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Introductory remarks

These are the lecture notes for the lecture “Inverse Problems” I

held in the summer term 2023 at TU Braunschweig. The lecture is

aimed at students from mathematics, financial mathematics, com-

putational science and engineering as well as data science. Solid

knowledge in analysis and linear algebra is needed. Helpful would

be a background in functional analysis, especially the notions of

Hilbert space and linear operators, but we will also provide a little

background on these topics in the course.

Inverse problems are problems where one want to find some

cause which can only measured indirectly, i.e. one can only observe

the effects, but not the cause itself. Hence, it is quite applied as

a math topic, but still one can do serious mathematics and the

charm of the field lies in the tight connection of theoretical results

and real world applications.

The books on inverse problems one can find also vary from

quite theoretical to very applied. Here is a short commented list

of books:

1. The books Engl u. a. [1996]; Rieder [2013] are on the theo-

retical side of inverse problems. While they also present

applications, they focus on the underlying theory. The latter

one (Rieder [2013]) is in German and written in the style of a

textbook. The more recent lecture notes Clason [2020] are

also quite theoretical.

2. The older Groetsch [1993] is also written as a text book, fo-

cuses on theory, but targets readers with less background in

mathematics.

3. The book Moura Neto und da Silva Neto [2012] uses less

mathematics and also targets students with less background

in math. It also does not focus that much on theory.

Braunschweig, June 15, 2023 Dirk Lorenz

d.lorenz@tu-braunschweig.de

Inverse Problems | Version of June 15, 2023 | SoSe 2022 2



[Clason 2020] Clason, Christian: Regularization of inverse prob-
lems. arXiv preprint arXiv:2001.00617. 2020

[Engl u. a. 1996] Engl, Heinz W. ; Hanke, Martin ; Neubauer,

Andreas: Regularization of inverse problems. Bd. 375. Springer

Science & Business Media, 1996

[Groetsch 1993] Groetsch, Charles: Inverse problems in the
mathematical sciences. Bd. 52. Springer, 1993

[Moura Neto und da Silva Neto 2012] Moura Neto, Fran-

cisco D. ; Silva Neto, Antônio José da: An introduction to
inverse problems with applications. Springer Science & Business

Media, 2012

[Rieder 2013] Rieder, Andreas: Keine Probleme mit inversen Prob-
lemen: eine Einführung in ihre stabile Lösung. Springer-Verlag, 2013

Inverse Problems | Version of June 15, 2023 | SoSe 2022 3



13.04.2023, VL 1-1

1 Introduction and motivation

The central topic of this lecture are inverse and ill-posed problems.

Both the terms “inverse” and “ill-posed” are not clearly defined up

to now (and will be hard to pin down exactly). Instead of defining

them right away, we start with a motivating example.

Example 1.1 (Differentiation). The problem of finding the derivative

g′ of a given function g is quite straightforward as long as symbolic

computations are considered. However, finding the slope of a

function that is not given as analytic expression, but can only be

evaluated through a black box, is more involved. We will show, that

it is even inverse and ill-posed in some sense.

Mathematically, we would like to invert the operator A which

takes a function f (for simplicity defined on [0, 1]) to its integral,

i.e. A f = g with

A f (x) := g(x) :=
∫ x

0
f (t)dt.

Hence, the task is: Given some g, find f such that A f = g.

We would like to measure errors in the data g and also in

the reconstruction f and hence, we introduce norms for these

quantities. We use the following norms:

∥ f ∥C := ∥ f ∥∞ := max {| f (x)| | x ∈ I}
∥ f ∥C1 := ∥ f ∥∞ + ∥ f ′∥∞

∥ f ∥Ck :=
k

∑
l=0

∥ f (l)∥∞.

In fact, these norms turn the appropriate vector spaces into normed

spaces: For an interval I let

C(I) := { f : I → R | f continuous} ,

C1(I) := { f : I → R | f continuously differentiable} ,

Ck(I) := { f : I → R | f k-times continuously differentiable} .

We may omit the argument I and just
write C and Ck if I is clear from the con-
text or does not play a role. We also de-
note C0 = C which is consistent with
the notation for Ck. These norms in-
duce a notion of convergence: We say
that fn → f in Ck if ∥ fn − f ∥Ck → 0.
Convergence in C is exactly uniform
convergence and convergence in Ck

means that the functions as well as their
first k derivatives converge uniformly.

We can model the operator A as a map between various spaces,

e.g. we can write A : C([0, 1]) → C([0, 1]). Differentiation is a left

inverse of A: We have that DA f (x) = D(
∫ x

0 f (t)dt) = f (x). In It’s not a right inverse, since AD f (x) =∫ x
0 f ′(x)dx = f (x)− f (0).

this sense, the problem of calculating the derivative is the inverse

problem to calculating the integral.

Now let us argue that the inverse problem of differentiation is

ill-posed while the direct problem of integration is well posed: The

map A : C([0, 1]) → C([0, 1]) is linear and bounded. Linearity

follows from the known rules for integrals and boundedness is

Inverse Problems | Version of June 15, 2023 | SoSe 2022 4



13.04.2023, VL 1-2

seen as follows: For a function f ∈ C we have

∥A f ∥C = max
{
|
∫ x

0
f (t)dt| | 0 ≤ x ≤ 1

}
≤ max

{∫ x

0
| f (t)|dt | 0 ≤ x ≤ 1

}
≤ max| f (x)| = ∥ f ∥C.

This shows that A is bounded and even that the operator norm of

A fulfills ∥A∥ ≤ 1.

How about continuity of the inverse operation? Consider g
with g(0) = 0 and g′ = f (i.e, A f = g) and let us perturb g slightly

to

gδ(x) = g(x) + δ sin(nx)

for some δ > 0 and n ∈ N. Then we have

(gδ)′(x) = g′(x) + δn cos(nx) =: f δ(x).

Hence, we have A f = g and A f δ = gδ
. Moreover, we easily see

that

∥g − gδ∥C = δ

∥ f − f δ∥C = max {δn cos(nx) | 0 ≤ x ≤ 1} = nδ.

If we couple δ = 1/
√

n we get

∥g − gδ∥ = δ = 1√
n

n→∞−→ 0, but ∥ f − f δ∥C = nδ =
√

n n→∞−→ ∞.

This shows that small perturbations in g may lead to large pertur-

bations in the derivative f = g′, and hence, taking the derivative

is unstable, and thus ill-posed.

At first, this may seem like a hopeless situation when is comes

to numerical differentiation. We always have some round-off error,

so does that mean that numerical differentiation can not work?

Assume that g : [0, 1] → R is a differentiable function, but we

don’t have a formula for g but for every x we get the value g(x).
How can we find g′(x)? The simplest idea may be to use a central

difference quotient

g(x + h)− g(x − h)
2h

=: Dhg(x).

This operator Dh is again a linear operator, and, in some sense,

an approximation of the derivative D. Using Taylor expansion, we

get for g ∈ C2
that

g(x ± h) = g(x)± hg′(x) + g′′(ξ±)
2 h2

with some ξ± between x and x + h and x − h, respectively. This

gives us an estimate

∥g′ − Dhg∥∞ = max
{
|g′(x)−

(
g′(x) + h

2
g′′(ξ+)−g′′(ξi)

2

)
|
}
≤ h

2∥g′′∥∞
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This is an estimate for the error we make when we use an ap-

proximation of the derivative, and hence, we call this error the

approximation error.
Now we assume that we have an error in our available data, i.e.

we do not get the exact values g(x), but slightly perturbed data

gδ(x) = g(x) + w(x) with ∥w∥∞ ≤ δ.

We are interested in the total error, i.e. for f = g′ we would like to

compute or estimate

∥ f − Dhgδ∥∞,

which is the error between the unknown exact derivative f and the

quantity Dhgδ
we can actually compute. This error has a natural

decomposition as

∥ f − Dhgδ∥∞ ≤ ∥ f − Dhg∥∞ + ∥Dhg − Dhgδ∥∞

where we inserted the term ±Dhg and used the triangle inequality.

The first term on the right is the approximation error which we

just estimated already. The second term is called data error and is

also simple to estimate:

∥Dhg − Dhgδ∥∞ = ∥Dhw∥∞ = max
{
|w(x+h)−w(x−h)

2h |
}
≤ δ

h .

So we get for the total error

∥ f − Dhgδ∥∞ ≤ h ∥g′′∥∞
2 + δ

h .

Overall, we see a very typical behavior:

h

∥ f − Dhgδ∥

approximation error

data error

total error

For a fixed noise level δ, there is a tradeoff between large and small

parameters h: For small h the data error gets big, while for large h
the approximation error gets big. Somewhere in the middle there

is an optimum and a little calculus shows that the parameter h
which minimizes our upper bound for the total error is

h∗ =
√

2δ
∥g′′∥∞

.

With this value we get

∥ f − Dh∗gδ∥∞ ≤
√

2∥g′′∥∞δ.
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We see that even when the operation of differentiation is ill-posed,

we can still get a stable approximation of the derivative from noisy

data. However, the error is not as small as one could have hoped:

We obtain an error in the order of

√
δ for noise of size δ. △ It is quite instructive, to see that higher

smoothness can lead to a better total
error: Assume that g′′′ exists, derive a
better estimate for the approximation
error (by using more terms of the Taylor
expansion, calculate the optimal h and
deduce that the total error can be of
order δ2/3 in this case.

Here are a few important takeaways from the above example:

• The total error in the solution of an inverse problem decom-

poses into an approximation error and a data error: Good

approximation leads to a amplification of the error in the

data, and keeping the data error small needs a large approx-

imation error.

• For a fixed noise level δ there is a tradeoff between approxi-

mation error and data error.

• A helpful estimate of the approximation error needs a smooth-

ness assumption on the unknow data (in our case we needed

that g′′ = f ′ exists and is bounded).

• The total error is, even in the best case, not of the order of

the error in the data, but worse.

Remark 1.2. Our results is actually useful in practice: If you want

to evaluate derivatives of functions numerically by a finite differ-

ence approximation, one usually uses h =
√

eps where eps is the

machine precision. For double precision numbers eps ≈ 10−16
,

so h = 10−8
is recommended.

Here is an example (written in Python):

# import libraries
import numpy as np
import matplotlib.pyplot as plt

# define functions
def f(x):

return np.sin(np.log(x)**4)**3

def fprime(x):
return 3*np.sin(np.log(x)**4)**2*np.cos(np.log(x)**4)*4*np.log(x)**3/x

def Df(x,h):
return (f(x+h)-f(x-h))/2/h

# some x values
x = np.linspace(0.1,4,200,dtype=’float64’)
# plot function
plt.plot(x,f(x))
plt.show()
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# Choose some stepsize
h = 1e-5
# plot derivative and approximation by finite differences
fig, axs = plt.subplots(3)
axs[0].plot(x, fprime(x))
axs[0].set_title(’true derivative’)
axs[1].plot(x, Df(x,h))
axs[1].set_title(’derivative by finite differences’)
axs[2].plot(x, fprime(x)-Df(x,h))
axs[2].set_title(’difference of the two’)
plt.show()

# compare derivative and approximation for different values of h
h = np.logspace(-2,-16,15)
e = np.zeros(15)
for k in range(0,15):
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e[k] = np.max(np.abs(fprime(x)-Df(x,h[k])))

plt.loglog(h,e)
plt.show()

# square root of machine precision is close to optimal h:
print(’sqrt(eps) = ’, np.sqrt(np.finfo(x.dtype).eps))

sqrt(eps) = 1.4901161193847656e-08
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2 Examples and basic notions

The notion of “inverse problems” is vague and hard to pin down.

What is a “problem” anyway? Well, a problem always has “data”

and “solution”, i.e. something that is given, and something that

is wanted. Solving the problem means, taking the data, do some

computations and arrive at a solution. For every problem, there is

an “inverse problem”, namely: Having some solution, what is the

corresponding data that gave rise to this solution?

Data Solution

solving problem

inverse problem

In a more physical context one could frame inverse problems as

follows:

An inverse problems asks for some cause that is behind

a given observation.

Cause Observation

physical process

inverse problem

Example 2.1 (Parameter identification in PDEs). Assume that you

can observe the heat distribution u of some matter in a domain Ω
at a given time t = T > 0. What was the heat distribution at time

t = 0? This is an inverse problem. To formulate it mathematically,

we use the heat equation. The distribution of heat follows the

partial differential equation

ut(t, x) = ∆u(t, x) in [0, T]× Ω
u(0, x) = u0(x) in Ω

∂nu(t, x) = 0 in [0, T]× ∂Ω.

The forward problem would be: Given the initial data u0, calculate

u(T, x). The corresponding inverse problem is: Given a measure-

ment of u(T, x), find initial data u0 that explains the measurement.

In the context of partial differential equations one can formu-

late numerous inverse problems. Consider the following problem:

ut − Lu = f in [0, T]× Ω
u(0, x) = u0(x) in Ω

∂nu = g on [0, T]× ∂Ω

with some differential operator L, initial data u0, source term f ,

and boundary data g. The forward problem would be to compute
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u from knowledge of u0, f and g, but there are various inverse

problems and here are just two:

• Given u(T, ·), f and g, find u0.

• Given u, and u0, find f and g.

You can find more inverse problems easily. △

Example 2.2 (Computerized tomography). The basic concept of

CT is to measure the intensity of X-ray beams from a source with

known intensity after passing through the body at a fixed plane.

It is assumed that these beams travel on a straight line and their

intensity is attenuated proportially to some material constant

one is interested in reconstructing, which is usually the density.

Denoting this material constant by u and x = x(L, t) the point in

which the X-ray beam associated with the line L passes at time t,
this can be modeled by the ordinary differential equation

I′L(t) = −u(x(L, t))IL(t),

so if IL(T) is measured for some time T > 0 where the beam

passed the object of interest,

− log
( IL(T)

IL(0)

)
=
∫ T

0
u(x(L, t))dt.

The left-hand side is known while the right-hand side constitutes

the integral of u associated with the line L up to some factor. The

principle of computed tomography is obtain these integrals by

emitting and measuring X-ray beams along all possible lines. This

is typically done by placing an X-ray point source on one side of

the object, installing a detector array on the other and side rotating

source and detector simultaneously, giving the intensities for all

lines passing through a region of interest.

Mathematically, the reconstruction problem in CT is now to

compute u given all of its line integrals. Placing the origin in the

center of the object of interest of radius R > 0, a line L passing

through the domain can uniquely be associated an angle θ ∈
[−π/2, π/2[ and offset s ∈ R at which the line crosses the axis

spanned by x0(θ) = (cos(θ), sin(θ)).

s
x0

θ L(s, θ)
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We denote the corresponding line by L = L(s, θ). Given u0 :
]−R, R[× [−π/2, π/2[ → R, the CT reconstruction problem is

to find u† : R2 → R such that

(Ru)(s, θ) :=
∫

L(s,θ)
u†dx = u0(s, θ) for all (s, θ)

where the mapping R is called the Radon transform. The inverse

problem related to the Radon transform is the main problem in

tomographic reconstruction. △

Here is the classical definition of “ill posedness” which is due

to Hadamard and dates back to the 1920s.

Definition 2.3 (Well- and ill-posed problems). Let X and Y be

topological spaces and A : X → Y. We say that the problem “solve

Ax = y” is well posed if

(a) The equation Ax = y has a solution for every y ∈ Y, and

(b) this solution is unique, and

(c) the solution depends continuously on the data. In short: the problem is well posed if
the inverse A−1 : Y → X exists and is
continuous.If one of these conditions is not fulfilled, we call the problem

ill-posed.

In this lecture we will treat linear inverse problems. We will

always assume Hilbert spaces X and Y and a linear, bounded op-

erator A : X → Y.The space X is the solution space and Y is the We will denote the set of linear and
bounded operators from X to Y by
L(X, Y).data space. The forward problem is “given x, evaluate Ax”. Since

inverse problems always assume measurement data with error, the

inverse problem is:

Given measured data gδ ∈ Y which fulfills

∥A f † − gδ∥ ≤ δ

for some known noise level δ and an unknown true solu-
tion f †

, find a good approximation to f †
.

For linear operators one can characterize the ill-posedness of

the problem “Solve Ax = y” quite explicitly:

(a) Ax = y has a solution for every y exactly if A is surjective (also

called onto), i.e. if rg(A) = Y.

(b) Solutions of Ax = y are unique exactly if A is injective (also

called one-to-one), i.e. if ker(A) = {0}

(c) Solutions of Ax = y depend continuously on y exactly if A−1

is bounded.

A more quantitative way to describe ill-posedness of a problem

is the notion of condition or conditioning of a problem. We say

that a problem is
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well condtioned if small changes in the data lead to small changes

in the solution

ill conditioned (or badly conditioned) if small changes in the data

lead to large errors in the solution.

Example 2.4 (Function evaluation). Here the problem is simply

“given x evaluate y = f (x). We consider a perturbation x +∆x of x.

The solution changes to y + ∆y = f (x + ∆x) and by linearization

we get

|∆y| ≈ | f ′(x)||∆x|.

So we say that the problem is ill-conditioned (with respect to

absolute errors) if | f ′(x)| is large.

If we consider relative errors, we get

|∆y|
|y| ≈ | f ′(x)||∆x|

| f (x)| = | f ′(x)||x|
| f (x)|

|∆x|
|x|

so we say that the problem is ill-conditioned with respect to relative

error if | f ′(x)||x|/| f (x)| is large. △

Example 2.5 (Solving linear equations). Consider an invertible square

matrix A and the problem: given b, find the solution of Ax = b.

