

cov(B3
s , B

3
t ) = E

[
B3
sB

3
t

]
= s t E

[
B1/sB1/t

]
= s t 1

t = s, 0 < s ≤ t.

Hence, again using the fact that the law of a Gaussian process is determined by its
mean and covariance, we get that for any 0 ≤ t1 < · · · < tn the law of (B3

t1 , . . . , B
3
tn)

is the same as the law of (Bt1 , . . . , Btn). Further, the paths t 7→ B3
t are almost sure

continuous on (0,∞). It remains to show the continuity at t = 0. Let Q+ :=

Q∩ (0,∞), (At)t∈Q+ be a collection of sets in B(R) and {sn, n ≥ 1} be a numbering
of the elements in Q+. Then, by the monotone continuity of the measure P,

P
[ ⋂
t∈Q+

{
B3
t ∈ At

}]
= lim

N→∞
P
[ N⋂
n=1

{
B3
sn ∈ Asn

}]
= lim

N→∞
P
[ N⋂
n=1

{
Bsn ∈ Asn

}]

= P
[ ⋂
t∈Q+

{
Bt ∈ At

}]
.

Hence, also the distribution of (B3
t , t ∈ Q+) is the same as the distribution of (Bt, t ∈

Q+). In particular,

lim
t↓0R,t∈Q+

B3
t = 0, P-a.s.

But Q+ is dense in (0,∞) and B3 is almost surely continuous on (0,∞), so that

0 = lim
t↓0
t∈Q+

B3
t = lim

t↓0
B3
t , P-a.s.

Thus, B3 is also continuous at t = 0. �

Corollary 6.12 (Law of large numbers). Let B be a Brownian motion. Then,

lim
t→∞

Bt
t

= 0, P-a.s.

Proof. Let B3 be as in Proposition 6.11, then

lim
t→∞

Bt
t

= lim
t→∞

B3
1/t = B3

0 = 0, P-a.s.

�
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Proposition 6.13. Let B be a Brownian motion. Then,

P
[

sup
t≥0

Bt =∞
]

= 1.

Proof. Set Z := supt≥0Bt and B̃t := c−1Bc2t for any c > 0. Then by scaling invari-
ance

Z = sup
t≥0

Bt = sup
t≥0

Bc2t = c sup
t≥0

B̃t
(d)
= c sup

t≥0
Bt = cZ.

In particular, P[Z ≤ z] = P[cZ ≤ z] for all z > 0, so the distribution function
F (z) = P[Z ≤ z] of Z is constant on (0,∞), which shows that Z ∈ {0,+∞} a.s.

Recall that B′t = B1+t − B1 is another Brownian motion, so Z ′ = supt≥0B
′
t

has the same law as Z. In particular Z ′ ∈ {0,∞} a.s. It suffices to show that
P[Z = 0] = 0. Note that on the event {Z = 0} we have Z ′ 6= +∞ and therefore
Z ′ = 0. Furthermore, {Z = 0} ⊆ {B1 ≤ 0}. Hence, also using the fact that
Brownian motion has independent increments we get

P[Z = 0] = P[Z = 0, Z ′ = 0] ≤ P
[
B1 ≤ 0, sup

t≥0
B1+t −B1 = 0

]
= P[B1 ≤ 0]P

[
sup
t≥0

B1+t −B1 = 0
]

=
1

2
P[Z = 0],

which implies P[Z = 0] = 0. �

7. MARTINGALES IN CONTINUOUS TIME

We start with some definitions.

Definition 7.1. (i) A function f : [0,∞) → R is said to be cadlag if it is right-
continuous with left limits, that is to say, for all t ≥ 0,

f(s)→ f(t) as s→ t with s > t

and, for all t > 0, there exists f(t−) ∈ R such that

f(s)→ f(t−) as s→ t with s < t.

The term is a French acronym for continu à droite, limité à gauche.
(ii) A continuous stochastic process is a family of random variables (Xt)t≥0 such

that, for all ω ∈ Ω, the path (or trajectory) t 7→ Xt(ω) : [0,∞) → R is continuous.
Similarly, a cadlag stochastic process is a family of random variables (Xt)t≥0 such
that, for all ω ∈ Ω, the path t 7→ Xt(ω) : [0,∞)→ R is cadlag.

A continuous stochastic process (Xt)t≥0 can then be considered as a random
variable X in C([0,∞),R) given by

X(ω) = (t 7→ Xt(ω) : t ≥ 0).

Similarly, a cadlag stochastic process can be thought of as a random variable in in
the space of cadlag functions.
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We assume in this and the next section that our probability space (Ω,F ,P) is
equipped with a continuous-time filtration, that is, a family of σ-algebras (Ft)t≥0

such that
Fs ⊆ Ft ⊆ F , s ≤ t.

Definition 7.2. A stochastic process X = (Xt)t≥0 on (Ω,F , (Ft)t≥0,P) is a martin-
gale if

(i) X is adapted, that is Xt is Ft-measurable for every t.
(ii) X is integrable, i.e. E[|Xt|] <∞ for every t.

(iii) The martingale property holds, i.e. for all 0 ≤ s ≤ t,

E[Xt| Fs] = Xs, P-a.s.

If equality is replaced in this condition by ≤ or ≥, we obtain notions of supermartin-
gale and submartingale, respectively.

Next we discuss some important examples for martingales which will be con-
structed from Brownian motion and the Poisson process, respectively.

Brownian motion. One of the most fundamental examples for a continuous martin-
gale is Brownian motion. Indeed, let (Bt)t≥0 be a Brownian motion with its natural
filtration given by Ft = FBt = σ(Bs, s ≤ t). Then B is clearly integrable and
adapted to (Ft)t≥0, and for 0 ≤ s ≤ t,

E
[
Bt | Fs

]
= Bs + E

[
Bt −Bs | Fs

]
= Bs + E

[
Bt −Bs

]
= Bs,

where we used that the increment Bt − Bs is independent of Fs. So B is a martin-
gale, but there are more martingales related to Brownian motion.

Example 7.3. Let (Bt)t≥0 be a Brownian motion. Then the processes (B2
t − t)t≥0

and (exp(σBt − 1
2σ

2t))t≥0 for σ > 0 are both martingales w.r.t. Ft = FBt .

Proof. The process (B2
t − t)t≥0 is clearly adapted and integrable. For 0 ≤ s ≤ t,

E
[
B2
t | Fs

]
= E

[(
Bt −Bs +Bs

)2 | Fs]
= E

[(
Bt −Bs

)2 | Fs]+ 2Bs E
[
Bt −Bs | Fs

]
+B2

s

= E
[(
Bt −Bs

)2]
+B2

s = t− s+B2
s ,

where we used again that Bt −Bs is independent of Fs and Bt −Bs ∼ N (0, t− s).
Thus, E

[
B2
t − t | Fs

]
= B2

s − s and the martingale property holds.
The verification that (exp(σBt− 1

2σ
2t))t≥0 is a martingale is left as an exercise. �

Poisson process. One of the simplest relevant examples for a non-continuous cadlag
stochastic process is the Poisson process.

Definition 7.4 (Poisson process). A stochastic process (Nt)t≥0 defined on a proba-
bility space (Ω,F ,P) is called Poisson process with intensity λ if

(a) N0 = 0 and for any ω ∈ Ω, the map t 7→ Nt(ω) is cadlag.
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(b) For any n ∈ N and any 0 = t0 < t1 < · · · < tn, the increments Nt1 , Nt2 −
Nt1 , ..., Ntn −Ntn−1 are independent.

(c) For every 0 ≤ s < t the increment Nt −Ns ∼ Pois(λ(t− s)), i.e.

P[Nt −Ns = k] = e−λ(t−s)
(
λ(t− s)

)k
k!

, k ∈ {0, 1, 2, . . .}.

Remark 7.5. One possible way to construct a Poisson process is as follows. Let
W1,W2, . . . be i.i.d. exp(λ) distributed random variables. Set Tn :=

∑n
i=1Wi. Then,

Nt := sup
{
n : Tn ≤ t

}
, t ≥ 0,

is a Poisson process with intensity λ.

Example 7.6. Let (Nt)t≥0 be a Poisson process with intensity λ. Then, the processes
(Nt − λt)t≥0 and

(
(Nt − λt)2 − λt

)
t≥0

are martingales w.r.t. the filtration Ft = FNt .

Proof. Both processes are clearly adapted and integrable. To see the martingale
property, recall that the increments Nt − Ns are independent of Fs and Poisson-
distributed with Parameter λ(t− s). Hence,

E
[
Nt − λt

∣∣Fs] = E
[
Nt −Ns − λ(t− s)

∣∣Fs]+Ns − λs
= E

[
Nt −Ns − λ(t− s)

]
+Ns − λs

= Ns − λs.

Hence, Xt := Nt − λt is a martingale. Similarly as above,

E
[
(Nt − λt)2 − λt

∣∣Fs]
= E

[
(Xt −Xs)

2
∣∣Fs]+ 2E

[
Xs(Xt −Xs)

∣∣Fs]+ E
[
X2
s − λt

∣∣Fs]
= E

[
(Xt −Xs)

2
]

+ 2XsE
[
Xt −Xs

∣∣Fs]+X2
s − λt

= E
[
(Xt −Xs)

2
]︸ ︷︷ ︸

=Var(Nt−Ns)

+X2
s − λt

= λ(t− s) +X2
s − λt = X2

s − λs,

where we used the martingale property of X in the third step. �

Our next goal is to derive Doob’s maximal inequality, the martingale convergence
theorem and Doob’s stopping theorem for martingales in continuous time. For that
purpose we write, for n ≥ 0,

Dn = {k2−n : k ∈ Z+}.

Define, for a cadlag stochastic process X,

X∗ = sup
t≥0
|Xt|, X(n)∗ = sup

t∈Dn
|Xt|.

The cadlag property implies that

X(n)∗ ↑ X∗ as n→∞
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while, if (Xt)t≥0 is a cadlag martingale, then (Xt)t∈Dn is a discrete-time martingale,
for the filtration (Ft)t∈Dn , and similarly for supermartingales and submartingales.
Thus, on applying Doob’s inequalities to (Xt)t∈Dn and passing to the limit, which is
justified by the monotone convergence theorem, we obtain the following results.

Theorem 7.7 (Doob’s maximal and Lp inequalities). Let X be a cadlag martingale
or non-negative submartingale. Then, for all λ ≥ 0,

λP(X∗ ≥ λ) ≤ sup
t≥0

E[|Xt|],

and for all p > 1,
E
[
(X∗)p

]
≤
( p

p− 1

)p
sup
t≥0

E
[
|Xt|p

]
.

Similarly, the cadlag property implies that every upcrossing of a non-trivial in-
terval by (Xt)t≥0 corresponds, eventually as n → ∞, to an upcrossing by (Xt)t∈Dn .
This leads to the following estimate.