Changing the data to b + ∆b, the new solution fulfills

A(x + ∆x) = b + ∆b.

We see that the change in the solution is ∆x = A−1∆b. Using the

operator norm we get that ∥∆x∥ ≤ ∥A−1∥∥∆b∥ and we see that

the problem is ill-conditioned (with respect to absolute errors) if

∥A−1∥ is large. If we consider relative errors, we get (using ∥b∥ =
∥Ax∥ ≤ ∥A∥∥x∥

∥∆x∥
∥x∥ = ∥A−1∆b∥

∥x∥ ≤ ∥A−1∥∥∆b∥
∥x∥

∥b∥
∥b∥ ≤ ∥A−1∥∥A∥ ∥∆b∥

∥b∥ .

△

Definition 2.6. The condition number of a square matrix A is

cond(A) =

{
∥A∥∥A−1∥ : if A is invertible

∞ : else.

Strictly speaking, the problem “Solve Ax = b” is only ill-posed

if A is not invertible. Practically, a large condition number of A
will still lead to a large increase of the error, so we consider the

problem still ill conditioned or badly conditioned if the condition

number is large.

To understand all these things better, we introduce the notion

of Hilbert spaces, linear bounded operators between these spaces

and the singular value decomposition of these operators.
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3 Hilbert spaces

Now we introduce abstract notions of vector spaces that we will

use throughout the lecture. The main notions are Hilbert spaces. In

a nutshell, they are spaces which behave the sae as the euclidean

space Rn
when it comes to geometric and analytical structures

like length, and orthogonality.

First we define inner products:

Definition 3.1. A real inner product space X is a real vector space

that is equipped with an inner product ⟨·, ·⟩ : X × X → R which

fulfills

⟨x, y⟩ = ⟨y, x⟩
⟨αx + y, z⟩ = α ⟨x, z⟩+ ⟨y, z⟩

⟨x, x⟩ > 0 if x ̸= 0.

An inner product always induces a norm ∥x∥ =
√
⟨x, x⟩

(which can be shown using the Cauchy-Schwarz inequality ⟨x, y⟩ ≤
∥x∥∥y∥).Since any norm induces a notion of convergence by saying On a Hilbert space X we will denote

the norm by ∥x∥X , but sometimes the
subscript may be dropped, when the
norm is clear from the context.

that xn
n→∞−→ x if ∥xn − x∥ → 0 we can also talk about complete-

ness and this is the property that turns inner product spaces into

Hilbert spaces.

Definition 3.2. A real Hilbert space is a complete real inner product

space, i.e. a real inner product space with the property that every

Cauchy sequence in the space converges, i.e. for every sequence xn
in X which fulfills

∀ϵ > 0 ∃N ∀m, n ≥ N : ∥xn − xm∥ ≤ ϵ

there exists some limit x∗, i.e. xn
n→∞−→ x∗ (i.e. we have ∥xn −

x∗∥ n→∞−→ 0).

A little bit sloppy one could say that a Hilbert space is an inner

product space that “you can’t leave with ‘convergent sequences’”

Example 3.3. 1. The space Rn
with standard inner product

⟨x, y⟩ := x · y := xTy =
n

∑
i=1

xiyi

is a Hilbert space of dimension n. The corresponding norm

∥x∥ =

(
n
∑

i=1
x2

i

)1/2

is the well known euclidean norm. The

standard inner product on Rd
is also called dot product and

we will also use the notation x · y for it. The euclidean norm

of a vector x will also be denoten by |x|.

2. An example of an infinite dimensional Hilbert space is

ℓ2 :=

{
(xn)n=1,2,...

∣∣∣∣∣ ∞

∑
i=1

x2
n < ∞

}
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of square summable sequences. When equipped with the

inner product ⟨x, y⟩ := ∑∞
i=1 xiyi it is a Hilbert space. The

corresponding norm is denoted by

∥x∥2 :=
( ∞

∑
i=1

x2
i

)1/2
.

3. A different example of an infinite dimensional Hilbert space

is the Lebesgue space L2
of square integrable functions. For

some domain Ω ⊂ Rd
(i.e. a non-empty, connected and

open subset of Rd
) we can define

L2(Ω) :=
{

f : Ω → R

∣∣∣∣ ∫Ω
f (x)2dx < ∞

}
and equipped with the inner product

⟨ f , g⟩L2 :=
∫

Ω
f (x)g(x)dx

this is a Hilbert space as well. The corresponding norm is

denoted by

∥ f ∥L2 :=
( ∫

Ω
f (x)2dx

)1/2
.

The are Sobolev spaces of higher order, i.e. for every k ∈ N

there is a Sobolev space Hk(Ω) which incorporates partial

derivatives up to k-th order, but we will not define them here.

You may have noted that there is a prob-
lem here: This is not a norm, since there
are functions f ̸= 0 with ∥ f ∥L2(Ω) =
0. This problem can be solved: These
functions have the property of being ze-
ros “almost everywhere” and one can
“quotient out” all these functions from
L2(Ω). This means that one identifies
two functions f and g if

∫
( f − g)2 = 0.

The full theory behind this can be found
in books on real anaylsis or measure
theory.

4. Slightly more complicated are the Sobolev spaces which gener-

alize the Lebesgue space L2
by also incorporating derivatives.

The space H1(Ω) is

H1(Ω) :=

 f : Ω → R

∣∣∣∣∣∣
∫
Ω

f (x)2dx +
∫
Ω

|∇ f (x)|2dx < ∞


and it is equipped with the inner product

⟨ f , g⟩H1 :=
∫
Ω

f (x)g(x)dx +
∫
Ω

∇ f (x) · ∇g(x)dx

where the second integral is over the dot product of the

gradients. The corresponding H1
-norm is

∥ f ∥H1 :=

∫
Ω

f (x)2dx +
∫
Ω

|∇ f (x)|2dx

1/2

△
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As important as the spaces are linear operators between these

spaces. We will call a linear map A from one Hilbert space X to

another Y an operator and say that an operator A is bounded if

there exists a constant C such that ∥Ax∥Y ≤ C∥x∥X for all x.The Bounded operators are exactly the con-
tinuous operators.

infimum over all such constants is the operator norm of A, denoted

by ∥A∥. Other ways to define the operator norm are

∥A∥ = sup
∥x∥X=1

∥Ax∥Y = sup
x ̸=0

∥Ax∥Y

∥x∥X
.

The set of all bounded linear operators from a Hilbert space X
to another Hilbert space Y is denoted by L(X, Y). For every A ∈
L(X, Y) we have the so-called adjoint operator A∗

defined by

∀x ∈ X, y ∈ Y : ⟨x, A∗y⟩ = ⟨Ax, y⟩ .

Note that the adjoint maps A : Y → X and it is also bounded with

∥A∗∥ = ∥A∥. In Rn
, operators are just matrices and the adjoint

with respect to the standard inner product is just the transpose of

the matrix.

Example 3.4. 1. Linear operators A ∈ L(Rn, Rm), i.e. from one

euclidean space to another can be identified with matrices

A ∈ Rm×n
, i.e. the application of the operator A to a vec-

tor x is given by matrix-vector multiplication Ax. In this

case these is a simple expression for the operator norm of a

matrix: It holds that

∥A∥ =
√

λmax(AT A),

i.e. the operator norm is the square root of the largest eigen-

value of the matrix AT A. Note that AT A is symmetric and

positive definite and thus, only has real and eigenvalues

greater or equal zero. The adjoint of matrix is given by the

transposed matrix as it holds that

(Ax) · y = (Ax)T · y = xT ATy = xT(ATy) = x · (ATy).

2. A class of linear operators between L2
spaces A ∈ L(L2(Ω1), L2(Ω2))

is given by so called integral operators. These are given by

A f (y) =
∫

Ω1

k(x, y) f (x)dx

for some function k : Ω1 × Ω2 → R. For these operators

to be well defined and bounded one needs that k is square

integrable, i.e. k ∈ L2(Ω1 × Ω2). This can be seen by an ap-

plication of the Cauchy-Schwarz inequality for the L2
inner

product as follows:

∥A f ∥2
L2 =

∫
Ω2

∫
Ω1

k(x, y) f (x)dx

2

dy.
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The inner integral is the L2
inner product between k(x, ·)

and f and hence, we have

∥A f ∥2
L2 ≤

∫
Ω2

∫
Ω1

k(x, y) f (x)dx

2

dy

≤
∫

Ω2

∫
Ω1

k(x, y)2dx
∫

Ω1

f (x)2dxdy

= ∥k∥2
L2(Ω1×Ω2)

∥ f ∥2
L2(Ω1)

.

This also gives the upper bound ∥A∥ ≤ ∥k∥L2(Ω1×Ω2) (which

is usually not strict).

We compute the adjoint of an integral operator using Fubinis

theorem to interchange the order of integrals

⟨A f , g⟩L2(Ω2)
=
∫

Ω2

A f (y)g(y)dy

=
∫

Ω2

∫
Ω1

k(x, y) f (x)dxg(y)dy

=
∫

Ω1

f (x)
∫

Ω2

k(x, y)g(y)dy

︸ ︷︷ ︸
=A∗g(x)

dx = ⟨ f , A∗g⟩ .

△

There is another result that we will use frequently:

Theorem 3.5 (Dominated convergence for series). Let am,n ∈ R

with am,n
m→∞−→ a∗n. If there exists a sequence bn with |am,n| ≤ bn for all

m, n and ∑n bn < ∞, then it holds that

∑
n

am,n
m→∞−→ ∑

n
a∗n.

Informally: If we have a sequence of series, where the sum-

mands converge, we can pull the limit under the series if there is

a dominating sequence which is summable.
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4 The singular value decomposition and the pseudo-
inverse

We will build the section on the spectral theorem for compact

operators. Recall the notion of compact operator:

Definition 4.1. Some A ∈ L(X, Y) is compact, if it holds that

(xn) bounded in X =⇒ (Axn) has convergent subsequence in Y.
Here are some equivalent descriptions
of compact operators for those who
know what weak convergence in Hilbert
spaces mean:

1. A is compact if it maps
bounded sets in X to precom-
pact sets in Y (i.e. their closure
is compact). (For bounded
operators we only have that
they map bounded sets to
bounded sets.)

2. A is compact if it maps weakly
convergent subsequences to
strongly convergent ones, i.e.
Axn is (strongly) convergent in
Y whenever xn is weakly con-
vergent in X. (For bounded op-
erators we only have that they
map strongly convergent se-
quences to strongly convergent
sequences and weakly conver-
gent sequences to weakly con-
vergent sequences.)

We will denote the set of compact operators from X to Y
by K(X, Y). Directly from the definition we get that K(X, Y) ⊂
L(X, Y).
Example 4.2. For A ∈ L(X, Y) we can say:

1. If the range of A is finite dimensional and A is bounded, then

A is compact, as bounded sequences in finite dimensional

spaces always have convergent subsequences.

2. The identity id : X → X is always bounded, but only com-

pact if X is finite dimensional.

3. If A is compact and B is bounded than AB is compact (if

defined). Similarly, BA is compact (if defined).

4. Also the adjoint operator A∗
is compact if A is compact.

5. Finally, if Kn is a sequence of compact operators and we have

that ∥Kn − K∥ → 0, then K is compact as well.

△

A class of non-trivial compact operators are integral operators:
Example 4.3. Let X = L2(Ω1) and Y = L2(Ω2) and k ∈ L2(Ω1 ×
Ω2) and define the operator

Kx(t) =
∫

Ω1

k(s, t)x(s)ds.

We have seen in Example 3.4 that K is bounded with operator norm

∥K∥ ≤ ∥k∥L2(Ω1×Ω2).

However, K is also compact! To see this, note that we can ap-

proximate the function k by “simple functions”, i.e. there is se-

quence kn of functions of the form

kn(s, t) = ∑
i,j

αij1Ei(s)1Fj(t)

for some disjoint sets Ei ⊂ Ω1 and Fj ⊂ Ω2 such that kn approx- Here we use 1E for the so-called char-
acteristic function of the set E, i.e. the
function which is 1 on E and zero else-
where.

imated k, more precisely ∥k − kn∥L2(Ω1×Ω2) → 0. The respective

integral operators Kn all have finite dimensional range and hence,

are compact. Moreover it holds that

∥K − Kn∥ ≤ ∥k − kn∥L2(Ω1×Ω2) → 0

and thus, K is compact as well. △
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One central theorem for compact operators is the following:

Theorem 4.4 (Spectral theorem for compact, selfadjoint operators).
Let X be a Hilbert space and K ∈ K(X, X) be selfadjoint. Then there
exists and orthonormal basis (un) of cl rg(K) and λn ∈ R \ {0} such
that

Kx = ∑
n

λn ⟨x, un⟩ un.

If the dimension of cl rg(K) is infinite, we also have λn → 0.
The proof can be found in H.W. Alt’s
book “Linear functional analysis” where
this theorem is Theorem 12.12.Remark 4.5. Plugging in x = um, we get that Kum = ∑

n
λn ⟨um, un⟩ un =

λmum and we see that the un are actually eigenvectors of K for eigen-

values λn. By convention, one sorts the eigenvalues by decreasing

magnitude, i.e. |λ1| ≥ |λ2| ≥ · · · > 0.

From the spectral theorem we can deduce the existence of the

singular value decomposition (SVD):

Theorem 4.6 (Singular value decomposition). For every K ∈ K(X, Y)
there exist

(i) an orthonormal basis (un) of cl rg(K) ⊂ Y,

(ii) an orthonormal basis (vn) of cl rg(K∗) ⊂ X,

(iii) numbers σ1 ≥ σ2 ≥ · · · > 0

such that for all n

Kvn = σnun, and K∗un = σnvn

and for all x ∈ X

Kx = ∑
n

σn ⟨x, vn⟩ un.

Proof. Since K∗K is selfadjoint and compact, we get from the spec-

tral theorem the existence of λn and vn such that

K∗Kx = ∑
n

λn ⟨x, vn⟩ vn.

Since λn∥vn∥2
X = ⟨λnvn, vn⟩ = ⟨K∗Kvn, vn⟩ = ⟨Kvn, Kvn⟩ =

∥Kvn∥2
X > 0 we get that λn > 0. Now we define

σn =
√

λn, and un = 1
σn

Kvn.

Checking that the claimed equalities hold as well as checking

orthonormality of the un is a routine calculation.

Remark 4.7. (a) We call (σn, un, vn) the singular system of K.

(b) We also get the singular value decomposition of K∗
, namely

K∗y = ∑
n

σn ⟨y, un⟩ vn.
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(c) The σn are called singular values, the un are left singular vectors
and the vn are right singular vectors.

(d) The singular vectors can be used to project onto the closures

of the ranges of K and K∗
, namely

Pcl rg(K)y = ∑
n
⟨y, un⟩ un, Pcl rg(K∗)x = ∑

n
⟨x, un⟩ un.

(e) We have ∑n|⟨x, vn⟩|2 = ∥Pcl(rg(K))(x)∥X ≤ ∥x∥X .

The singular value decomposition also allows to describe the

boundary of the range:

Theorem 4.8 (Picard condition). Let K ∈ K(X, Y) with singular
system (σn, un, vn) and let y ∈ cl(rg(K)). Then y ∈ rg(K) exactly if

∑
n

|⟨y, un⟩|2
σ2

n
< ∞. (P)

Proof. Let y ∈ rg(K), then there is x with y = Kx and we have

⟨y, un⟩ = ⟨Kx, un⟩ = ⟨x, K∗un⟩ = σn ⟨x, vn⟩ .

We get

∑
n

|⟨y, un⟩|2
σ2

n
= ∑

n
|⟨x, vn⟩|2 ≤ ∥x∥2

X < ∞.

Conversely, the y ∈ cl(rg(K)) fulfill (P). We define xN = ∑N
n=1

1
σn
⟨y, un⟩ vn

and from (P) it follows that xN is a Cauchy sequence, and thus,

xN → ∑
n

1
σn
⟨y, un⟩ vn =: x.

Finally, we get

Kx = K

(
∑
n

1
σn
⟨y, un⟩ vn

)
= ∑

n

1
σn
⟨y, un⟩Kvn = ∑

n
⟨y, un⟩ un

= Pcl(rg(K))y = y

which shows that y ∈ rg(K).

With the singular value decomposition, we can define the

so-called Moore-Penrose pseudo-inverse (often just called pseudo-

inverse).

Definition 4.9 (Pseudo-inverse). Let K ∈ K(X, Y) with singular

system (σn, un, vn). Then the pseudo-inverse of K, is K† : rg(K)⊕
rg(K)⊥ → X defined by

K†y = ∑
n

1
σn
⟨y, un⟩ vn.

We denote by D(K†) := rg(K)⊕ rg(K)⊥ ⊂ Y the domain of the

pseudo-inverse.
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Remark 4.10. 1. Note that

K†Kx = ∑
n

1
σn
⟨Kx, un⟩ vn = ∑

n

1
σn
⟨x, K∗un⟩ vn

= ∑
n
⟨x, vn⟩ vn = Pcl rg(K∗)x = Pker(K)⊥x,

i.e. K†K = Pker(K)⊥ .