Theorem 7.8 (Doob’s upcrossing inequality). LetX be a cadlag supermartingale and
let a, b ∈ R with a < b. Then

(b− a)E[U∞(X, [a, b])] ≤ sup
t≥0

E
[
(Xt − a)−

]
where U∞(X, [a, b]) is the total number of disjoint upcrossings of [a, b] by X.

Then, arguing as in the discrete-time case, we obtain continuous-time versions
of each martingale convergence theorem. We say that (Xt)t≥0 is L1-bounded if
supt≥0 E[|Xt|] <∞.

Theorem 7.9 (Almost sure martingale convergence theorem). Let X be an L1-
bounded cadlag supermartingale. Then there exists an integrable random variable
X∞ such that Xt → X∞ almost surely as t→∞.

We say that a random variable

τ : Ω→ [0,∞]

is a stopping time if {τ ≤ t} ∈ Ft for all t ≥ 0. Given a cadlag stochastic process X,
we define Xτ and the stopped process Xτ by

Xτ (ω) = Xτ(ω)(ω), Xτ
t (ω) = Xτ(ω)∧t(ω)

where we leaveXτ (ω) undefined if τ(ω) =∞ andXt(ω) fails to converge as t→∞.

Theorem 7.10 (Optional stopping theorem). Let X be a cadlag martingale.

(i) For all bounded stopping times σ and τ with σ ≤ τ , Xσ and Xτ are integrable
and E[Xτ ] = E[Xσ].

(ii) For all stopping times τ , the stopped process Xτ is a martingale.
(iii) For all stopping times τ such that Xτ is bounded and P[τ <∞] = 1, we have

E[Xτ ] = E[X0].
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Sketch of proof. The idea is to apply the corresponding results in discrete time on the
martingale (Xt)t∈Dn and the stopping times σn := 2−nd2nσe and τn := 2−nd2nτe
(here dxe denotes the smallest integer larger or equal to x ∈ R). Then, σn, τn ∈ Dn
and σn ↓ σ and τn ↓ τ as n→∞. Since X is cadlag and therefore right-continuous,
we have Xτn → Xτ and Xσn → Xσ, and statements (i)-(iii) follow from their
analogues in discrete time by the dominated convergence theorem, the application
of which needs to be justified. This can be done by showing that (Xτn)n and (Xσn)n
are uniformly integrable, which we omit here. See, for instance, [8, Theorem 4.3.8]
for details. �

As for the discrete-time version, it suffices that Xτ is bounded by some inter-
grable random variable for Theorem 7.10-(iii) to hold (cf. Remark 3.20-(iii) above).
Similar versions of Theorem 7.10 holds if X is a submartingale or supermartingale,
respectively. A typical application of the optional stopping theorem is the following
statement on the hitting times of Brownian motion.

Corollary 7.11. Let (Bt)t≥0 be a Brownian motion. For a, b > 0 and x ∈ R we define

τx := inf{t ≥ 0 : Bt = x}, τa,b := min
(
τ−a, τb

)
.

Then τx and τa,b are stopping times with P[τx < ∞] = 1, P[τb < τ−a] = a
b+a and

E[τa,b] = ab.

Proof. Exercise. �

8. CONTINUOUS SEMIMARTINGALES AND QUADRATIC VARIATION

In this section we introduce semimartingales and quadratic variation processes
which play a central role in stochastic calculus.

8.1. Local martingales.

Definition 8.1. A cadlag adapted process X is a local martingale if there exists
a sequence of stopping times (τn)n such that τn ↑ ∞ as n → ∞ and Xτn is a
martingale for every n. The sequence (τn)n is called a localising sequence.

Remark 8.2. Every martingale is a local martingale (take simply τn = n and use
that stopped martingales are martingales). On the other hand, there exists local
martingales which are not martingales (see [7, Exercise 3.36 in Chapter 3] for an
example).

We writeM for the set of all continuous martingales andMloc for the set of all
continuous local martingales.

Lemma 8.3. Let X ∈Mloc.

(i) If X is non-negative, then X is a supermartingale.
(ii) If X is bounded, then X ∈M.
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Proof. (i) Clearly, X is an adapted process. For every t ≥ 0 we have by Fatou’s
lemma,

E[Xt] = E
[

lim
n→∞

Xt∧τn
]
≤ lim inf

n→∞
E[Xt∧τn ] = E[X0] <∞,

and for 0 ≤ s < t,

E
[
Xt | Fs

]
= E

[
lim
n→∞

Xt∧τn | Fs
]
≤ lim inf

n→∞
E
[
Xt∧τn | Fs

]
= lim inf

n→∞
Xs∧τn = Xs,

where we used that Xτn is a martingale in the third step.
(ii) Let C ∈ (0,∞) be such that |X| ≤ C. Then C − X ≥ 0 and C + X ≥ 0,

and statement (i) implies that C − X and C + X are both supermartingales. In
particular, ±X are both supermartingales, so X is a martingale. �

Recall the definition of the 1-variation in Definition 6.6.

Definition 8.4. We say that a continuous stochastic process X is of bounded varia-
tion if V 1

t (X(ω)) < ∞ for P-a.e. ω ∈ Ω and all t > 0. We write A for the set of all
continuous adapted stochastic processes X of bounded variation.

Definition 8.5. A process X is called a continuous semimartingale if there exist
M ∈Mloc and A ∈ A such that

X = M +A. (8.1)

The decomposition in (8.1) is almost surely unique (up to the starting points of
M and A) as the following result shows.

Theorem 8.6. Let X ∈Mloc be of bounded variation. Then X is P-a.s. constant.