2. Similarly, we have

KK†y = ∑
n

σn

〈
K†y, vn

〉
un = ∑

n
σn

〈
∑
m

1
σm

⟨y, um⟩ vm, vn

〉
un

= ∑
m,n

σn
1

σm
⟨y, um⟩ ⟨vm, vn⟩ un = ∑

n
⟨y, un⟩ un = Pcl(rg(K))y

= Pker(K∗)⊥ ,

i.e. KK† = Pcl(rg(K)) = Pker(K∗)⊥ .

3. We have K†y = 0 if y ∈ rg(K)⊥, i.e. ker(K†) = rg(K)⊥.

4. Since (vn) is a basis of cl rg(K∗) = ker(K)⊥, we have that

rg(K†) = cl rg(K∗) = ker(K)⊥. Note that rg(K) is in gen-

eral not closed (for compact operators it is only closed if it

is finite dimensional), i.e. it is not a Hilbert space.

By the above remark, the pseudo-inverse is actually a kind of

an inverse, namely of K|ker(K)⊥ : ker(K)⊥ → rg(K). There is a

little more to say:

Theorem 4.11. For every y ∈ D(K†) it holds that the equation Kx = y
has a unique minimum norm solution which is x† = K†y, i.e. x† is
a least squares solution of minimal norm, i.e. it holds that

∥Kx† − y∥Y = min {∥Kx − y∥Y | x ∈ X} and
∥x†∥X = min {∥z∥X | z is a least squares solution of Kx = y} .

Moreover, the set of all least squares solutions is x† + ker(K).

The first equality defines “least squares
solutions”.

Proof. That x† = K†y is a least squares solution follows from

Remark 4.10, 2.:

∥Kx† − y∥Y = ∥KK†y − y∥Y = ∥Pcl(rg(K))y − y∥Y.

Now recall that the orthogonal projection Pcl(rg(K))y is the closest

point to y within the closure of range of K.

If x′ is any least squares solution x′ we can write x′ = x† +
v with v ∈ ker(K), but since x† ∈ ker(K)⊥ we have (by the

Pythagorean theorem)

∥x′∥2
X = ∥x†∥2

X + ∥v∥2
X ≥ ∥x†∥2

X

which shows that x†
has minimal norm among all least squares

solutions.
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Remark 4.12. The pseudo inverse can also be defined for general

bounded linear operators (not necessarily compact ones) A ∈
L(X, Y). There one defines the A†y as the unique minimum norm

least squares solution (and has to show that this is a meaningful

definition). All properties of the pseudo inverse we have shown

are still fulfilled in this case.

We will use the pseudo-inverse also for merely bounded oper-

ators in the following.
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5 Regularization

We have seen in the previous section that the pseudo-inverse solves

two of the problems with ill-posed linear problems: Existence and

uniqueness. A little bit more explicit: The problem of existence

is (roughly) solved by moving to least squares solutions (i.e. mini-

mizing the residual ∥Kx − y∥Y rather than solving Kx = y) and

the problem of uniqueness is solved by considering minimum

norm solutions, i.e. among all (least squares) solution we pick the

one with minimal norm. What about the remaining problem of

instability?

Before we answer that, we note the following fact:

Lemma 5.1. If K ∈ K(X, Y) has the singular system (σn, unvn), then
we have ∥K∥ = σ1.

The proof is a good exercise

Unfortunately, this shows that the pseudo-inverse is, in gen-

eral, not bounded: If rg(K) is infinite dimensional, we have from

Theorem 4.6 that σn → 0. But this implies

∥K†un∥ = ∥∑
m

1
σm

⟨un, um⟩ vm∥ = ∥ 1
σn

vn∥ = 1
σn

n→∞−→ ∞

and thus, K†
can not be bounded. The pseudo-inverse even helps to It’s worth to consider the finite dimen-

sional case here: If K = UΣVT is
the singular value decomposition, then
∥K∥ = σ1 and ∥K†∥ = 1/σk where k
is the smallest singular value. The con-
dition number of K is defined as κ(K) =
∥K∥∥K†∥ and hence, equal the ratio of
the largest and smallest singular value
of K. For inverse problems in infinite
dimensions, the condition number can
the infinite as there may be arbitrarily
small singular values.

make the instability quite quantifiable: Consider the case that y† =
Kx†

for x ∈ ker(K)⊥. Then x†
is the minimum norm least squares

solution of Kx = y†
. Let’s assume that we have measurement data

yδ
instead of y†

and let us assume moreover, that we know that

we have a small measurement error, i.e. ∥y† − yδ∥Y ≤ δ for some

known δ > 0. Then the “noise” ns the data is

η = yδ − y† ∈ Y.

Let us blindly apply the pseudo inverse to yδ
:

K†yδ = K†(y† + η) = x† + K†η = x† + ∑
n

1
σn
⟨η, un⟩ vn.

We see that the contribution of the noise is amplified unboundedly,

i.e. the component ⟨η, un⟩ of the noise in the n-th singular vector

un is amplified by a factor of 1/σn and these factors grow beyond all

bounds. Hence: If the noise contains contributions from singular

vectors that correspond to small singular values, they get amplified

a lot. Unfortunately, this is the standard situation: Singular vectors

for small singular values tend to be oscillatory (i.e. be of high

frequency) and hence, noise always tends to be amplified.

Example 5.2 (Discretized inverse problems). One can check this

observation numerically. After discretization, an inverse problem

still reads as Kx = yδ
with x ∈ Rn

, y ∈ Rm
and K ∈ Rm×n

. The

singular value decomposition exists as well and if we write the
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singular vectors ui and vj as colums in matrices U and V and the

singular values σi on the diagonal of a matrix Σ, we get

Kx = ∑
i

σi ⟨x, vi⟩ ui = UΣVTx.

The pseudo inverse is

K†y = ∑
i

1
σi
⟨y, ui⟩ vi = VΣ†UTy. (*)

where Σ†
has the values 1/σi on the diagonal.

Let us consider a (quite simple) discrete approximation of the

inverse problem of differentiation, i.e. the inversion of A given by

A f (x) =
∫ x

0 f (t)dt. This operator can be (roughly) discretized by

the matrix

A =
1
n


1 0 · · · 0
.
.
.

.
.
.

.
.
.

.

.

.

.

.

.

.
.
. 0

1 · · · · · · 1

 ∈ Rn×n.

Here is an example of the naive reconstruction (we can use a

direct solve here, since the matrix is actually invertible (it is square

and it smallest singular value is positive, but quite small). We could,

in principle, also use pinv to calculate the pseudo-inverse or use

the formula (*)).

import numpy as np
import matplotlib.pyplot as plt

# problem size and matrix
n = 100
A = np.tril(np.ones((n,n)))/n

# discretized interval
t = np.linspace(0,1,n)

# true solution
xdag = 1-t**2
# noise free data
ydag = A@xdag

# noisy data
eta = np.random.randn(n);
eta /= np.sum(eta)

# noise level
delta = 0.05
ydelta = ydag + delta*eta
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# naive reconstruction
x = np.linalg.solve(A,ydelta)

fig, axs = plt.subplots(2,2)
axs[0,0].plot(t,xdag)
axs[0, 0].set_title(’true solution’)
axs[0,1].plot(t,ydag)
axs[0, 0].set_title(’true data’)
axs[1,0].plot(t,x)
axs[0, 0].set_title(’naive reconstruction’)
axs[1,1].plot(t,ydelta)
axs[0, 0].set_title(’noisy data’)
plt.show()

# compute svd
U,S,VT = np.linalg.svd(A)

# show some singular vectors
fig, axs = plt.subplots(5,2)
axs[0,0].plot(t,U[:,0])
axs[0,0].set_title(’$u_1$’)
axs[0,1].plot(t,VT[0,:])
axs[0,1].set_title(’$v_1$’)
axs[1,0].plot(t,U[:,1])
axs[1,0].set_title(’$u_2$’)
axs[1,1].plot(t,VT[1,:])
axs[1,1].set_title(’$v_2$’)
axs[2,0].plot(t,U[:,2])
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axs[2,0].set_title(’$u_3$’)
axs[2,1].plot(t,VT[2,:])
axs[2,1].set_title(’$v_3$’)
axs[3,0].plot(t,U[:,9])
axs[3,0].set_title(’$u_{10}$’)
axs[3,1].plot(t,VT[9,:])
axs[3,1].set_title(’$v_{10}$’)
axs[4,0].plot(t,U[:,-1])
axs[4,0].set_title(’$u_n$’)
axs[4,1].plot(t,VT[-1,:])
axs[4,1].set_title(’$v_n$’)
plt.show()

# plot singular vectors in semilog plot
plt.semilogy(S)
plt.show()
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△

Now, let us fix our aim and let us define what a “regularization”

shall be:

Definition 5.3 (Regularization). Let A ∈ L(X, Y). A regularization
of A†

is a family of continuous maps Rα : Y → X, α > 0 such that

for all y ∈ D(A†) it holds that

Rαy α→0−→ A†y.

If all Rα are linear, we speak of a linear regularization. The parameter

α is called regularization parameter.

As a matter of fact, any linear regularization can not be uni-

formly bounded (as they approximate an unbounded operator):

Theorem 5.4. Let A ∈ L(X, Y) and Rα be a linear regularization of
A†. If A† is unbounded, then it holds that ∥Rα∥X

α→0−→ ∞.
This follows from the so-called uniform
boundedness prinicple (also known as
Banach-Steinhaus Theorem) and we do
not discuss the proof here.

Now let us discuss the various error we defined in the example

in Section 2: The totel error ∥Rαyδ − x†∥ (also called regularization

error) can be decomposed (using x† = A†y†
and the triangle

inequality) in the case of linear regularization into data error and

approximation error

∥Rαyδ − x†∥X ≤ ∥Rαyδ − Rαy†∥X + ∥Rαy† − A†y†∥X

≤ ∥Rα∥δ + ∥Rαy† − A†y†∥X. (*)

Again, we see that one needs to choose the regularization param-

eter α carefully: At least we need to be able to balance the term

∥Rα∥δ as it blows up for small α. On the other hand, the term

∥Rαy† − A†y†∥X tends to be small for small α and large for large

α (exactly as we have seen in Section 2).

We will often denote the regularized reconstruction by xδ
α :=

Rαyδ
. We will also use the notation xα := Rαy†

for the (in general
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unknown) regularized reconstruction from idealized noiseless

data. With this notation, our error decomposition is

∥xδ
α − x†∥X︸ ︷︷ ︸

total error

≤ ∥xδ
α − xa∥X︸ ︷︷ ︸

data error

+ ∥xα − x†∥X︸ ︷︷ ︸
approximation error

.

Definition 5.5 (Parameter choice). A function

α : ]0, ∞[× Y → ]0, ∞[, (δ, yδ) → α(δ, yδ)

is called a parameter choice rule. We distinguish further: α is

(i) an a priori choice rule if α does not depend on yδ
,

(ii) an a posteriori choice rule if α depends on δ and yδ
, and

(iii) a heuristic rule is α does not depend on δ.

An a priori rule can be devised with-
out having seen the actual data (it only
needs knowledge of the noise level),
hence one can, in principle, construct
the operator Rα(δ) a priorily, before the
data has arrived; hence, the name.

Definition 5.6 (Convergent regularization). If Rα is a regularization

of A†
and α is a parameter choice rule we say that (Rα, α) is a

convergent regularization method if for all y† ∈ D(A†) it holds that

sup
{
∥Rα(δ,yδ)y

δ − A†y†∥X

∣∣∣ ∥yδ − y†∥Y ≤ δ
}

δ→0−→ 0.

In other words: We want that the worst case reconstruction error
goes to zero, i.e. even if the noisy data yδ

is as bad as possible, given

the noise level δ. Informally: We demand that in the
regime of vanishing noise, we shall be
able to approximate the true solution
x† = A†y† as good as possible. On
the one hand, this sounds like a mean-
ingless demand, since usually the noise
level stays fixed. On the other hand, it
sounds like something that should be
the bare minimum: If we can not even
guarantee this, what is the point of reg-
ularization at all? Finally, it sounds quite
ambitious, given that we already know
that we try to approximate unbounded
(i.e. discontinuous) operators with con-
tinuous ones.

Example 5.7 (Truncated SVD). Here is a simple idea for a regulariza-

tion method for: For K ∈ K(X, Y) with singular system (σn, un, vn)
and α > 0 we define

Rαy = ∑
σn>α

1
σn
⟨y, un⟩ vn

i.e. we cut off the small singular values which lead to unbounded-

ness of the pseudo-inverse. These Rα are indeed bounded opera-

tors:

∥Rαy∥2
X = ∑

σn>α

1
σ2

n
|⟨y, un⟩|2 ≤ sup

{
1

σ2
n
| σn ≥ α

}
∥y∥2

Y ≤ 1
α2 ∥y∥2

Y

i.e. ∥Rα∥ ≤ 1
α .

Let us investigate if the truncated SVD is a convergent regular-

ization method, i.e. if we can find a suitable parameter choice: To

that end, we use our standard error decomposition (*)

∥Rαyδ − K†y†∥X ≤ ∥Rα∥δ + ∥Rαy† − A†y†∥X

≤ δ
α + ∥Rαy† − A†y†∥X.

We estimate the approximation error further

Rαy† − A†y† = ∑
σn≥α

1
σn

〈
y†, un

〉
vn − ∑

n

1
σn

〈
y†, un

〉
vn = − ∑

σn<α

1
σn

〈
y†, un

〉
vn.
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This gives us

∥Rαy† − A†y†∥2
X ≤ ∑

σn<α

1
σ2

n
|
〈

y†, un

〉
|2.

Together we have

∥Rαyδ − K†y†∥X ≤ ∥Rα∥δ + ∥Rαy† − A†y†∥X

≤ δ
α +

√
∑

σn<α

1
σ2

n
|⟨y†, un⟩|2.

Now we see: The second summand is the “rest of a convergent

series” (recall the Picard condition, Theorem 4.8) and the smaller

α, the later the rest of the series starts. Hence, we have√
∑

σn<α

1
σ2

n
|⟨y†, un⟩|2 → 0 for α → 0.

For the first term we need that α(δ) → 0 slower than δ. In conclu-

sion: Any α(δ) with

α(δ)
δ→0−→ 0,

δ

α(δ)
δ→0−→ 0

is a valid (a priori) parameter choice rule and we can claim that

the truncated SVD together with this rule is a convergent regular-

ization method. △ One could take, for example, α(δ) =√
δ (or = δκ for 0 < κ < 1, for that

matter).
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6 Tikhonov regularization

The problem of instability of the solution of Ax = yδ
comes from

the small singular values which are the eigenvalues of the self-

adjoint operator A∗A. Another way to understand this, is via the

normal equation: Some x is a minimizer of ∥Ax − yδ∥2
X exactly if

it solves the normal equation

A∗Ax = A∗yδ.

However, in general minimizers of ∥Ax − yδ∥2
X do not exist (i.e.

the normal equation does not have solutions) and this is (in the

case of compact A) due to the eigenvalues of A∗A converging to

zero. To avoid this problem, we can simply shift them to be strictly

positive: If σ2
i are the eigenvalues of A∗A, then the eigenvalues

of A∗A + α id are σ2
n + α ≥ α > 0. Hence, instead of the normal

equation, we consider for α > 0 regularized normal equations

(A∗A + α id)x = A∗yδ.

Since the operator A∗A + α id is always invertible, we can write

this as

xδ
α = (A∗A + α id)−1A∗yδ

and this method is called Tikhonov regularization. The shift of the

singular values is one motivation for Tikhonov regularization. In

fact, Tikhonov regularization also corresponds to a regularized

least squares problem.

Theorem 6.1. Let A ∈ L(X, Y). The regularized normal equation
(A∗A + α id)x = A∗yδ has a unique solution xδ

α which is exactly the
unique minimum of the Tikhonov functional

Tα(x; yδ) := 1
2∥Ax − yδ∥2

Y + α
2∥x∥2

X.

Proof. A minimizer x of the Tikhonov function is characterized

by the condition that Tα(x + th; yδ) ≥ Tα(x; yδ) for all t ∈ R and

h ∈ X. Starting from the left hand side we get

Tα(x + th; yδ) = 1
2∥Ax + tAh − yδ∥2

Y + α
2∥x + th∥2

X

= 1
2∥Ax − yδ∥2

Y +
〈

Ax − yδ, tAh
〉
+ 1

2∥tAh∥2
Y

+ α
2∥x∥2

X + α ⟨x, th⟩+ α
2∥th∥2

X

= Tα(x; yδ) + t
〈

A∗(Ax − yδ) + αx, h
〉
+ t2( 1

2∥Ah∥2
Y + α

2∥h∥2
X).

We see that Tα(x + th; yδ) ≥ Tα(x; yδ) holds for all t and h exactly

if 〈
A∗(Ax − yδ) + αx, h

〉
= 0

for all h ∈ X and this is exactly the case when A∗(Ax− yδ)+ αx =
0 which is just the regularized normal equation. Uniqueness of

the minimizer follows since the Tikhonov functional is strictly

convex.
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The description of Tikhonov regularization as a minimization

framework allows for another interpretation: The regularization

is a compromise of two things, namely finding a reconstruction

xδ
α that has a good data fit, i.e. it produces a small value for the

residual ∥Ax − yδ∥Y , but, at the same time, also does not blow up,

i.e. it has a small norm ∥x∥X . These two demands are weighted

by the regularization parameter α. Regularization methods that

build upon the idea of minimizing a functional that balances the

demands of data fit and “reasonable reconstruction” are also called

“variational regularization methods” (as the theory that deals with

minimization problems in infinite dimensional spaces is called

“calculus of variations”). Aiming at a reconstruction with a bounded

norm seems like a valid idea, but one may know a little more about

the unknown solution. If we assume that we have a rough idea of

the unknown x†
, i.e. we know that x0

is a good guess, we can of

course minimize

Tα(x; yδ, x0) := 1
2∥Ax − yδ∥2

Y + α
2∥x − x0∥2

X.