Proof. Without loss of generality let X0 = 0. Further, let Vt := V 1
t (X) be the 1-

variation of X on [0, t] for any t > 0, i.e.

Vt = sup
n

∑
ti∈Πn

∣∣Xti −Xti−1

∣∣,
for any increasing sequence (Πn)n of partitions of [0, t] with |Πn| → 0 as n → ∞.
Fix K > 0 and define the stopping time

σ := inf{s : Vs ≥ K}.

Since |Xt| ≤ Vt for all t ≥ 0, we have that |Xt| ≤ K for all t ≤ σ. In particular,
Mt := Xt∧σ defines a bounded martingale. Note that for any 0 ≤ s < t,

E
[(
Mt −Ms

)2 | Fs] = E
[
M2
t | Fs

]
− 2Ms E

[
Mt | Fs

]
+M2

s = E
[
M2
t −M2

s | Fs
]
.
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Let Πn = {0 = t0 < t1 < · · · < tn = t} be a partition of [0, t] with |Πn| → 0. Then,

E
[
M2
t

]
= E

[ n∑
k=1

M2
tk
−M2

tk−1

]
= E

[ n∑
k=1

(
Mtk −Mtk−1

)2]

≤ E
[(

max
1≤k≤n

∣∣Mtk −Mtk−1

∣∣) n∑
k=1

∣∣Mtk −Mtk−1

∣∣]
≤ E

[(
max

1≤k≤n

∣∣Mtk −Mtk−1

∣∣)Vt∧σ] ≤ K E
[

max
1≤k≤n

∣∣Mtk −Mtk−1

∣∣]. (8.2)

Recall that X has continuous paths. In particular, s 7→ Ms is uniformly continuous
on [0, t]. Hence, P-a.s.,

max
1≤k≤n

∣∣Mtk −Mtk−1

∣∣→ 0 as |Πn| → 0.

On the other hand,

max
1≤k≤n

∣∣Mtk −Mtk−1

∣∣ = max
1≤k≤n

∣∣Xtk∧σ −Xtk−1∧σ
∣∣ ≤ 2K,

so by the dominated convergence theorem we also have that

E
[

max
1≤k≤n

∣∣Mtk −Mtk−1

∣∣]→ 0 as |Πn| → 0.

Thus, it follows from (8.2) that E[M2
t ] = 0 and therefore Mt = 0, P-a.s., which in

turn implies that P[Mt = 0 for all t ∈ Q+] = 1. Since M has continuous paths, we
get that P[Mt = 0 for all t ≥ 0] = 1. In other words, P[Xt = 0 for all t ∈ [0, σ]] = 1.
Since σ ↑ ∞ as K ↑ ∞, this gives P[Xt = 0 for all t ≥ 0] = 1. �

8.2. Quadratic variation and covariation. We start with the continuous-time ver-
sion of the Doob decomposition in Theorem 3.24, which holds under some addi-
tional technical assumptions on the underlying filtration, the so-called ‘usual condi-
tion’, which we do not discuss here.

Theorem 8.7 (Doob-Meyer decomposition). Let X be a non-negative continuous
submartingale. Then, there exist M ∈ M and an increasing process A ∈ A with
M0 = A0 = 0 such that

Xt = X0 +Mt +At, t ≥ 0.

This decomposition is unique in the sense that for any other M ′ ∈ M and A′ ∈ A
increasing with M ′0 = A′0 = 0 we have P[Mt = M ′t , ∀t ≥ 0] = P[At = A′t, ∀t ≥ 0] = 1.

Proof. In order to show uniqueness, assume that Xt = X0+Mt+At = X0+M ′t+A
′
t.

Then, Mt−M ′t = A′t−At is a martingale of bounded variation starting at zero, and
uniqueness follows from Theorem 8.6.

The proof of existence is much more difficult, see for instance [7, Theorem 4.10
in Chapter 1]. �
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Remark 8.8. The assumption that X is non-negative can be replaced by a certain in-
tegrability condition (‘uniform integrability’). In particular, continuous submartin-
gales and supermartingales, which are non-negative or satisfy those integrability
conditions, are continuous semimartingales. This follows immediately from Theo-
rem 8.7.

Now we introduce the class M2 of continuous, square-integrable martingales
starting at zero,

M2 :=
{
M ∈M : E

[
M2
t

]
<∞ for every t ≥ 0 and M0 = 0

}
.

Theorem 8.9. Let M,N ∈M2.

(i) There exists a unique increasing process 〈M〉 = (〈M〉t)t≥0 ∈ A with 〈M〉0 = 0

such that

M2 − 〈M〉 ∈ M.

(ii) There exists a unique process 〈M,N〉 = (〈M,N〉t)t≥0 ∈ A with 〈M,N〉0 = 0

such that

M ·N − 〈M,N〉 ∈ M.

Proof. (i) Let M ∈ M2. Then M2 is a non-negative submartingale. By the Doob-
Meyer decomposition, there exists an increasing process A ∈ A with A0 = 0 such
that M2 = M ′ + A for some M ′ ∈ M. We now define 〈M〉 := A to obtain that
M2 − 〈M〉 = M ′ ∈M.

(ii) This follows from the polarisation identity

M ·N =
1

4

((
M +N

)2 − (M −N)2). (8.3)

and by applying statement (i) on the martingales M +N and M −N . �

Definition 8.10. Let M,N ∈M2.

(i) The process 〈M〉 is called the quadratic variation of M .
(ii) The process 〈M,N〉 is called the covariation of M and N .

Note that from the polarisation identity (8.3) it follows that

〈M,N〉 =
1

4

(
〈M +N〉 − 〈M −N〉

)
. (8.4)

This definition of the quadratic variation is compatible with the one below Defini-
tion 6.6 as the following result shows.

Theorem 8.11. LetM,N ∈M2 and for any t > 0 let (Πn)n be an increasing sequence
of partitions of [0, t] with |Πn| → 0 as n→∞. Then,

lim
n→∞

∑
ti∈Πn

(
Mti −Mti−1

)2
= 〈M〉t in probability,



MARTINGALE THEORY FOR FINANCE 57

i.e., for all ε > 0,

lim
n→∞

P
[∣∣∣ ∑

ti∈Πn

(
Mti −Mti−1

)2 − 〈M〉t∣∣∣ > ε

]
→ 0.

Moreover,

lim
n→∞

∑
ti∈Πn

(Mti −Mti−1)(Nti −Nti−1) = 〈M,N〉t in probability.

Proof. See [7, Theorem 5.8 in Chapter 1]. �

Example 8.12. Let (Bt)t≥0 be a Brownian motion. We have seen in Example 7.3
that B2

t − t is a martingale. Hence, 〈B〉t = t for all t ≥ 0. This is also confirmed by
Proposition 6.9.

We now record some properties of the quadratic variation.

Lemma 8.13. Let M,N ∈M2 and τ be a stopping time.

(i) 〈·, ·〉 is symmetric, bilinear and positive definite.
(ii) 〈M,N〉τ = 〈M τ , N τ 〉.

(iii) 〈M〉 = 0⇔M = 0.
(iv) 〈M,N〉 ≤ 〈M〉1/2〈N〉1/2.
(v) Let A be a continuous process with 〈A〉 = 0. Then 〈M +A〉 = 〈M〉.

Proof. (i) is an easy exercise.
(ii) By (8.4) it suffices to show 〈M〉τ = 〈M τ 〉. But since M2 − 〈M〉 ∈ M, this

follows from the fact that

(M τ )2 − 〈M〉τ =
(
M2 − 〈M〉

)τ ∈M
and the uniqueness of the quadratic variation.

(iii) Suppose that 〈M〉 = 0. Then M2 is a martingale, in particular for any t ≥ 0,

E[M2
t ] = E[M2

0 ] = 0,

since M0 = 0. By Doob’s L2-maximal inequality

E
[

sup
t≥0

M2
t

]
≤ 4 sup

t≥0
E[M2

t ] = 0.

Hence, P[supt≥0M
2
t = 0] = 1. This shows that if 〈M〉 = 0 then M = 0. The reverse

implication is trivial.
(iv) We use Theorem 8.11. For any increasing sequence (Πn)n of partitions of

[0, t] with |Πn| → 0 as n→∞, we have by the Cauchy Schwarz inequality,

〈M,N〉 = lim
n→∞

∑
ti∈Πn

(Mti −Mti−1)(Nti −Nti−1)

≤ lim
n→∞

( ∑
ti∈Πn

(
Mti −Mti−1

)2) 1
2
( ∑
ti∈Πn

(
Nti −Nti−1

)2) 1
2

=
〈
M
〉 1

2
〈
N
〉 1

2 .
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(v) Note that

〈M +A〉 = 〈M〉+ 2〈M,A〉+ 〈A〉 = 〈M〉+ 2〈M,A〉,

and from (iv) we get |〈M,A〉| ≤ 〈M〉1/2〈A〉1/2 = 0. �

Example 8.14. Let X be a continuous, adapted process such that X0 = 0 and
E[X2

t ] < ∞ for all t ≥ 0. Suppose that X has independent increments with mean
zero. Then,

(i) X ∈M2.
(ii) 〈X〉t = var(Xt) = E[X2

t ] for all t ≥ 0.

Proof. Exercise. �

9. THE CAMERON-MARTIN THEOREM

In this section we will investigate how Brownian motion is transformed under
a change of measure. Such results will turn out to be fundamental for pricing in
continuous time models for which, as in the discrete time case, equivalent mar-
tingale measure will play a crucial role. It will be convenient to specify the un-
derlying probability space, similarly as we did in Section 5. Let Ω = C([0, T ]) the
path space of continuous function on [0, T ] and denote by B the coordinate process,
that is Bt(ω) = ωt for t ∈ [0, T ] and ω ∈ Ω. We endow Ω with the σ-algebra
F = σ(Bt, 0 ≤ t ≤ T ), which can be shown to coincide with the Borel σ-algebra
on C([0, T ]) (with respect to the topology induced by the uniform convergence on
[0, T ]). Finally, let P be the probability measure on (Ω,F) under which the coordi-
nate processB is a Brownian motion. This measure is known as Wiener measure and
its existence follows along with the existence of Brownian motion from Donsker’s
invariance principle, for instance (cf. the discussion below Theorem 6.5).

Consider now a Brownian motion with drift at speed c, that is

Bt + c t, 0 ≤ t ≤ T,

for any c ∈ R. Recall that the transition density of the Brownian motion B is given
by

pt(x, y) := pt(x− y) :=
1√
2πt

exp

(
− (y − x)2

2t

)
, t > 0, x, y ∈ R.