Similar to the proof of Theorem 6.1 one shows that the unique

minimizer here is given as a solution of

(A∗A + α id)x = A∗yδ + αx0.

Remark 6.2 (Numerical realization of Tikhonov regularization).
Tikhonov regularization is popular, because its implementation

is pretty straight forward. Let us consider the discrete case where

A ∈ Km×n
and yδ ∈ Rm

. Then the regularized normal equation Both the overdetermined case m > n
(where non-existence of solutions is a
problem, due to measurement error)
and the underdetermined case m < n
(where non-uniqueness is a problem,
due to not enough data) of can be con-
sidered here.

(for x0 = 0

(ATA + αIn)x = ATyδ

is a square linear system in n dimensions and the matrix (ATA +
αIn) is symmetric positive definite. Hence, there are many meth-

ods available to solve the problem numerically (one method is the

method of conjugate gradients).

Is Tikhonov regularization indeed a convergence regulariza-

tion method? To answer this question, we should find a parameter

choice rule. We will analyze this question with the help of the

singular value decomposition.

Theorem 6.3. Let K ∈ K(X, Y) have the singular system (σn, un, vn).
Then solution xδ

α of (A∗A + α id)x = A∗yδ is given by

xδ
α = ∑

n

σn
σ2

n+α

〈
yδ, un

〉
vn.

Proof. It holds that xδ
α = Pker(A)xδ

α + Pker(A)⊥xδ
α = Pker(A)xδ

α +

∑n
〈

xδ
α, vn

〉
vn. Since (σ2

n , vn, vn) is the spectral decomposition of
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A∗A we get A∗Axδ
α = ∑n σ2

n
〈

xδ
α, vn

〉
vn. Also A∗yδ = ∑n σn

〈
yδ, un

〉
vn.

Thus, the regularized normal equation is

∑
n

σ2
n

〈
xδ

α, vn

〉
vn + α

(
Pker(A)(xδ

α) + ∑
n

〈
xδ

α, vn

〉
vn

)
= A∗yδ

= ∑
n

σn

〈
yδ, un

〉
vn.

We see that necessarily Pker(A)(xδ
α) = 0 and that

∑
n
(σ2

n + α)
〈

xδ
α, vn

〉
vn = ∑

n
σn

〈
yδ, un

〉
vn.

Comparing coefficients shows that

〈
xδ

α, vn
〉
= σn

σ2
n+α

〈
yδ, un

〉
which

shows the claim.

The representation of xδ
α from Theorem 6.3 via the singular

value decomposition is called spectral representation. We use it to

prove the following result on regularization:

Theorem 6.4 (Tikhonov with a-priori parameter choice). For an
a-priori parameter choice α(δ) that fulfills

α(δ) → 0
δ2

α(δ)
→ 0 for δ → 0

it holds that Tikhonov regularization is a convergent regularization method,
i.e. it holds that xδ

α := (A∗A + α id)−1A∗yδ → x† := A†y† whenever
∥yδ − y†∥ ≤ δ and δ → 0.

Proof. We set xα = (A∗A + α id)−1A∗y†
and decompose

xδ
α − x† = xδ

α − xα + xα − x†

= (A∗A + α id)−1A∗(yδ − y†)︸ ︷︷ ︸
data error

+ (A∗A + α id)−1A∗y† − A†y†︸ ︷︷ ︸
approx. error

.

The data error fulfills

(A∗A + α id)−1A∗(yδ − y†) = ∑
n

σn
σ2

n+α

〈
yδ − y†, un

〉
vn,

and hence, its norm is

∥(A∗A + α id)−1A∗(yδ − y†)∥2
Y = ∑

n

(
σn

σ2
n+α

)2
|
〈

yδ − y†, un

〉
|2

≤
(

sup
0≤σ≤∥A∥

σ

σ2 + α

)2

∥yδ − y†∥2
Y

For the approximation error and we use that x† = A†y†
implies〈

x†, vn
〉
= 1

σn

〈
yδ, un

〉
to get

(A∗A + α id)−1A∗y† − A†y† = ∑
n

σn
σ2

n+α

〈
y†, un

〉
vn − ∑

n

1
σn

〈
y†, un

〉
vn

= ∑
n

( σ2
n

σ2
n+α

− 1
) 〈

x†, vn

〉
vn.
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Together we arrive at the error estimate

∥xδ
α − x†∥X ≤

(
sup

0≤σ≤∥A∥

σ
σ2+α

)
δ +

√
∑
n

( σ2
n

σ2
n+α

− 1
)2|⟨x†, vn⟩|2.

(*)

We estimate the supremum by

sup
0≤σ≤∥A∥

σ
σ2+α

≤ 1
2
√

α
.

We maximize over all σ > 0: The derivative of σ/(σ2 + α) is
((σ2 + α) − 2σ2)/(σ2 + α)2 and hence, vanishes exactly at
σ =

√
α. Plugging this in gives the result.

By assumption δ/
√

α → 0 for δ → 0, and thus, the first term on

the right hand side of (*) goes to zero for δ → 0.

Now we consider the square of second term in (*), which we

write as ∑n an(α) with an(α) =
( σ2

n
σ2

n+α
− 1
)2|
〈

x†, vn
〉
|2. It holds

that an(α) → |
〈

x†, vn
〉
|2 for α → 0. We have the (very coarse)

estimate

( σ2
n

σ2
n+α

− 1
)2 ≤ 4 and hence ∑n an(α) ≤ 4∥x∥2

X ,and by

the dominated convergence theorem (Theorem 3.5), we get that the

full sum ∑n an(α) → 0 for α → 0. This proves the theorem.

The previous theorem shows that Tikhonov is indeed a conver-

gent regularization method. However, we did not get an explicit er-

ror estimate for the total error ∥xδ
α − x†∥X . While we could bound

the data error by

∥xδ
α − xα∥X ≤ δ√

α
,

we did not get an effective bound on the approximation error

∥xα − x†∥X . This is a general fact:

Theorem 6.5 (No general worst case error bound for ill-posed

problems). Let (Rα, α(δ, yδ)) be a convergent regularization method
for A†. If there exists a function ψ : ]0, ∞[ → ]0, ∞[ with ψ(δ)

δ→0−→ 0
such that for all y† ∈ D(A†)

sup
{
∥Rα(δ,yδ)y

δ − A†y†∥X | y† ∈ D(A†), yδ ∈ Y, with ∥y† − yδ∥Y ≤ δ
}
≤ ψ(δ)

then A† is bounded. The significance of this theorem is as
follows: If A† is bounded, we can get
a nice error bound ∥A†yδ − x†∥X ≤
∥A†∥δ and hence, the problem is not
ill-posed.

Proof. Let y†, yn ∈ D(A†) with ∥y† − yn∥Y = δn
n→∞−→ 0. Then we

have

∥A†yn − A†y†∥Y ≤ ∥A†yn − Rα(δ,yn)yn∥+ ∥Rα(δ,yn)yn − A†y∥.

By our assumption, we have that both terms on the right are

bounded by ψ(δn), i.e.

∥A†yn − A†y†∥Y ≤ 2ψ(δn)
n→∞−→ 0.

But this means that A†
is continuous at y†

and since A†
is linear,

this shown continuity everywhere.
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Here is an example of Tikhonov regularization in practice:

import numpy as np
import matplotlib.pyplot as plt

# problem size and matrix
n = 100
A = np.tril(np.ones((n,n)))/n

# discretized interval
t = np.linspace(0,1,n)

# true solution
xdag = np.maximum(1-2*t,0)
# noise free data
ydag = A@xdag

# noisy data
eta = np.random.randn(n);
eta /= np.linalg.norm(eta)

# noise level
delta = 0.05
ydelta = ydag + delta*eta

# naive reconstruction
x = np.linalg.solve(A,ydelta)

fig, axs = plt.subplots(2,2)
axs[0,0].plot(t,xdag)
axs[0,0].set_title(’true solution’)
axs[0,1].plot(t,ydag)
axs[0,1].set_title(’true data’)
axs[1,0].plot(t,x)
axs[1,0].set_title(’naive reconstruction’)
axs[1,1].plot(t,ydelta)
axs[1,1].set_title(’noisy data’)
plt.show()
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# reconstruct with Tikhonov
# regularization parameter
alpha = 0.01
# compute reconstruction
xalphadelta = np.linalg.solve(A.T@A + alpha*np.identity(n),A.T@ydelta)
plt.plot(t,xalphadelta ,label=’xalphadelta’)
plt.plot(t,xdag,label=’xdagger’)
plt.legend()
plt.show()
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# Plot for N different errors to illustrate error decomposition
N = 30
alphas = np.logspace(0,-6,N)
totalError = np.zeros(N)
approximationError = np.zeros(N)
dataError = np.zeros(N)
# reconstruct and compute errors
for k in range(N):

alpha = alphas[k]
xalphadelta = np.linalg.solve(A.T@A + alpha*np.identity(n),A.T@ydelta)
xalpha = np.linalg.solve(A.T@A + alpha*np.identity(n),A.T@ydag)
totalError[k] = np.linalg.norm(xalphadelta -xdag)
approximationError[k] = np.linalg.norm(xalpha-xdag)
dataError[k] = np.linalg.norm(xalphadelta -xalpha)

# Show errors is loglog-plot
plt.loglog(alphas,totalError ,label=’total error’)
plt.loglog(alphas,approximationError ,label=’approximation error’)
plt.loglog(alphas,dataError ,label=’data error’)
plt.legend()
plt.show()
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7 Spectral regularization

We have analyzed the regularization properties of the truncated

singular value decomposition and Tikhonov regularization in Ex-

ample 5.7 and Theorem 6.4. If you inspect the arguments, you’ll

note that they are actually almost the same in both cases. In this

section we will start to derive a general theory for linear regu-

larization. This theory will contain the truncated SVD as well as

Tikhonov regularization as special cases.

Recall that the truncated SVD is

Rαy = ∑
σn>α

1
σn
⟨y, un⟩ vn

while we could express Tikhonov regularization as

Rαy = ∑
n

σn
σ2

n+α
⟨y, un⟩ vn.

Both methods can be written in the following form:

Rαy = ∑
n

φα(σ
2
n)σn ⟨y, un⟩ vn (R)

with some function φα:

For φα(λ) =
1

λ+α we get

Rαy = ∑
n

1
σ2

n+α
σn ⟨y, un⟩ vn,

i.e. exactly Tikhonov regularization. If we set

φα(λ) =

{ 1
λ : λ ≥ α
0 : else,

we get

Rαy = ∑
σ2

n≥α

1
σ2

n
σn ⟨y, un⟩ vn = ∑

σn>
√

α

1
σn
⟨y, un⟩ vn,

which is (up to a different scaling of the regularization parameter)

the truncated SVD from Example 5.7.

Remark 7.1. Note that we could have written Rαy = ∑n fα(σn) ⟨y, un⟩ vn
with some function fα as well. However,there is a reason why we

did chose this slightly complicated form: Regularization methods

approximate the minimum norm solution of the normal equation

K∗Kx = K∗y, i.e. x = (K∗K)†K∗y. If we express everything with

the SVD of K we first get that (K∗K)†z = ∑n σ−2
n ⟨z, vn⟩ vn and

hence, for z = K∗y

x = ∑
n

σ−2
n ⟨K∗y, vn⟩ vn = ∑

n
σ−2

n ⟨y, Kvn⟩ vn

= ∑
n

σ−2
n ⟨y, σnun⟩ vn = ∑

n
σ−2

n σn ⟨y, un⟩ vn.
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To mimic this formula, we express regularization methods as

Rαy = ∑
n

φα(σ
2
n)σn ⟨y, un⟩ vn.

and need that φα(λ) ≈ 1/λ for Rα being close to A†
.

We will use the following functional calculus for compact op-

erators: If K is compact with singular system (σn, un, vn) and f :
[0, ∥K∥2] → R is piecewise continuous and bounded, we define

another operator f (K∗K) : X → Y by

f (K∗K)x := ∑
n

f (σ2
n) ⟨x, vn⟩ vn + f (0)Pker(K)x.

The additional term Pker(K)x takes into
account that f (0) ̸= 0 and makes the
identity id = f (K∗K) for f ≡ 1 cor-
rect.

We observe that the series always converges (since f is only

evaluated on the bounded interval [0, ∥K∥2]) and we also get that

∥ f (K∗K)∥ ≤ sup
n
| f (σ2

n)|+ f (0) ≤ 2 sup
λ∈[0,∥K∥2]

| f (λ)| < ∞

which shows that f (K∗K) ∈ L(X, X).
With functional calculus we can write

Rαy = ∑
n

φα(σ
2
n)σn ⟨y, un⟩ vn = φα(K∗K)K∗y.

Example 7.2 (Absolute value of a compact operator). For f (t) = t
we get that f (K∗K) = K∗K and for f (t) =

√
t we define |K| :=

f (K∗K). It holds that

|K|x = ∑
n

σn ⟨x, vn⟩ vn.

△

We state some properties of the absolute value of an operator

as we will use it later when we derive convergence rates in abstract

smoothness spaces in Sections 9 and 10.

Lemma 7.3 (Properties of functional calculus). Let K ∈ K(X, Y).

(i) For s, r > 0 it holds that |K|r+s = |K|r|K|s.

(ii) For all r > 0 the operator |K|r is self-adjoint.

(iii) For all x ∈ X it holds that ∥|K|x∥Y = ∥Kx∥y.

(iv) It holds that rg(|K|) = rg(K∗).

Proof. (i) This is a direct computation (using that vn is orthonor-

mal)

|K|r+sx = ∑
n

σr+s
n ⟨x, vn⟩ vn = ∑

n
σr

n

〈
∑
m

σs
m ⟨x, vm⟩ vm, vn

〉
vn

= ∑
n

σr
n ⟨|K|sx, vn⟩ vn.
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(ii) Again a direct computation

⟨|K|rx, z⟩ = ∑
n

σr
n ⟨x, vn⟩ ⟨vn, z⟩ = ⟨x, |K|rz⟩ .

(iii) Using the first two points we get

∥|K|x∥2
X = ⟨|K|x, |K|x⟩ =

〈
|K|2x, x

〉
= ⟨K∗Kx, x⟩ = ⟨Kx, Kx⟩ = ∥Kx∥2

Y.

(iv) If (σn, un, vn) is the singular system of K, then K∗
has the

singular system (σn, vn, un) and |K| has the singular system

(σn, vn, vn). Now note that x ∈ rg(K∗) exactly if Kx ∈ rg(KK∗)
and x⊥ ker(K). The Picard condition (Theorem 4.8) for Kx ∈
rg(KK∗) is

∞ > ∑
n

σ−4
n |⟨Kx, un⟩|2 = ∑

n
σ−4

n |⟨x, K∗un⟩|2 = ∑
n

σ−2
n |⟨x, vn⟩|2

which is exactly the Picard condition for x ∈ rg(|K|) (for

which x⊥ ker(K) is necessary anyway).

We will investigate regularization methods of the form (R). The

following definition well be useful, as we will see:

Definition 7.4 (Regularizing filter). Let K ∈ K(X, Y) with κ =
∥K∥2

and SVD (σn, un, vn). A family φα : [0, κ] → R of piecewise

continuous and bounded functions is called regularizing filter if it

fulfills

(i) For all λ ∈ ]0, κ] it holds that

φα(λ)
α→0−→ 1

λ .

(ii) There exists Cφ > 0 such that for all λ ∈ ]0, κ] and α > 0 it

holds that

λ|φα(λ)| ≤ Cφ.

Now we aim to prove that regularizing filters give rise to con-

vergent regularization methods. First we collect three useful facts

in a lemma:

Lemma 7.5 (Fundamental lemma of regularization theory). If φα

is a regularizing filter and Rα = φα(K∗K)K∗ we have

(1) ∥KRα∥ ≤ Cφ

(2) ∥Rα∥ ≤
√

Cφ sup
λ∈]0,∥K∥2]

√
|φα(λ)|

(3) K†y − Rαy = ∑
n
(1 − σ2

n φα(σn)
2)
〈

x†, vn

〉
vn for y ∈ D(K†) and x† = K†y.
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Proof. We first compute

KRαy = Kφα(K∗K)K∗y = ∑
n

φα(σ
2
n)σn ⟨y, un⟩Kvn = ∑

n
φα(σ

2
n)σ

2
n ⟨y, un⟩ un

and then get that

∥KRαy∥2
Y = ∑

n
|φα(σ

2
n)σ

2
n ⟨y, un⟩|2

≤ sup
n
|φα(σ

2
n)σ

2
n |2∥y∥2

Y

which, by definition of the constant Cφ, implies the claim (1). For

the claim (2) compute

∥Rαy∥2
X = ⟨Rαy, Rαy⟩ = ∑

n
φα(σ

2
n)σn ⟨y, un⟩ ⟨Rαy, vn⟩

= ∑
n

φα(σ
2
n) ⟨y, un⟩ ⟨Rαy, K∗un⟩

= ∑
n

φα(σ
2
n) ⟨y, un⟩ ⟨KRαy, un⟩

≤ sup
n
|φα(σ

2
n)|∑

n
⟨y, un⟩ ⟨KRαy, un⟩

≤ sup
n
|φα(σ

2
n)|
(

∑
n
⟨y, un⟩2

)1/2(
∑
n
⟨KRαy, un⟩

)1/2

(by Cauchy-Schwarz)

≤ sup
n
|φα(σ

2
n)|∥y∥∥KRαy∥

≤ sup
n
|φα(σ

2
n)|Cφ∥y∥2

Y (by claim (1))

which proves the claim. Finally, for claim (3) we note that if x† =
K†y, then K∗Kx† = K∗y and thus

Rαy = φα(K∗K)K∗y = φα(K∗K)K∗Kx

and we get

K†y − Rαy = (id−φα(K∗K)K∗K)x† = ∑
n
(1 − σ2

n φα(σ
2
n))
〈

x†, vn

〉
vn.