We now compute the finite dimensional distributions of the process (Bt + ct)t∈[0,T ].
For any 0 = t0 < t1 < · · · < tn = T and any A1, . . . , An ∈ B(R) we have

P
[
Bt1 + ct1 ∈ A1, . . . , Btn + ctn ∈ An

]
=

∫
A1−ct1

· · ·
∫
An−ctn

pt1(x1) pt2−t1(x2 − x1) · · · ptn−tn−1(xn − xn−1) dxn · · · dx1

=

∫
A1

· · ·
∫
An

pt1(y1 − ct1) pt2−t1(y2 − y1 − c(t2 − t1)) · · ·

× ptn−tn−1(yn − yn−1 − c(tn − tn−1)) dyn · · · dy1,
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where we used the substitution yi = xi + cti. Since

pti−ti−1

(
yi − yi−1 − c(ti − ti−1)

)
= pti−ti−1(yi − yi−1) exp

(
c (yi − yi−1)− c2

2 (ti − ti−1)
)

and
∑n

i=1 ti − ti−1 = tn = T and
∑n

i=1 yi − yi−1 = yn with y0 := 0, this becomes

P
[
Bt1 + ct1 ∈ A1, . . . , Btn + ctn ∈ An

]
=

∫
A1

· · ·
∫
An

pt1(y1) pt2−t1(y2 − y1) · · ·

× ptn−tn−1(yn − yn−1) exp
(
cyn − c2

2 tn
)

dyn · · · dy1

= E
[
1l{Bt1∈A1,...,Btn∈An} exp

(
cBtn − c2

2 tn
)]

with tn = T . We have just shown that any cylindrical functional F , that is a func-
tional F : C([0, T ])→ R of the form

F (ω) =

{
1 if ωt1 ∈ A1, . . . , ωtn ∈ An,

0 else,

satisfies

E
[
F
(
Bt + ct : 0 ≤ t ≤ T

)]
= E

[
F
(
Bt : 0 ≤ t ≤ T

)
exp

(
cBT − c2

2 T
)]
.

By linearity and approximation arguments this can be extended to all bounded and
measurable F : C([0, T ])→ R. Choosing F = 1lA for any A ∈ F we get

P(c)[A] := P
[(
Bt + ct : 0 ≤ t ≤ T

)
∈ A

]
=

∫
A

exp
(
cBT − c2

2 T
)

dP .

Thus, the measures P(c) and P are equivalent with Radon-Nikodym density given by

dP(c)

dP
= exp

(
cBT − c2

2 T
)
.

To summarize, under the Wiener measure P the paths in C(0, T ]) have the distribu-
tion of a Brownian motion while under the measure P(c) the paths in C(0, T ]) have
the distribution of a Brownian motion with drift c. We have arrived at

Theorem 9.1 (Cameron-Martin theorem). For any c ∈ R, T > 0 and any bounded
and measurable F : C([0, T ])→ R,

E
[
F
(
Bt + ct : 0 ≤ t ≤ T

)]
= E

[
F
(
Bt : 0 ≤ t ≤ T

)
exp

(
cBT − c2

2 T
)]

= EP(c)

[
F
(
Bt : 0 ≤ t ≤ T

)]
.

The Cameron-Martin theorem is a special case of the more general Girsanov the-
orem, which is classical material in lectures on stochastic calculus. It describes
the effect on continuous local martingales of an absolutely continuous change of
the probability measure. In Theorem 9.1 we are restricted to the case where the
continuous local martingale is just Brownian motion.
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10. THE BLACK-SCHOLES MODEL

In 1965 Paul Samuelson proposed the following market model in continuous
time. There is a riskless bond

S0
t = ert, 0 ≤ t ≤ T,

with interest rate r ≥ 0 and one risky asset with price process given

St = S0 exp(σBt + µt), 0 ≤ t ≤ T,

where B denotes a Brownian motion on (Ω,F ,P), µ ∈ R a drift, σ > 0 a volatility
parameter and S0 > 0 the initial price of the asset.

Fisher Black and Myron Scholes (1973) and Robert Merton (1973) added the
crucial replication argument which leads to a complete pricing and hedging theory.
Merton and Scholes received the 1997 Nobel Memorial Prize in Economic Sciences
for their work (sadly, Black was ineligible for the prize because of his death in
1995).

10.1. Black-Scholes via change of measure. Our goal is to determine the price
πC at time t = 0 of a contingent claim C dependent on the entire path (St)t∈[0,T ]

with maturity at time t = T . In analogy to the general results obtained in Section 4
for the discrete time-setting, we suppose that

πC = EQ

[ C
erT

]
,

where Q is an equivalent martingale measure, that is Q ≈ P and the discounted
price process

Xt = e−rtSt = S0 exp
(
σBt + (µ− r)t

)
, 0 ≤ t ≤ T,

is a Q-martingale with respect to the natural filtration (Ft)t≥0 generated by (St)t≥0 .
How can we find such a measure Q? First, recall that for a Brownian motion W the
process exp(λWt − λ2

2 t) is a martingale for every λ ∈ R (see exercises). We define
the measure Q by dQ := exp(cBT − c2

2 T ) dP, which is short for

Q[A] :=

∫
A

exp
(
cBT − c2

2 T
)

dP = E
[

exp
(
cBT − c2

2 T
)
1lA

]
,

for some c ∈ R to be chosen later. In particular, Q is equivalent to P since the
density dQ

dP = exp(cBT − c2

2 T ) > 0 P-a.s. (see Theorem 1.23 (ii)).
By the Cameron-Martin theorem we have for any bounded and measurable func-

tional F : C([0, T ])→ R,

E
[
F
(
Bt : 0 ≤ t ≤ T

)]
= E

[
F
(
Wt : 0 ≤ t ≤ T

)
exp

(
cBT − c2

2 T
)]

= EQ
[
F
(
Wt : 0 ≤ t ≤ T

)]
,

with Wt := Bt − ct, t ∈ [0, T ]. (We apply here Theorem 9.1 on the functional
F̃ (ω) = F ((ωt − ct)t≤T .) In particular, W is a Brownian motion under the measure
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Q. Now we choose c such that

σc+ µ− r = −σ
2

2
⇐⇒ c =

r − σ2

2 − µ
σ

.