Theorem 7.6 (Regularization with regularizing filters). Let φα be
a regularizing filter and Rα = φα(K∗K)K∗. Then it holds for all y ∈
D(A†) that

Rαy α→0−→ K†y.

Proof. By Lemma 7.5 (3) we have

∥K†y − Rαy∥2
X = ∑

n
(1 − σ2

n φα(σ
2
n))

2|
〈

x†, vn

〉
|2.

Since φα(λ) → 1/λ for α → 0 we get (1− σ2
n φα(σ2

n)) → 0 for α →
0. Moreover, |1− σ2

n φα(σ2
n)| ≤ 1+ Cφ and hence, the convergence

Rαy → K†y follows from the dominated convergence theorem

(Theorem 3.5).
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Next we will show that there is a general strategy to construct

a parameter choice rule that turns regularizing filters into conver-

gent regularization methods.
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8 Parameter choice and error estimates

We will now investigate the problem of a-priori parameter choice

for general spectral regularization methods of the type Rα =
φα(K∗K)K∗

for a regularizing filter φα.

Theorem 8.1. Let K† be non-continuous and Rα be a regularization
of K†. Then it holds: An a priori parameter choice α(δ) fulfills that
∥Rα(δ)yδ − x†∥X → 0 for δ → 0 exactly if

(i) α(δ) → 0 for δ → 0, and

(ii) δ sup0<λ≤∥K∥2

{√
|φα(λ)|

}
→ 0 for δ → 0.

Proof. We start with our standard error decomposition

∥Rαyδ − x†∥X ≤ ∥Rα∥δ + ∥Rαy† − K†y†∥X.

By Theorem 7.6 and α(δ) → 0 we get that the second term on

right hand side goes to zero. By Lemma 7.5 (2) we have that ∥Rα∥ ≤
supλ∈]0,∥K∥2]

{√
|φα(λ)|

}
and hence, the first term goes to zero

as well.

Conversely, assume that either (i) or (ii) does not hold. Let’s

start with the case where (i) does not hold. Then Rα(δ) does not

converge to K†
pointwise. Hence, we can even set yδ = y ∈ D(K†),

x† = K†y and get that ∥Rα(δ)yδ − x†∥X = ∥Rα(δ)y − K†y∥ ̸→ 0.

If (i) is fulfilled, but (ii) not, there exists δn with δn
n→∞−→ 0 such

that δn∥Rα(δn)∥ > ϵ for some ϵ. Hence, there exists a sequence

zn ∈ Y with ∥zn∥Y = 1 and δn∥Rα(δn)zn∥X > ϵ. Now let y ∈ D(K†)
and set yn := y + δnzn. Then ∥y − yn∥ = δ, but

Rα(δn)yn − K†y = (Rα(δn)y − K†y) + δnRα(δn)zn ̸→ 0.

Now we aim for more sophisticated error estimates. What is

needed, is a better estimate of the approximation error. As we

have seen in Theorem 6.5, this is not possible without additional

assumptions.

By Lemma 7.5 (3) we have that=

K†y† − Rαy† = ∑
n
(1 − σ2

n φα(σ
2
n))
〈

x†, vn

〉
vn (*)

if x† = K†y†
. However, bounding this error just in terms of α is

not possible, since the decay of the terms

〈
x†, vn

〉
is not known

(the sequence has to be square summable, but that’s basically all

we know). Here is a simple way to get a useful error bound:

We assume that our true solution x†
is in rg(K∗).
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How does that help? Well, in this case we have some w†
with

x† = K∗w†
, we get from (*)

∥K†y† − Rαy†∥2
X = ∑

n
(1 − σ2

n φα(σ
2
n))

2|
〈

x†, vn

〉
|2

= ∑
n
(1 − σ2

n φα(σ
2
n))

2|
〈

K∗w†, vn

〉
|2

= ∑
n
(1 − σ2

n φα(σ
2
n))

2|
〈

w†, Kvn

〉
|2

= ∑
n
(1 − σ2

n φα(σ
2
n))

2σ2
n |
〈

w†, vn

〉
|2. (**)

Now we may get an error bound, if we can control the coefficients

(1 − σ2
n φα(σ2

n))
2σ2

n . Expressed in the variable λ = σ2
this says

that we have to control the function λ 7→ (1 − λφα(λ))
√

λ. Let

us investigate the situation for the truncated SVD and Tikhonov

regularization:

Example 8.2. 1. For the truncated SVD we have φα(λ) = 1/λ
for λ ≥ α and = 0 else. So we get Note the we change the threshold in

comparison to Example 5.7: There we
took 1/σn if σn < α and here we use
1/σn = σn/σ2

n if σ2
n > α, i.e. for σn >√

α.
(1 − λφα(λ))

√
λ =

{
0 : λ ≥ α√

λ : λ < α

and thus, (1 − λφα(λ))
√

λ ≤
√

α or, equivalently

(1 − σ2φα(σ
2))2σ2 ≤ α.

Using this in (**), we obtain for the approximation error

∥K†y† − Rαy†∥2
X = ∑

n
(1 − σ2

n φα(σ
2
n))

2σ2
n |
〈

w†, vn

〉
|2

≤ α ∑
n
|
〈

w†, vn

〉
|2 ≤ α∥w∥2

Y

and thus

∥K†y† − Rαy†∥X ≤
√

α∥w†∥Y.

2. For Tikhonov regulrization we have φα(λ) = 1/(λ + α) and

we get

(1 − λφα(λ))
√

λ = (1 − λ
λ+α )

√
λ = α

√
λ

λ+α .

We want to maximize the right hand side over λ ≥ 0. To this

end we define f (λ) =
√

λ
λ+α , calculate f ′(λ) = 1

2
αλ−1/2−λ1/2

(λ+α)2

and see that f ′(λ) = 0 for λ = α. Hence, we get that
α
√

λ
λ+α ≤

α
√

α
α+α = 1

2
√

α.

Again, using this in (**) gives ∥K†y† − Rαy†∥2
X ≤ α

4∥w†∥2
Y

and thus

∥K†y† − Rαy†∥X ≤
√

α
2 ∥w†∥Y.
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We conclude: If the unknown solution fulfills x† ∈ rg(K∗),
then the total error of both the truncated SVD and Tikhonov reg-

ularization can be estimated by

∥xδ
α − x†∥X ≤ δ∥Rα∥+

√
αC

for some constant C (independent of α and δ). This our first quan-

titative error bound, i.e. an upper bound for the total error that

is explicit in δ and α. We also know that ∥Rα∥ ≤ supλ

√
|φα(λ)|

and for both the truncated SVD and Tikhonov regularization we

conclude by a simple calculation that ∥Rα∥ ≤ 1/
√

α. This gives

the even more explicit error estimate

∥xδ
α − x†∥X ≤ δ√

α
+
√

αC.

Now we can even choose the regularization parameter α in an

optimal way: We can minimize the right hand side over α and see

that the minimum is attained for α(δ) = δ/C and this gives the

error estimate

∥xδ
α − x†∥X ≤ 2

√
C
√

δ.

Even if we do not know the constant C, we could still set α propor-

tional to δ, i.e. α(δ) = cδ for some constant c, and obtain

∥xδ
α − x†∥X ≤ O(δ1/2).

Results of this form are called convergence rates of regularization

methods.

Assumption on the unknown solution x†
such as x† ∈ rg(K∗)

are called source conditions. △

We will come back to error estimates and convergence rates

later.

Now we briefly discuss the most popular a posteriori parameter

choice rule: Recall that our standing assumption is that the true

data y†
and our measured data yδ

always fulfill ∥y† − yδ∥Y ≤ δ.

The main idea now is to look at the residuum for a reconstruction

Rαyδ
, i.e. to consider

∥KRαyδ − yδ∥Y.

The residuum for the minimum norm solution x†
fulfills ∥Kx† −

yδ∥Y = ∥y† − yδ∥Y ≤ δ, thus it seems reasonable to not aim for a

smaller residuum for any other reconstruction. This is the idea of

the following:

Morozov’s discrepancy principle: For some δ > 0 and

yδ
with ∥y† − yδ∥Y ≤ δ choose α = α(δ, yδ) (as large

as possible) such that

∥KRαyδ − yδ∥Y ≤ τδ

for some τ > 1. We want to choose α as large as possi-
ble, to have the most stable reconstruc-
tion.
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Remark 8.3. This principle does not work without assumptions:

For y† ∈ rg(K)⊥ \ {0} and exact data yδ = y†
(i.e. δ = 0) even the

minimum norm solution x†
fulfills

∥Kx† − yδ∥Y = ∥KK†y† − y†∥Y = ∥Prg Ky† − y†∥ = ∥y†∥Y > 0 = τδ.

Therefore one usually assumes that the range rg K is dense in Y
(since then rg K⊥ = {0}).

For a practical realization of Morozov’s discrepancy principle

one usually defines a decreasing sequence αn → 0, computes

Rαn yδ
for n = 1, 2, . . . and stops when ∥Rαn yδ − yδ∥Y ≤ τδ for

the first time. This always works if the range of K is dense:

Theorem 8.4. Let Rα = φα(K∗K)K∗ be a regularization of K†, rg K
dense in Y, αn be a strictly decreasing null sequence and τ > 1. Then
it holds: For all y† ∈ D(K†), all δ > 0 and yδ with ∥y† − yδ∥Y ≤ δ
there exists an n∗ such that for all n < n∗

∥KRαn∗ yδ − yδ∥Y ≤ τδ < ∥KRαn yδ − yδ∥Y.

Proof. We study ∥KRαyδ − yδ∥ in dependence on α. Using the filter

we get

∥KRαyδ − yδ∥2 = ∑
n
(1 − σ2

n φα(σ
2
n))

2|
〈

yδ, un

〉
|2 + ∥Prg(K)⊥(y

δ)∥2

= ∑
n
(1 − σ2

n φα(σ
2
n))

2|
〈

yδ, un

〉
|2

since rg(K)⊥ = {0}. As we have seen in Theorem 7.6, the right

hand side goes to zero which proves the claim.

If we do not assume that rg(K) is dense,
we only get that ∥KRαyδ − δ∥ →
∥Prg(K)⊥yδ∥ ≤ ∥yδ∥. Hence, we need
that ∥yδ∥ ≤ δ for Morozov’s discrep-
ancy principle to work. This seems rea-
sonable: There should be “more signal
than noise”.

We will show later that Morozov’s principle does indeed give a

convergent regularization and now make a few remarks on heuristic
rules: First and foremost, there a negative result, named Bakushinkii
veto.

Theorem 8.5 (Bakushinkii veto). Let Rα be a regularization for K†.
If there exists a heuristic choice rule α = α(yδ) such that (Rα, α) is a
convergent regulariztion, then K† is continuous.

Proof. Let α : Y → ]0, ∞[ by such a parameter choice. Now let y ∈
D(K†) and consider yn ∈ D(K†) with yn → y. But then (trivially)

∥yn − yn∥Y ≤ δ for every δ > 0 and by definition of convergent

regularization we get ∥K†yn − Rα(yn)yn∥Y = 0, i.e. Rα(yn)yn =

K†yn. Moreover, we have for δn = ∥y − yn∥Y (again by definition

of convergent regulariztion) that

K†yn = Rα(yn)yn → K†y

which proves continuity of K†
.
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This theorem shows that heuristic rules only exist for inverse

problems that aren’t ill-posed. Despite this negative result there are

several heuristic rules that work remarkably well in practice. This

phenomenon is still not fully understood. One explanation could

be that one usually faces a perturbation yδ = y† + η by noise η in

practice, but our theory uses general η ∈ Y, i.e. also perturbations

which do not look like noise at all are considered. Some rules that

work well in practice are the quasi-optimality principle, the Hanke-

Raus rule, the L-curve method, and generalized cross validation.
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9 Convergence rates and smoothness spaces

In this section we will focus on the question on how to establish

convergence rates, i.e. under what circumstances we can find a

function ψ : ]0, ∞[ → ]0, ∞[ with ψ(δ) → 0 for δ → 0 such that

∥Rαyδ − K†y†∥X ≤ ψ(δ)

for a-priori or a-posteriori parameter choice rules. Recall that by

Theorem 6.5 this can not hold without any further assumptions,

i.e. it can’t be true if we consider y†
arbitrary in the range of K (or,

equivalently, x†
arbitrary in X).

However, we have seen in Example 8.2 that such a result can

be achieved for the truncated SVD and Tikhonov regularization

(for the a-priori choice rule α(δ) = C
√

δ and ψ(δ) = C
√

δ) if

we assume x† ∈ rg(K∗) ⊊ X. This assumption is some kind of

“abstract smoothness assumption”. The notion of smoothness that

we will need will be formulated in terms of the operator K and

may look confusing at first:

Definition 9.1. Let X, Y be Hilbert spaces and K ∈ K(X, Y). For

ν ≥ 0 we define the subspaces Xν ⊂ X as

Xν := rg(|K|ν) =
{
|K|νz

∣∣∣ z ∈ ker(K)⊥
}

.

Some first observations:

• For ν = 2k we have that

X2k = rg(|K|2k) = rg(
√

K∗K
2k
) = rg((K∗K)k).

• If ν > µ, then |K|ν = |K|µ|K|ν−µ
, i.e. rg(|K|ν) ⊂ rg(|K|µ)

and thus Xν ⊂ Xµ
, i.e. the spaces get smaller, the larger the

ν. The boundary case is X0 = ker(K)⊥.

• The spaces Xν
are characterized by summability assump-

tions of the coefficients in the singular basis: If there is

z such that x = |K|νz we have by definition of |K|ν that

x = ∑n σν
n ⟨z, vn⟩ un and hence

∑
n

σ−2ν
n |⟨x, vn⟩|2 = ∑

n
σ−2ν

n σ2ν
n |⟨z, vn⟩|2 = ∥z∥2

X < ∞.

In other words: For x ∈ Xν
we need that the sequence ⟨x, vn⟩

decays fast enough such that the decay of |⟨x, vn⟩|2 compen-

sates the growth of σ−2ν
n .

The last observation motivates the following definition:

Definition 9.2. On Xν
we define the norm

∥x∥2
ν := ∥z∥2

X = ∑
n

σ−2ν
n |⟨x, vn⟩|2, Xν = {x | ∥x∥ν < ∞}

We call these norms ν-norms. Note that the notation Xν and ∥·∥ν

do not include their dependency on K.
Since these spaces are only considered
for one K at a time, this usually does
not lead to confusion.
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In a certain sense, these norms measure smoothness, i.e. some

ν-norm of x is finite, only if x is somehow smooth and the larger

we can take ν while ∥x∥ν stays finite, the smoother x is. A bit more

precise: The Xν
spaces demand a certain decay of the expansion

coefficients with respect to the singular basis; the faster the coef-

ficients ⟨x, vn⟩ decay, the “smoother” the x is. As we have already

observed: The singular vectors vn with large n are usually highly

oscillating and thus, they can not contribute much to a function

that is in some Xν
with large ν. In the following example we can

make this a bit more precise:

Example 9.3. We consider the following integral operator:

K f (t) =
1∫

0

k(t, s) f (s)ds, k(t, s) =
{

t(1 − s) : t ≤ s
s(1 − t) : s ≤ t .

This operator maps L2([0, 1]) into itself and is compact (cf. Exam-

0
0.5

1

0
0.5

1
0

0.2

ple 4.3). One can show that

K f = g ⇐⇒
{
−g′′ = f , and

g(0) = g(1) = 0
.

Not a full proof but the first calculations: The equation g = K f
is

g(t) =
1∫

0

k(s, t) f (s)ds

=

t∫
0

s(1 − t) f (s)ds +
1∫

t

t(1 − s) f (s)ds

= (1 − t)
t∫

0

s f (s)ds + t
1∫

t

(1 − s) f (s)ds.

We directly see that g(0) = g(1) = 0 follows. We take the
derivative on both sides (using the known rules) gives

g′(t) = −
t∫

0

s f (s)ds + (1 − t)t f (t) +
1∫

t

(1 − s) f (s)ds − t(1 − t) f (t)

= −
t∫

0

s f (s)ds +
1∫

t

(1 − s) f (s)ds.

The second derivative is

g′′(t) = −t f (t)− (1 − t) f (t) = − f (t).