Hence,

Xt = e−rtSt = S0 exp
(
σBt + (µ− r)t

)
= S0 exp

(
σWt + (σc+ µ− r)t

)
= S0 exp

(
σWt − σ2

2 t
)
,

which is a Q-martingale. Thus, Q is an equivalent martingale measure, which can
also be shown to be unique.

To summarize, under Q the price process (St)t∈[0,T ] is of the form

St = S0 exp
(
σWt +

(
r − 1

2σ
2
)
t
)
,

where W is a Q-Brownian motion. Note that for pricing of a contingent claim
only the behaviour of the price process under the equivalent martingale measure is
relevant.

Consider now, as an example, a European option of the form C = f(ST ) with
expiry T > 0 for any bounded, continuous function f : [0,∞) → [0,∞). Then the
Black-Scholes price πC = e−rT EQ

[
f(ST )

]
of C is given by

πC = e−rT EQ

[
f
(
S0 exp

(
σWT +

(
r − 1

2σ
2
)
T
))]

. (10.1)

Since WT ∼ N (0, T ), so WT =
√
TY with Y ∼ N (0, 1), it follows that πC =

v(T, S0), where

v(t, x) := e−rt
∫ ∞
−∞

f
(
x exp

(
σ
√
ty + (r − 1

2σ
2)t
)) 1√

2π
e−y

2/2 dy (10.2)

for t ∈ [0, T ], x ∈ R. Of course, for this argument to work, the payoff function f

does not have to be continuous or bounded. It suffices that EQ
[
f(ST )

]
<∞, which

is already guaranteed if f has polynomial volume growth, that is there exist c > 0

and p ≥ 0 such that f(x) ≤ c
(
1+x

)p for all x ≥ 0. In particular, we can use formula
(10.1) to compute the price of a call option with f(x) =

(
x−K

)+.

10.2. The Black-Scholes Model as limit of the Binomial Model. Black-Scholes
models also arise as a natural limit of certain binomial models after a suitable scal-
ing, meaning that the number of intermediate trading periods becomes large and
their durations becomes small. This should not come as big surprise. In the CRR
model the price process is a random walk and in the Black-Scholes model it is gov-
erned by a Brownian motion, which can obtained as scaling limit of random walks.

Throughout this section, T will not denote the number of trading periods in a
fixed discrete-time market model but rather a physical date. We divide the interval
[0, T ] into N · T equidistant time steps 1

N ,
2
N , . . . ,

NT
N . Then the i-th trading period
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corresponds to the ’real time interval’
(
i−1
N , iN

)
. Now consider a family of multi-

period CRR-models, indexed by N ∈ N, with parameters

rN :=
r

N
, aN := − σ√

N
, bN :=

σ√
N
, pN :=

1

2
+

1

2

µ

σ
√
N
,

where r ≥ 0 is the instantaneous interest rate, µ ∈ R a drift and σ > 0 a volatility
parameter. We denote by (S0

i,N )i=0,...,NT the riskless bond and by (S1
i,N )i=0,...,NT the

risky asset. The initial prices are assumed not to depend on N , i.e. S1
0,N = S1

0 for
some constant S1

0 > 0.
The question is whether the prices of contingent claims in the approximating

market models converge asN tends to infinity. It will turn out that they do converge
towards the Black-Scholes prices derived in the last section.

Theorem 10.1. Let f be a continuous function on [0,∞) such that |f(x)| ≤ c(1 + x)q

c > 0 and q ∈ [0, 2). Then the limit of the arbitrage-free prices of C(N) = f(S1
NT,N )

for N →∞ is given by the Black-Scholes price v(T, S1
0), where as before

v(T, x) := e−rT
∫ ∞
−∞

f
(
x exp

(
σ
√
Ty + (r − 1

2σ
2)T
)) 1√

2π
e−y

2/2 dy, x ∈ R.

In other words,

lim
N→∞

EQN

[
C(N)

(1 + rN )NT

]
= E

[
e−rT f

(
S1

0 exp
(
σ
√
TW + (r − 1

2σ
2)T
))]

,

where W is a N (0, 1)-distributed random variable.

Proof. See [6, Section 5.6] or [1, Section 7.2]. �

Hedging in the Black-Scholes model. In the Black-Scholes model consider an attain-
able contingent claim of the form C = f(ST ) with replicating strategy (or hedg-
ing strategy) θ̄ = (θ0, θ). Then the (discounted) value process of θ̄ is given by
Vt = v(T − t, St) with v defined in (10.2). Since the Black-Scholes model may be
regarded as a limit of binomial models in the sense of Theorem 10.1, in view of the
hedging strategy for the CRR model derived in Proposition 5.5, one can argue that
the hedging strategy is given by

θt(ω) = ∆
(
T − t, St(ω)

)
, θ0

t (ω) = v(T − t, St(ω))− θt(ω)e−rtSt,

where

∆(t, x) :=
∂

∂x
v(t, x), t ∈ [0, T ], x ∈ R.

In the financial language this is called ’Delta hedging’.
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10.3. Black-Scholes pricing formula for European Calls and Puts. We now de-
rive an explicit formula for the Black-Scholes price of the European call option
Ccall =

(
ST −K

)+. For that purpose we simply choose f(x) = (x−K)+ in (10.1)
and (10.2), so

v(T, x) = e−rT EQ

[(
x exp

(
σ
√
TW +

(
r − 1

2σ
2
)
T
)
−K

)+
]
,

where W is N (0, 1)-distributed under Q. Substituting K̃ = e−rTK/x and σ̃ = σ
√
T

we get

v(T, x) =
x√
2π

∫ ∞
−∞

(
eσ̃y−

1
2
σ̃2 − K̃

)+
e−y

2/2 dy

=
x√
2π

∫ ∞
log K̃+1

2 σ̃
2

σ̃

(
eσ̃y−

1
2
σ̃2 − K̃

)
e−y

2/2 dy

=
x√
2π

∫ ∞
−d−

e−
(y−σ̃)2

2 dy − xK̃
(
1− Φ(−d−)

)
= xΦ(d+)−Ke−rTΦ(d−),

where Φ denotes the distribution function of the standard normal distribution,

d− = d−(T, x) :=
log( xK ) + (r − 1

2σ
2)T

σ
√
T

= −
log K̃ + 1

2 σ̃
2

σ̃

and

d+ = d+(T, x) := d−(T, x) + σ
√
T =

log( xK ) + (r + 1
2σ

2)T

σ
√
T

.

To summarize, the Black-Scholes price for a European call option with strike price
K is given by v(T, S0) where

v(T, x) = xΦ(d+)−Ke−rTΦ(d−) (10.3)

with

d± = d±(T, x) :=
log( xK ) + (r ± 1

2σ
2)T

σ
√
T

,

and for any t ∈ [0, T ] the value of the option at time t is given by v(T − t, St).
Now we turn to pricing European put options Cput =

(
K − ST

)+. Since we
have computed already the price of the corresponding call option we can use the
so-called put-call parity, which refers to the fact that

Ccall − Cput =
(
ST −K

)+ − (K − ST )+ = ST −K,

and the right-hand side equals the pay-off of a forward contract (cf. Section 0) with
price S0− e−rTK (note that the contingent claim C = ST can be trivially replicated
just by holding one unit of the risky asset which requires an initial investment S0).



64 MARTINGALE THEORY FOR FINANCE

Hence, the price π(Cput) for Cput can be obtained from the price π(Ccall) for the
call Ccall, namely

π(Cput) = π(Ccall)−
(
S0 − e−rTK

)
= S0 Φ(d+)−Ke−rTΦ(d−)− S0 + e−rTK

= e−rTKΦ(−d−)− S0Φ(−d+).

We can also determine a hedging strategy θ̄ for the call option if we use the ’Delta
hedging’ discussed at the end of Section 10.2, which gives θt = ∆(T − t, St). The
Delta of the call option Ccall =

(
ST −K

)+ can be computed by differentiating the
value function in (10.3) with respect to x,

∆(t, x) :=
∂

∂x
v(t, x) = Φ

(
d+(t, x)

)
.

In particular, note that θt ∈ (0, 1) a.s. (’long in stock’).
The Gamma of the call option is given by

Γ(t, x) :=
∂

∂x
∆(t, x) =

∂2

∂x2
v(t, x) = ϕ

(
d+(t, x)

) 1

xσ
√
t
,

where ϕ = Φ′ denotes the density of the standard normal distribution. Large
Gamma values occur in regions where the Delta changes rapidly, corresponding
to the need for frequent readjustments of the Delta hedging portfolio. It follows
that x 7→ v(t, x) is strictly convex.

Another important parameter is the Theta

Θ(t, x) :=
∂

∂t
v(t, x) =

xσ

2
√
t
ϕ(d+(t, x)) +Kre−rtΦ

(
d−(t, x)

)
.

The fact that Θ > 0 corresponds to the observation that arbitrage-free prices of
European call options are typically increasing functions of the maturity. Note that
the parameters ∆,Γ and Θ are related by the equation

r v(t, x) = rx∆(t, x) +
1

2
σ2x2 Γ(t, x)−Θ(t, x).

Thus, the function v solves the following partial differential equation, often called
the Black-Scholes equation

rv = rx
∂v

∂x
+

1

2
σ2x2 ∂

2v

∂x2
− ∂v

∂t
.

Recall that the Black-Scholes price v(T, S0) was obtained as the expectation of
the discounted payoff e−rT (ST −K)+ under the equivalent martingale measure Q.
Thus, at first glance it may come as surprise that the Rho of the option

%(t, x) :=
∂

∂r
v(t, x) = Kte−rtΦ

(
d−(t, x)

)
is strictly positive, i.e. the price is increasing in r. Note, however, that the martingale
measure Q depends itself on the interest rate r.
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The parameter σ is called the volatility of the model and may be regarded as a
measure of the fluctuations in the stock price process. The price of a European call
option is an increasing function of the volatility as the Vega of the option

V(t, x) :=
∂

∂σ
v(t, x) = x

√
t ϕ
(
d+(x, t)

)
is strictly positive. The functions ∆,Γ,Θ, % and V are usually called the Greeks
(although ’vega’ is not a letter in the Greek alphabet). We refer to [6, Section 5.6]
for more details and some nice plots of the Greeks.

Remark 10.2 (Implied volatility). In practice, the prices for European call and put
options are known as they can be directly observed in the market, but the volatility
parameter σ is unknown. Since the Vega is strictly positive the function σ 7→ v(t, x)

is injective, and by inverting this function one can deduce a value for σ from the
observed market prices, the so-called implied volatility.
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