In principle one can argue similarly in the opposite direction
as well.

Moreover K is selfadjoint, since k(s, t) = k(t, s). One can also show

that the SVD of K is given by

σn = 1
(πn)2 , un(t) = vn(t) =

√
2 sin(πnt).
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This allows us to characterize the spaces Xν
a quite explicitly:

By Definition 9.2 we have

f ∈ Xν ⇐⇒ ∥ f ∥2
ν = 2π4ν ∑

n
n4ν|⟨ f , sin(πn·)⟩|2 < ∞.

Now one can show the following: For f ∈ C2ν([0, 1])with f (2k)(0) =
f (2k)(1) = 0 for k = 0, . . . , ν − 1 it holds that

∥ f ∥ν = ∥ f (2ν)∥L2 .

We start from the right and use that vn(t) =
√

2 sin(πnt) is
an orthonormal basis of L2([0, 1]) to get

∥ f (2ν)∥2
L2 = ∑

n
|
〈

f (2ν), vn

〉
|2.

For the inner products we use integration by parts two times,
the boundary conditions of f and that the sine functions vanish
at the boundary to get

〈
f (2ν), vn

〉
=

1∫
0

f (2ν)(t)
√

2 sin(πnt)dt

= f (2ν−1)(t)
√

2 sin(πnt)
∣∣∣1
0︸ ︷︷ ︸

=0

−
1∫

0

f (2ν−1)(t)
√

2(πn) cos(πnt)dt

= f (2ν−2)(t)
√

2(πn) cos(πnt)
∣∣∣1
0︸ ︷︷ ︸

=0

+

1∫
0

f (2ν−2)
√

2(πn)2 sin(πnt)dt

= (πn)2
〈

f (2ν−2), vn

〉
.

Recursively, this gives
〈

f (2ν), vn

〉
= (πn)2ν ⟨ f , vn⟩ and hence

∥ f (2ν)∥2
L2 = 2π4ν ∑

n
n4ν|⟨ f , sin(πn·)⟩|2 = ∥ f ∥2

ν

as claimed.

This can be used to rigorously prove that it holds

Xν =
{

f ∈ C(2ν)([0, 1])
∣∣ f (2k)(0) = f (2k)(1) = 0

}∥·∥ν
,

i.e. the space Xν
is the closure of the space of 2ν-times continuous

differentiable functions with respective boundary conditions with

respect to the ν-norm. △

Our aim is to construct methods (Rα, α) such that the total

error ∥Rαyδ − x†∥X is small. First we will establish a baseline and

analyze the question of “how good can a reconstruction method

R : Y → X be in general”. We introduce a little more notation:
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Definition 9.4 (Worst case error in ν-spaces). Let K ∈ K(X, Y) and

R : Y → X continuous with R0 = 0. We define

Eν(δ, ρ, R) = sup
{
∥Ryδ − x†∥X

∣∣∣ x† ∈ Xν, ∥Kx† − yδ∥Y ≤ δ, ∥x†∥ν ≤ ρ
}

.

This quantity is the worst case total error of the method R over solutions
in an Xν-ball of radius ρ and noise level δ. Furthermore we define

Eν(δ, ρ) = inf {Eν(δ, ρ, R) | R : Y → X continous with R0 = 0} .

This is the best possible worst case error of any method over solutions in
an Xν-ball of radius ρ and noise level δ.

This “best possible worst case error” may look a bit weird, but

is actually not hard to quantify:

Theorem 9.5. For K ∈ K(X, Y) it holds that

Eν(δ, ρ) ≥ sup {∥x∥X | ∥Kx∥Y ≤ δ, ∥x∥ν ≤ ρ} =: eν(δ, ρ).

The quantity on the right hand side has
a simple explanation: It is a so-called
modulus of continuity of K† restricted to
some set defined by δ, ν and ρ. These
three parameters have the following
meaning:
δ: Noise level
ν: Degree of smoothness
ρ: “Largeness” in the smoothness class.
The noise level is often available (or
can be estimated), the smoothness may
be guessed, but the largeness in the
smoothness class is basically never
known.

Proof. Let x ∈ Xν
with ∥Kx∥Y ≤ δ and ∥x∥ν ≤ ρ and R : Y → X

be arbitrary (given the conditions). We set y = Kx and yδ = 0.

Then this x is in the feasible set for the supremum in the definition

of Eν(δ, ρ, R) and thus Eν(δ, ρ, R) ≥ ∥x∥X . Taking the supremum

over all these x we get the inequality eν(δ, ρ) ≤ Eν(δ, ρ, R). The

claim follows by taking the infimum over all R.

The following theorem shows, how large the lower bound

eν(δ, ρ) of the best worst case error can be:

Theorem 9.6. Let K ∈ K(X, Y). Then it holds for all ν, ρ, δ > 0 that

eν(δ, ρ) ≤ δ
ν

ν+1 ρ
1

ν+1 .

Moreover, there exists a sequence δn with δn
n→∞−→ 0 such that there is

equality along that sequence.

Proof. Let x ∈ Xν
with ∥x∥ν ≤ ρ and ∥Kx∥Y ≤ δ. Then there is

z ∈ X such that x = |K|νz. We would like to estimate ∥x∥X =
∥|K|νz∥X in terms of ∥z∥X = ∥x∥ν and ∥Kx∥Y. To that end we

use the following result (also known as interpolation inequality): For

r > s ≥ 0 and all x it holds that ∥|K|sx∥X ≤ ∥|K|rx∥
s
r
X∥x∥1− s

r
X .

The definition of |K|s gives

∥|K|sx∥X = ∑
n

σ2s
n |⟨x, vn⟩|2.
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Now we define sequences an = σ2s
n |⟨x, vn⟩|2

s
r and bn =

|⟨x, vn⟩|2−2 r
s and numbers p = r/s and q = r/(r − s). We

use the Hölder inequality to get

∥|K|sx∥2
X = ∑

n
σ2s

n |⟨x, vn⟩|2

= ∑
n

anbn ≤
(

∑
n

ap
n

)1/p

·
(

∑
n

bq
n

)1/q

=

(
∑
n

σ2r
n |⟨x, vn⟩|2

)s/r

·
(

∑
n
|⟨x, vn⟩|2

)(r−s)/r

= ∥|K|rx∥2s/r
X ∥x∥2(r−s)/r

X

which proves the claim.

We use this claim with s = ν and r = ν + 1 and

∥x∥X = ∥|K|νz∥X ≤ ∥|K|ν+1z∥
ν

ν+1
X ∥z∥

1
ν+1
X

= ∥K |K|νz︸ ︷︷ ︸
=x

∥
ν

ν+1
X ∥z∥

1
ν+1
X ≤ δ

ν
ν+1 ρ

1
ν+1 .

For the equality we set δn = ρσν+1
n and xn = ρ|K|νvn. One can

show that this gives indeed equality.

Note that by definition of |K|ν we have x = ρσν
nvn and by

definition of the ν-norm we have that ∥x∥ν = ∥ρvn∥X = ρ
and ∥Kx∥Y = ∥ρσν

n Kvn∥Y = ρσν
n∥σnun∥ = ρσν+1

n = δn as
needed. From δn = ρσν+1

n we get that σn = (δn/ρ)1/(ν+1)

and thus

∥x∥X = ρσν
n = ρ

(
δn
ρ

) ν
ν+1 = δ

ν
ν+1
n ρ

1
ν+1

as desired.

Inverse Problems | Version of June 15, 2023 | SoSe 2022 51



27.06.2022, VL 10-1

10 Convergence rates for spectral regularization

The above Theorems 9.5 and 9.6 give a benchmark with which we

can compare regularization methods: They can not do better than

the right hand side δ
ν

ν+1 ρ
1

ν+1 for data x†
from Xν

with ∥x†∥ν ≤ ρ.

We fix this in the following definition:

Definition 10.1. A regularization method (Rα, α) is called optimal
for parameters ρ and ν, if for all x†

with ∥x†∥ν ≤ ρ and yδ
with

∥Kx† − yδ∥Y ≤ δ it holds that

∥Rαyδ − x†∥X = δ
ν

ν+1 ρ
1

ν+1 .

We call the method order optimal for parameters ρ and ν if there

exists some C such that for all x†
as above it holds that

∥Rαyδ − x†∥X = Cδ
ν

ν+1 ρ
1

ν+1 .

Finally, we call a method order optimal for ν, if for all x† ∈ Xν
and

yδ
with ∥Kx† − yδ∥ ≤ δ there exists C such that

∥Rαyδ − x†∥ ≤ Cδ
ν

ν+1 .

The assumptions ∥x†∥ν ≤ ρ or x† ∈ Xν
are called source conditions

and the element z with |K|νz = x†
is called source element.

In the case of Example 9.3, the source
condition x† ∈ Xν means that x† is
2ν-times (weakly) differentiable (with
additional boundary conditions) with
2ν-th weak derivative z which is an L2-
function.

Recall the Definition 7.4 of a regularizing filter: A family of

functions φα (piecewise continuous and bounded) on the interval

[0, κ] (κ = ∥K∥2
) is a regularizing filter, if for λ > 0 it holds that

φα(λ)
α→0−→ 1

λ , λ|φα(λ)| ≤ Cφ

for some Cφ > 0. Theorem 7.6 showed that regularizing filters

indeed lead to convergent regularizations. Now we want to answer

the question when a regularizing filter is optimal or order optimal.

The key to such results are estimates of the approximation

error under the assumption that x†
lies in a ρ-ball in Xν

, i.e. under

the assumption that x†
is “ν-smooth” and “ρ-large”.

We can express such estimates for a given filter φα with the

functions

ων(α) := sup
0<λ≤κ

λν/2|rα(λ)| (recall rα(λ) = 1 − λφα(λ))

= sup
0<λ≤κ

λν/2|1 − λφα(λ)|.

These functions can be used to get bounds on the approximation

error, the depend on α.

Lemma 10.2. Let y† ∈ D(K†) and x† ∈ Xν with ∥x†∥ν ≤ ρ. Further
define xα = Rαy†. Then it holds for all α > 0 that

∥xα − x†∥X ≤ ων(α)ρ,

∥Kxα − Kx†∥Y ≤ ων+1(α)ρ.
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Proof. If ∥x†∥ν ≤ ρ we have that x† = |K|νw = (K∗K)ν/2w
with ∥w∥X ≤ ρ. Then from Lemma 7.5 (3) and using

〈
x†, vn

〉
=〈

(K∗K)ν/2w, vn
〉
= σν

n ⟨w, vn⟩ we get

x† − xα = ∑
n
(1 − σ2

n φα(σ
2
n))
〈

x†, vn

〉
vn

= ∑
n

rα(σ
2
n)σ

ν
n ⟨w, vn⟩ vn.

Taking the squared norm gives

∥x† − xα∥2
X = ∑

n
(rα(σ

2
n)σ

ν
n)

2|⟨w, vn⟩|2

≤ ων(α)
2 ∑

n
|⟨w, vn⟩|2 ≤ ων(α)

2∥w∥2
X

as claimed. For the second claim recall from Lemma 7.3 that

∥|K|x∥X = ∥Kx∥Y and thus

∥Kxα − Kx†∥Y = ∥|K|(xα − x†)∥.

Moreover,

|K|(xα − x†) = (K∗K)1/2rα(K∗K)(K∗K)ν/2w = ∑
n

σnrα(σ
2
n)σ

ν
n ⟨w, vn⟩ vn.

Since |σnrα(σ2
n)σ

ν
n |2 = |rα(σ2

n)σ
ν+1
n |2 ≤ ων+1(α)

2
the second claim

follows similar to the first one.

Now we can show how to achieve order optimal regularization:

Theorem 10.3 (Order optimal a-priori parameter choice). Let K ∈
K(X, Y). If φα is a regularizing filter for which fulfills

sup
0<λ≤∥K∥2

|φα(λ)| ≤ Cφα−1

ων(α) ≤ Cναν/2.

If the a-priori choice α fulfills

c
(

δ
ρ

) 2
ν+1 ≤ α(δ) ≤ C

(
δ
ρ

) 2
ν+1

for some 0 < c < C, then (Rα, α) is an order optimal regularization
method in the sense of Definition 10.1.

Proof. As always we start with our error decomposition

∥xδ
α(δ) − x†∥X ≤ δ∥Rα(δ)∥+ ∥xα(δ) − x†∥X.

From Lemma 7.5 (2) and our first assumption we know that

∥Rα(δ)∥ ≤
√

Cφ

√
sup

0<λ≤∥K∥2
|φα(δ)(λ)| ≤ Cφα(δ)−1/2.
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From Lemma 10.2 and our second assumption we get

∥xα(δ) − x†∥X ≤ ων(α(δ))ρ ≤ Cνα(δ)ν/2ρ.

We use these estimates in the error decomposition and use the

upper and lower bound of the parameter choice to get

∥xδ
α(δ) − x†∥X ≤ Cφα(δ)−1/2δ + Cνα(δ)ν/2ρ

≤ Cφc−1/2δ
− 1

ν+1 ρ
1

ν+1 δ + CνCν/2δ
ν

ν+1 ρ
− ν

ν+1 ρ

= (Cφc−1/2 + CνCν/2)δ
ν

ν+1 ρ
1

ν+1 .

Let us investigate the few filters we know if they can lead to

order optimal methods To that end, let us collect the inequalities

that we need:

Example 10.4 (Order optimality of the truncated SVD). The filter is

φα(λ) = 1/λ for λ ≥ α and = 0 else. Thus rα(λ) = 0 for λ ≥ α
and = 1 else. We get

sup
λ

|φα(λ)| = 1
α (attained at λ = α) =⇒ Cφ = 1,

and

ων(α) = sup
λ

λν/2|rα(λ)| = αν/2
(attained at λ = α) =⇒ Cν = 1.

We see that the truncated SVD is indeed an order optimal regu-

larization method (for any ν > 0)! As such, the method can make

use of any smoothness in the (unknown) solution. The smoother

x†
, the better the convergence rate will be since the exponent

ν/(ν + 1) of δ in Theorem 10.3 will be larger for larger ν. △

Example 10.5 (Order optimality and saturation for Tikhonov regu-

larization). The filter is φα(λ) = (λ + α)−1
and thus

rα(λ) = 1 − λφα(λ) = 1 − λ
λ+α = α

λ+α .

We get

sup
λ

|φα(λ)| = 1
α (attained at λ = 0) =⇒ Cφ = 1.

For the other condition we need to investigate the supremum of

λν/2|rα(λ)| = α λν/2

λ+α . We define f (λ) = λν/2

λ+α and note:

• ν > 2: The function f is unbounded on ]0, ∞[ (since ν/2 >
1) and hence, the supremum is infinite.

• ν = 2. Here f (λ) < 1 and even f (λ) → 1 for λ → ∞ and

thus

sup
λ

λν/2|rα(λ)| = α = αν/2, =⇒ C1 = 1.
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• 0 < ν < 2: Here we have f (0) = 0 and f (λ) → 0 for λ → 0
and hence a finite maximum exists. The condition f ′(λ) = 0

is 0 = ( ν
2 λ

ν
2−1(λ+ α)−λ

ν
2 )/(λ+ α)2

which holds exactly if

λ
ν
2−1( ν

2 (λ + α)− λ) = 0 Since 0 < λ < 2 the only solution

is λ = ν
2−ν α and corresponds to a maximum. We plug this

is and get

sup
λ

λν/2|rα(λ)| = α
(

ν
2−ν α

)ν/2 ( ν
2−ν α + α

)−1

= α
(

ν
2−ν

)ν/2
α

ν
2
( 2

2−ν

)−1
α−1

=
(

ν
2−ν

) ν
2 2−ν

2 αν/2

= νν/2(2−ν)(2−ν)/2

2 αν/2 =⇒ Cν =

√
νν(2−ν)2−ν

2 .

In conclusion: Tikhonov regularization is an order optimal

The constant Cν is not as bad as it may
look. Here is Cν is dependence on ν:

0 0.5 1 1.5 2
0

0.2
0.4
0.6
0.8

1
regularization method for 0 ≤ ν ≤ 2 but not for ν > 2. As

such, it can take advantage of smoothness up to the space

X2 = rg |K|2 = rg(K∗K).

△

While the a-priori rule from Theorem 10.3 indeed leads to

order optimal methods, one drawback is that they need knowledge

about both ν and ρ. Without knowledge of ρ one could still choose

α(δ) ∝ δ2/(ν+1)
and obtain on order optimal method ( just go

through the estimates in the proof and see that you get the right

exponent for δ in the end). The symbol ∝ indicates that the left
hand side is proportional to the right
hand side, i.e. that α(δ) = Cδ2/(ν+1)

for some C. We could also consider
cδ2/(ν+1) ≤ α(δ) ≤ Cδ2/(ν+1)

Morozov’s discrepancy principle (the only a-posteriori method

we know) does not need any knowledge about ν or ρ. Remarkably,

this parameter choice also turns out to be order optimal (but in

slightly less cases). Before we can formulate this, we make one

more definition:

Definition 10.6. Let φα be a regularizing filter with sup0<λ≤∥K∥2 |φα(λ)| ≤
Cφα−1

. We say that this filter has qualification ν0 if ων(α) ≤ Cναν/2

is fulfilled for all 0 ≤ ν ≤ ν0. (It it holds for all ν ≥ 0 we say that

the qualification is ν0 = ∞).

Theorem 10.7 (Optimality of Morozov’s discrepancy principal).
The φα be a regularizing filter with qualification ν0 > 0 and let

τ > sup
α>0, 0<λ≤κ

|rα(λ)| =: Cr.

Then the parameter choice defined by Morozov’s discrepancy principle
with this τ (cf. Section 8) is an order optimal regularization method for
0 ≤ ν ≤ ν0 − 1.

Unfortunately, the proof does not fit into the lecture. It can be

found in the lecture notes “Regularization of inverse problems”

by Christian Clason, Theorem 5.11, available at https://arxiv.
org/abs/2001.00617.
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Here is an example that shows that the results of Theorem 10.3

is indeed quite close to what one can observe in practice:

% Dimension of the problem
n = 2000;
% deriv2 from the regu-toolbox (from MATLAB’s file exchange) implements the
% "inverse of the negative second derivative" from Example 8.3
[A,~,~] = deriv2(n);

% The constant 1 function should be in X^nu for nu<1/4.
% We take the edge case anyway.
x = ones(n,1);
nu = 1/4;

% now do three choices for alpha of the form alpha = delta^s
% one optimal, the other too large and small, resp.
% According to Theorem 9.3 the optimal s is s=2/(nu+1) = 2/(5/4) = 1.6
% expected rate for alpha = delta^s is C*delta^r with r= min(1-s/2,s*nu/2)
% See the proof of Theorem 9.3
s1 = 1.6;
r1 = min(1-s1/2,s1*nu/2)
s2 = 1;
r2 = min(1-s2/2,s2*nu/2)
s3 = 3;
r3 = min(1-s3/2,s3*nu/2)

% Some noise levels going to zero
deltas = logspace(0,-5,20);
% Some noise levels going to zero
% Precompute A’*A
ATA = A’*A;
y = A*x;
for k = 1:length(deltas)
% for each delta construct data with that noise level
delta = deltas(k);
noise = randn(n,1);noise = noise/norm(noise);
ydelta = y + delta*noise;
C = 1; % C could be anything. It’s choice does not affect the rate,

% but it does affect the values or the errors.
% these are our alphas
alpha1 = C*delta^s1;
alpha2 = C*delta^s2;
alpha3 = C*delta^s3;

% Precompute A’*ydelta
ATydelta = A’*ydelta;
% reconstruct by Tikhonov
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x1 =(ATA+alpha1*eye(n))\(ATydelta);
x2 =(ATA+alpha2*eye(n))\(ATydelta);
x3 =(ATA+alpha3*eye(n))\(ATydelta);

% measure the errors
error1(k) = norm(x1 - x);
error2(k) = norm(x2 - x);
error3(k) = norm(x3 - x);

end

offset = error1(1); %used to adjust the plots
% plor total errors:
loglog(deltas,error1,deltas,error2,deltas,error3)
hold on
% plot the expected rates
loglog(deltas,offset*deltas.^r1,...
deltas,offset*deltas.^r2,...
deltas,offset*deltas.^r3)

legend(’s=1.6’, ’s=1’, ’s=3’,’rate for s=1.6’, ’rate for s=1’, ’rate for s=3’)

r1 = 0.2000
r2 = 0.1250
r3 = -0.5000

One should add that the plot changes quite a bit if we move

to even smaller noise levels. There we will see that the plot for

s = 3 (much too small regularization parameter) will go down

again, contrary to what has been predicted by theory. This may

due to effects of the finite precision of floating point arithmetic.
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11 Iterative regulariztion

The idea of iterative regularization is to use iterative methods that

can either solve Kx = y or minimize ∥Kx − y∥2
Y exactly in the case

where y is in the range of K (or the domain of the pseudo inverse

in the latter case), apply them to the case with some yδ
instead

of y, even though yδ
is not in the range of K. We expect that the

method will not converge in this case and hence, we stop them at

some point. The simplest iterative regularization method is the

Landweber method and we motivate the method two times:

Example 11.1 (Landweber as a fixed point iteration). We start from

the normal equations K∗Kx = K∗y and rewrite them as

x = x − ω(K∗Kx − K∗y) = x − ωK∗(Kx − y)

for some ω ∈ R We turn this into a fixed point iteration

xn+1 = xn − ωK∗(Kxn − y).

For the sake of simplicity we start with x0 = 0. We analyze the

convergence of the iteration by Banach’s fixed point theorem. The

map under consideration is x 7→ x − ωK∗(Kx − y), so we analyze

∥x − ωK∗(Kx − y)− (x′ − ωK∗(Kx′ − y)∥X = ∥(I − ωK∗K)(x − x′)∥X.

We see that the iteration map is a contraction if ∥id−ωK∗K∥ < 1.

If this holds, we can see inductively that from x0 = 0 ∈ rg(K∗) it

follows that xn ∈ rg(K∗) as well, and hence we get convergence

xn → x† = K†y. For yδ /∈ rg(K) we can’t expect convergence, and

need to stop early. Here the stopping index m act as regularization

parameter, but to be consistent with our convention “smaller regu-

larization parameter is less regularization” it’s more like α = 1/m
is the regularization parameter. △

Lemma 11.2. If 0 < ω < 2/∥K∥2, then ∥id−ωK∗K∥ ≤ 1.

Proof. For the singular values σj of K we know that 0 < σj ≤
∥K∥. The operator id−ωK∗K is self adjoint and has eigenvalues

1 − ωσ2
j ∈ ]1 − ω∥K∥2, 1[ and since 0 < ω < 2/∥K∥2

we have

that the eigenvalues of id−ωK∗K lie in ]−1, 1] as needed.

As a consequence, convergence of the Landweber method does

not follow from Banach fixed point theorem (it does so, if K is

injective and the smallest singular value exists and is positive, but

then the problem is well posed).

Here is another view on the Landweber method.

Example 11.3 (Landweber as gradient descent on the least squares

functional). We can also start with the least squares functional

f (x) = 1
2∥Kx − y∥2

Y.
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To calculate the derivative of f we do

f (x + h) = 1
2∥K(x + h)− y∥2

Y = 1
2∥Kx − y + Kh∥2

Y
1
2∥Kx − y∥2

y + ⟨Kx − y, Kh⟩+ 1
2∥Kh∥2

Y

= f (x) + ⟨K∗(Kx − y), h⟩+ φ(h)

with φ(h) = 1
2∥Kh∥2

Y. Since φ(h)/∥h∥X ≤ ∥K∥2∥h∥ → 0 for

h → 0 we get that the gradient of f is

∇ f (x) = K∗(Kx − y).

Hence, gradient descent for f with constant stepsize ω is

xn+1 = xn − ω∇ f (xn) = xn − ωK∗(Kx − y)

which is exactly the Landweber iteration we in the previous exam-

ple. △

The next lemma shows how the n-th iterate can be written

explicitly:

Lemma 11.4. If x0 = 0, then the m-th iterate of the Landweber method
with stepsize ω is given by

xn = ω
m−1

∑
n=0

(id−ωK∗K)nK∗y.

Proof. We prove this by induction: For m = 1 we have

x1 = ωK∗y = ω(id−K∗K)0K∗y.

For the induction step we start with

xm+1 = xm − ωK∗(Kxm − y) = (id−ωK∗K)xm + ωK∗y

= (id−ωK∗K)

(
ω

m−1

∑
n=0

(id−ωK∗K)nK∗y

)
+ ωK∗y

= ω
m−1

∑
n=0

(id−ωK∗K)n+1K∗y + ω(id−ωK∗K)0K∗y

= ω
m

∑
m=0

(id−ωK∗K)nK∗y.

Hence, m steps of the Landweber method are the same as

xm = φm(K∗K)K∗y

with the filter function

φm(λ) = ω
m−1

∑
n=0

(1 − ωλ)n.

Using the geometric sum

m
∑

k=0
qk = 1−qm+1

1−q this gives

φm(λ) = ω
m−1

∑
n=0

(1 − ωλ)n = ω 1−(1−ωλ)m

1−(1−ωλ)
= 1−(1−ωλ)m

λ . (1)
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Theorem 11.5. Let φm be defines by (1). Then it holds that Rm =
φm(K∗K)K∗ defined a regularization if 0 < ω < 2/∥K∥2.

Proof. By Theorem 7.6 we only need to show that φm is a regular-

izing filter, i.e. that φm(λ) → 1/λ for m → ∞ and 0 < λ < ∥K∥2

(recall that α = 1/m act as regularization parameter) and that

λφm(λ) is uniformly bounded for all m.

Since we have 0 < ω < 2/∥K∥2
we have for all λ with 0 <

λ ≤ ∥K∥2
that

−1 < 1 − ωλ < 1,

and hence (1 − ωλ)m → 0 for m → ∞. Moreover we have for

0 ≤ λ ≤ ∥K∥2

λ|φm(λ)| = |1 − (1 − ωλ)m| ≤ 2 =: Cφ.

We can even show that the Landweber method is an order

optimal method. Recall from Section 10 that this holds for
a-priori parameter choices of the form
α(δ) ∝ δ2/(ν+1) so here we should
stop after about m∗ ≈ δ−2/(ν+1) itera-
tions.

Theorem 11.6 (Landweber is order optimal). Let 0 < ω < 2/∥K∥2.
Then the Landweber method with a-priori rule m∗ = m(δ) ∝ δ−2/(ν+1)

is an order optimal regularization method for any ν > 0.

Proof. We use Theorem 10.3 and need to show that

sup
0<λ≤∥K∥2

|φm(λ)| ≤ Cφm

ων(m) = Cνm−ν/2

(recall that α = 1/m and don’t confuse ων with the stepsize ω).

For the first estimate consider recall that −1 < 1 − ωλ < 1
and hence, by Bernoulli’s inequality

|φm(λ)| = |1−(1−ωλ)m|
λ = 1−(1−ωλ)m

λ ≤ 1−(1−mλω)
λ = ωm.

From above we already had Cφ = 2, so now we should set Cφ =
max(2, ω). To estimate ων(λ) we use consider

λν/2(1 − λφm(λ)) = λν/2(1 − ωλ)m

and substitute t = mλ. Then this expression becomes

h(t) =
( t

m

)ν/2
(1 − ωt

m )m.

We use the elementary inequality (1 − x
m )m ≤ e−x

and get

h(t)m−ν/2tν/2e−ωt.

The derivative is

h′(λ) =m−ν/2
(

ν
2 tν/2−1e−ωt + tν/2(−ω)e−ωt

)
= m−ν/2tν/2−1e−ωt ( ν

2 − tω
)
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and thus, h has a global maximum at t = ν/(2ω). This shows that

h(t) ≤ m−ν/2 ( ν
2ω

)ν/2 e−ν/2,

and thus

ων(λ) ≤ Cνm−ν/2,

i.e. Cν =
(

ν
2ω

) ν
2 e−ν/2

.

Note that iterative methods are well suited for Morozov’s dis-

crepancy principle. One just monitors ∥Kxm − yδ∥Y during the

iteration and stops at the first m∗
such that ∥Kxm∗ − yδ∥Y ≤ τδ.

One can actually show a little bit more here: Let us denote by

xδ
m the m-th iterate of the Landweber method with yδ

instead of y.

Theorem 11.7. If Kxδ
m − yδ ̸= 0, then it holds for stepsizes 0 < ω <

2/∥K∥2 that

∥Kxδ
m+1 − yδ∥Y ≤ ∥Kxδ

m − yδ∥Y.

Moreover, if ∥Kxδ
m − yδ∥Y > 2δ and 0 < ω < 1/∥K∥2 we even have

∥xδ
m+1 − x†∥X < ∥xδ

m − x†∥X.

Proof. We compute from the iteration

Kxδ
m+1 − yδ = K((id−ωK∗K)xδ

m + ωK∗yδ − yδ

= (id−ωK∗K)(Kxδ
m − yδ).

For stepsize ω ∈ ]0, 2/∥K∥2[ we get that ∥id−ωK∗K∥ ≤ 1 and

thus shows the first claim.

For the second claim we write zδ
m := yδ − Kxδ

m and y = Kx†

and get

∥xδ
m+1 − x†∥2

X = ∥xδ
m − x† − ωK∗(Kxδ

m − yδ)∥2
X

= ∥xδ
m − x†∥2

X + 2ω
〈

xδ
m − x†, K∗zδ

m

〉
+ ω2∥K∗zδ

m∥2
X

= ∥xδ
m − x†∥2

X + 2ω
〈

Kxδ
m − Kx†, zδ

m

〉
+ ω2∥K∗zδ

m∥2
X

= ∥xδ
m − x†∥2

X + ω
〈

zδ
m + 2Kxδ

m − 2y, zδ
m

〉
+ ω(ω∥K∗zδ

m∥2
X − ∥zδ

m∥2
Y.

We aim to show that the last two terms are negative. For the first

term we compute〈
zδ

m + 2Kxδ
m − 2y, zδ

m

〉
=
〈

yδ − Kxδ
m + 2Kxδ

m − 2y, zδ
m

〉
=
〈

yδ + Kxδ
m − 2y, zδ

m

〉
= 2

〈
yδ − y, zδ

m

〉
− ∥zδ

m∥2
Y

≤ 2δ∥zδ
m∥2

Y − ∥zδ
m∥2

Y

= (2δ − ∥Kxδ
m − yδ∥Y)∥zδ

m∥Y < 0.
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For the second term we use ω < 1/∥K∥2
to get

ω∥K∗zδ
m∥2

X ≤ ω∥K∥2∥zδ
m∥2

Y < ∥zδ
m∥2

Y

which shows that the last term is negative as well.

The theorem shows two important things: First, the Landwe-

ber method always decreases the residual but, more importantly,

even the distance to the true solution decreases if the residual is

larger than 2δ, so it is always beneficial to use τ < 2 in Morozov’s

discrepancy principle. Note that the Landweber method can al-

ways be applied when one is able to apply the operator K and its

adjoint K∗
. The is no need for singular value decomposition (as

for the TSVD) and also we do not need to solve linear systems

(like for Tikhonov regularization). One downside of the Landwe-

ber method is that it usually needs a lot of iterations until a good

reconstruction is achieved (or Morozov’s discrepancy principle

kicks is). In practice one can use other iterative methods that solve

the normal equations, e.g. the method of conjugate gradients (CG)

which converges much faster. One can show (with very different

tool than here) that, combined with the discrepancy principle, is

indeed a regularization method.

Here is an example with the Landweber iteration:

% problem size and matrix
n = 500;
A = tril(ones(n))/n;

% discretized interval
t = linspace(0,1,n)’;

% some true solutions. Uncomment the one you want to use
%xdag = 1-t.^2;
xdag = max(1-2*t,0);
%xdag = (t<0.5);
% true data
ydag = A*xdag;

% noisy data
eta = randn(n,1); eta = eta/norm(eta); % normalized noise
delta = 0.05; % noise level
ydelta = ydag + delta*eta;

% stepsize for the Landweber iteration
normA = norm(A);
omega = 1/normA;
% constant for Morozov’s discrepancy principle
tau = 1.01;

% number of iterations
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m = 3000;
% initialization
x = zeros(n,1);

residual = zeros(m,1);
error = zeros(m,1);
stopped = false;
for k=1:m
x = x - omega*A’*(A*x-ydelta);
error(k) = norm(x-xdag);
residual(k) = norm(A*x-ydelta);
% if the residual falls below the noise level for the first time
% record the index and the reconstruction at that time
if stopped==false && residual(k)<tau*delta
mstar = k;
xrec = x;
stopped = true;

end
end

semilogy(1:m,error ,1:m,residual ,1:m,tau*delta*ones(m,1))
title(’semi convergence of the Landweber method’)
legend(’||x_m-x^+||’, ’||Kx_m-ydelta||’, ’\tau\delta’)

fprintf(’stopping index: m* = %d\n’,mstar)

subplot(1,2,1)
plot(t,xrec,t,xdag)
title(’Landweber stopped with Morozov’)
legend(’xrec’,’xdag’)
subplot(1,2,2)
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plot(t,A*xrec,t,ydag)
title(’same on image side’)
legend(’A*rec’,’ydag’)

stopping index: m* = 221
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12 A Bayesian perspective on regulariztion

In this section we would like to draw connections between regu-

larization (especially Tikhonov regularization) and probabilistic

approaches to inverse problems. This will be much simpler if we

consider everything to be finite dimensional, i.e. K ∈ Rm×n
is a

matrix, X = Rn
and Y = Rm

. We start by modeling noise stochas-

tically. Our data is yδ = Kx† + η where η ∈ Rm
is a random vector,

i.e. a realization of a random variable H. A vector valued random

variable is a map H : Ω → Rm
on some probability space Ω (which

will actually not play a role). On Ω there is probability measure P
and the random variable H generates a probability distribution

on Rm
by

µ(B) = P(H−1(B))

for all Borel sets B ⊂ Rm
. However, P is never needed in practice

and we only need to know the probability distribution πnoise in

Rm
since then

µ(B) = P(H ∈ B) =
∫
B

πnoise(η)dη.

The mean value (or expectation) of H is

E(H) =
∫

Rm

η dπnoise(η) =
∫

ηπnoise(η)dη

and the covariance is

cov(H) = E((H − E(H))(H − E(H))T) =
∫
(η − E(H))(η − E(H))Tπnoise(η)dη.

Example 12.1 (Gaussian noise). The most simple (and also most

widely used) example of additive noise is Gaussian noise. Usually

we assume that the noise has zero mean and for simplicity we

assume that the components of the random vector are independent

and identically distributed (i.i.d), each with variance σ2
. Then the

probability distribution of one entry of H is

1
σ
√

2π
e
−x2

2σ2 .

Hence, the full probability distribution of H is

πnoise(η) =
m

∏
i=1

1
σ
√

2π
e
−η2

i
2σ2

= 1
σm

√
2π

m e
−∥η∥2

2σ2 .

The covariance of H is cov(H) = σ2 Im (where Im is the m × m
identity matrix). △
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The goal of probabilistic approaches is to gain as much infor-

mation as possible about the posterior distribution πposterior(x | y),
i.e. the distribution of the solution x, given that the data y has

been observed. The posterior distribution is, by Bayes theorem,

πposterior(x | y) =
π(y | x)πprior(x)

π(y)
.

where πprior(x) is the so-called prior distribution, π(y | x) is the

probability of measuring the data y given that x is the solution

and π(y) is the probability of the data y.

Example 12.2 (Maximum a-posteriori estimation). One crucial in-

formation that one can get from the posterior distribution is the

mode of the distribution which is nothing else that the maximum

x∗ ∈ argmaxx πposterior(x | y). This x∗ is the most likely x given

the measured data y and the assumptions we made. This gives us a

point estimate for our solution x and this one is called the maximum
a-posteriori estimator or MAP estimator. The computation of the

MAP estimator amounts the solution of a maximization problem

in n dimensions. △

The MAP estimator may be the most likely x∗, but is it is not

necessarily a typical one. One example of this phenomenon al-

ready occurs for very simple distributions: A standard Gaussian

distribution has its mode at zero while a sample that you draw

has expected norm

√
n in n dimensions. One can even show that

it holds that the probability that the norm ∥x∥2 of a vector with

independent standard Gaussian entries deviates from

√
n is very

small, more precisely

P
(
|∥x∥2 −

√
n| ≥ t

)
≤ 2 exp(−ct2)

for some c.

Example 12.3 (Conditional mean estimator). Another point estimate

of a distribution is its mean/expected value. Hence, we could also

consider the so-called conditional mean of the posterior which is

x∗ = E(x | y) =
∫

Rn

x π(x | y)dx

(provided that the integral exists). The computation of the con-

ditional mean amount to the computation of n integrals (recall

that x ∈ Rn
) over the full Rn

. Since n is the dimension of the solu-

tion, this is by no means an easy task and standard approximation

techniques for integrals (such as the trapezoidal rule) can not be

applied. △

In the following we will only consider the MAP estimate fur-

ther. For the computation of the MAP estimator we maximize

πposterior(x|y) over x. Using Bayes theorem we note that we do not

need to know anything about π(y), but only π(y | x) and πprior(x)
are needed.
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Example 12.4 (Additive Gaussian noise again). If we assume that

our solution X and the noise H are independent, the probability

density of H does not change, when we condition it on the realiza-

tion X = x. Since y = Kx + η we also see that the Y conditioned

on X = x is distributed like H but translated by Kx, i.e.

π(y | x) = πnoise(y − Kx). (*)

In the case a Gaussian noise as above we get

π(y | x) = 1
σm

√
2π

m e
−∥y−Kx∥2

2σ2 .

△

Collection what we have so far we see that we still need to

specify the prior distribution for x. This is up to us; we can design

a prior distribution in any way we like. More precisely, we should

design the prior such that it reflects all the prior information that

we have about the solution. Once we have the prior, we can start

thinking about how to compute the MAP estimator. If we assume

a Gaussian prior, we actually end up with Tikhonov regularization:

Theorem 12.5 (MAP for Gaussian prior and Gaussian noise gives

Tikhonov regularization). Assume that K ∈ Rm×n, yδ ∈ Rm be the
data, x0 be an initial guess and σ, τ > 0. Further let the distribution of
the noise and the prior be

πnoise(η) =
1

σm
√

2π
m e

−∥η∥2

2σ2

πprior(x) = 1
τn

√
2π

n e
−∥x−x0∥2

2τ2 .

Then the MAP estimator for x from yδ is

x∗ = (K∗K + σ2

τ2 id)−1(K∗yδ + x0)

Proof. The posterior distribution is

π(x | yδ) ∝ π(yδ | x)πprior(x)

Using (*) and the definition of πnoise and πprior we get

π(x | yδ) ∝ πnoise(yδ − Kx)πprior(x)

= 1
σm

√
2π

m e
−∥yδ−Kx∥2

2σ2 1
τn

√
2π

n e
−∥x−x0∥2

2τ2 .

To maximize this we equivalently maximize the logarithm of π(x |
yδ) (since everything is positive and the logarithm is monotone).

This gives us the maximization problem.

argmax
x

log

(
1

σm
√

2π
m e

−∥yδ−Kx∥2

2σ2 1
τn

√
2π

n e
−∥x−x0∥2

2τ2

)
= argmax

x

[
−m log(σ

√
2π)− ∥Kx−yδ∥2

2σ2 − n log(τ
√

2π)− ∥x−x0∥2

2τ2

]
.
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Since we only maximize with respect to x we can neglect the ad-

ditive terms that do not depend on x and also scale by positive

numbers o get

x∗ ∈ argmax
x

− ∥Kx−yδ∥2

2σ2 − ∥x−x0∥2

2τ2

= argmin
x

∥Kx−yδ∥2

2σ2 + ∥x−x0∥2

2τ2

= argmin
x

1
2∥Kx − yδ∥2 + σ2

2τ2 ∥x − x0∥2.

We recognize the Tikhonov functional with regularization param-

eter
σ
τ . The minimizer x∗ is given by the solution of

K∗(Kx∗ − yδ) + σ2

τ2 (x∗ − x0) = 0

which proves the claim.

The choice of the prior distribution is basically an art. Many

suitable priors exists for various types of data. If we consider addi-

tive Gaussian noise as above and a prior of the form πprior(x) =
e−αΦ(x)

one get, similarly to the above theorem, that the MAP

estimate is gives as a solution of the minimization problem

min
x

1
2∥Kx − yδ∥2 + σ2α

2 Φ(x).

The noise distribution, however, is dictated by the noise model

and if one does not have additive Gaussian noise, one can still

formulate a regularization method:

Example 12.6 (Poisson noise). The Poisson distribution models rare

events. One example comes from photography-like applications

with very low light as it occurs, for example, in electron microscopy.

There each pixel collects incoming photos over a short time span.

The number of incoming photons in some pixel p, when measured

and averaged over a long time span, gives the true intensity y(p).
Over a short time span, one collects a finite number of photons

and the stochastic model for this number is that it is distributed

according to the Poisson distribution with parameter λ = y(p)
(the parameter λ is also the expected value of the distribution),

this means that the probability to collect yδ(p) = k photons in

pixel p is

P(yδ(p) = k) = y(p)ke−y(p)

k! .

Hence, the conditional probability that yδ(p) is measured if y(p)
is the true value is

π(yδ(p) | y(p)) = y(p)yδ(p)e−y(p)

(yδ(p)! .
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We still assume that the noise is the pixels is independent, i.e we

have

π(yδ | y) = ∏
p

y(p)yδ(p)e−y(p)

(yδ(p)! .

If we assume that the image prior πprior is of the form πprior(x) ∝
e−αΦ(x)

for some function Φ, the MAP estimate for x with y = Kx
from yδ

(where yδ
is a version of y that is corrupted by Poisson

noise) is

argmax
x

π(yδ | Kx)πprior(x) = argmax
x

∏
p

(Kx(p))yδ(p)e−Kx(p)

(yδ(p)! · e−αΦ(x).

Equivalently, we minimize the negative logarithm of the objective

which is

argmin
x

[
− log(π(yδ | Kx))− log(πprior(x))

]
= argmin

x
∑

p

[
−yδ(p) log(Kx(p)) + Kx(p)

]
+ αΦ(x).

△

The negative log of the noise prior may
look strange at first. However, note that
the function fa(t) = −a log(t)+ t has
a unique minimum at t = a (here for
a = 1.5).

0 1 2 3
1
2
3
4
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13 Discretization by projection

In our last section we finally treat some discretization methods.

The backbone of discretization are projection operators. A

bounded linear operator P : X → X on a normed space is a

projection onto a subspace U if Px ∈ U for all x ∈ X and Px = x
for x ∈ U. Moreover it holds that P2 = P and ∥P∥ ≥ 1. If X is

a Hilbert space and P is self-adjoint, then P is an orthonormal

projection and it holds for all u ∈ U that

∥Px − x∥ ≤ ∥u − x∥,

i.e. Px is the best approximation from U to x.

Definition 13.1. Let X, Y be Banach spaces, K : X → Y be bounded

and linear and Xn ⊂ X, Ym ⊂ Y be n- and m-dimensional sub-

spaces, respectively. Further, let Qm : Y → Ym be a projection

onto Ym. The projection method for solving Kx = y is to solve the

problem

QmKxn = Qmy, for xn ∈ Xn.

If we choose bases {x̂1, . . . , x̂n} and {ŷ1, . . . , ŷm} of Xn and Ym,

respectively, we can write

Qny =
n

∑
i=1

βiŷi, and QnKx̂j =
n

∑
i=i

Aijŷi.

The solution xn can written as ∑n
j=1 αj x̂j and thus, the coefficients

can be determined by the linear system

n

∑
j=1

Aijαj = βi.

Plugging the expansion for xn into
QmKxn = Qmy gives

n

∑
j=1

αjQmKx̂j =
m

∑
i=1

βi ŷi

and using QnKx̂j =
n
∑
i=i

Aij ŷi gives the

result.

Example 13.2 (Galerkin method). Let X and Y be Hilbert spaces,

Xn, Ym as above and Qm an orthogonal projection onto Ym. The

equation QmKxn = Qmy is then equivalently expressed as the

so-called Galerkin equations

⟨Kxn, zm⟩ = ⟨y, zm⟩ for all zm ∈ Ym. (*)

Choosing bases as above gives us the system

n

∑
j=1

αj
〈
Kx̂j, ŷi

〉︸ ︷︷ ︸
=:Aij

= ⟨y, ŷi⟩︸ ︷︷ ︸
=:βi

, i = 1, . . . , m. (**)

△

Example 13.3 (Collocation method). Here we have any Banach space

X but fix Y = C([a, b]). We choose so-called collocation points
a = t1 < · · · < tm = b and consider the subspace Ym as the
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space of functions that are continuous and piecewise linear on the

intervals [ti, ti+1] (also known as the space of linear splines). As

operator Qm we take the “linear interpolation operator”, i.e.

Qmy =
m

∑
i=1

y(ti)ŷi

where the ŷi are the linear splines which are 1 at ti and zero at

ŷ1 ŷ2 ŷ3 ŷ4 ŷ5 ŷ6

tj with j ̸= i. The projected equation QmKxn = Qmy is then

equivalent to

(Kxn)(ti) = y(ti), i = 1, . . . , n.

We choose an n-dimensional subspace Xn of X and a basis {x̂j |
j = 1, . . . , n} of Xn. Then we can express xn ∈ Xn by xn =

∑n
j=1 αj x̂j. The collocations equations for xn ∈ Xn then become

K
n

∑
j=1

αj x̂j(ti) = y(ti).

The left hand side is ∑n
j=1 Kx̂j(ti)αj and we see that the collocation

equations are equivalent to Aα = β with

βi = y(ti), Aij = Kx̂j(ti).

△

Example 13.4 (Galerkin and collocation for integral equations). Now

consider the special case K : L2([a, b]) → L2([c, d]),

Kx(t) =
b∫

a

k(t, s)x(s)ds = y(t), t ∈ [c, d].

The Galerkin method uses the values (cf. (**))

Aij =

d∫
c

b∫
a

k(t, s)x̂j(s)ŷi(t)ds dt, βi =

d∫
c

y(t)ŷi(t)dt

while the collocation method uses

Aij =

b∫
a

k(ti, s)x̂j(s)ds, βi = y(ti).

Note that the entries for the Galerkin method are harder to com-

pute (more integrals…). △

In the following we will assume m = n and that the following

conditions are fulfilled: K is injective, the union

⋃
n Xn is dense

in X and QnK|Xn : Xn → Yn is invertible.

Then a solution of QnKxn = Qny exists and is given by

xn = Rnyn, with Rn := (QnK|Xn)
−1Qn : Y → Xn.
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We say that the projection method is convergent if for every x ∈ X
it holds that

RnKx n→∞−→ x.

Not every projection method converges, but there is a simple con-

Note that what we are doing here is to
consider projection methods as regu-
larizations! We can consider α = 1/n
as regularization parameter.

dition that ensures convergence:

Theorem 13.5. Under our standing assumptions it holds that xn = Rny
converges to x for every y = Kx exactly if there exists c > 0 such that

∥RnK∥ ≤ c. (+)

Moreover, if this is fulfilled, then (with the same c)

∥xn − x∥X ≤ (1 + c) min
zn∈Xn

∥zn − x∥X.

Proof. First assume that the method converges, i.e. that RnKx n→∞−→
x for every x. Then the assertion follows from the uniform bound-

edness principle.

For us, the other direction is more interesting: Let ∥RnK∥ be

bounded. For zn ∈ Xn we have that

RnKzn = (QnK|Xn)
−1QnKzn = (QnK|Xn)

−1QnK|Xn zn = zn

and thus, RnK is a projection. We conclude that

xn − x = (RnK − id)x = (RnK − id)(x − zn).

We obtain ∥xn − x∥X ≤ (c + 1)∥x − zn∥X and taking the mini-

mum over all zn shows the inequality. The convergence xn
n→∞−→ x

follows since

⋃
n Xn is dense in X.

Here is an error estimate for the Galerkin method. To express it,

we define the synthesis operator SX
n : Rn → X in X by SX

n α = ∑j αj x̂j

and similarly for SY
n . We define the quantities If we choose orthonormal bases, then

we get an = ∥SX
n ∥ = 1 and also bn =

1.
an = ∥SX

n ∥ = max
{
∥SX

n α∥X

∣∣∣ ∥α∥2 = 1
}

bn = max
{
∥β∥2

∣∣∣ ∥SY
n β∥Y = 1

}
Theorem 13.6. Assume that the Galerkin equations (*) from Exam-
ple 13.2 are uniquely solvable.

(a) Let yδ ∈ Y with ∥y − yδ∥Y ≤ δ and xδ
n be the solution of〈

Kxδ
n, zn

〉
=
〈

yδ, zn

〉
for all zn ∈ Yn.

Then it holds that

∥xδ
n − x∥X ≤ ∥Rn∥δ + ∥RnKx − x∥X.
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(b) Let A and β be given by (**) from Example 13.2 and let ∥β− βδ∥ ≤ δ
hold and let λn be the smallest singular value of A. Let αδ be the
solution of Aαδ = βδ and define xδ

n = ∑n
j=1 αj x̂j. Then it holds

∥xδ
n − x∥X ≤ an

λn
δ + ∥RnKx − x∥X

Proof. For part (a) we simply use the standard error decomposition

∥xδ
n − x∥X ≤ ∥xδ

n − Rny∥+ ∥Rny − x∥ ≤ ∥Rn∥∥yδ − y∥Y + ∥RnKx − x∥X

from which the estimate follows.

For part (b) we just need to estimate the data error in the above

decomposition. We write Rnx = ∑n
j=1 αj x̂j. Since xδ

n − Rny =

∑n
j=1(α

δ
j − αj)x̂j = SX

n (α
δ
n − α) we get

∥xδ
n − Rny∥X ≤ an∥αδ

n − α∥2 = an∥A−1(βδ − β)∥2 ≤ an
λn

δ

as desired.

Example 13.7 (Collocation method for the inverse integration prob-

lem). We consider the simple problem Kx(t) =
∫ t

0 x(s)ds with

K : C([0, 1]) → C([0, 1]). We have to choose the collocation points

ti and the basis x̂j of Xn. Once we have done this, the linear equa-

tion Aα = β is given by βi = y(ti) and

Aij = Kx̂j(ti) =

ti∫
0

x̂j(s)ds.

First we choose the basis x̂j. Let us choose the characteristic func-

tions on the intervals Ij = [ j−1
n , j

n [:

x̂j(t) = χIj(t).

,
1
n

n−1
n

1

x̂1 x̂n

The functions Kx̂j are

Kx̂j(t) =


0 : t ≤ j−1

n
t − j−1

n : j−1
n ≤ t ≤ j

n
1
n : t ≥ j

n

. 1
n

1
n

n−1
n

1

Kx̂1 Kx̂n

Depending on the collocation points we get different linear sys-

tems:

Inverse Problems | Version of June 15, 2023 | SoSe 2022 73



18.07.2022, VL 13-5

1. We choose ti =
i−1

n , i = 1, . . . , n + 1, i.e. we have m = n + 1.

This gives us

Aij = Kx̂j(xi) =

{
0 : i ≤ j
1
n : else.

, A = 1
n


0

1
.
.
.

.

.

.

.
.
. 0

1 · · · 1

 ∈ Rn+1×n.

2. As a variant of the first choice we could only take the left

ends, i.e. ti = i−1
n , i = 1 . . . , n, or the right ends ti = i

n ,

i = 1, . . . , n and get

A = 1
n


0

1
.
.
.

.

.

.

.
.
.

.
.
.

1 · · · 1 0

 ∈ Rn×n, A = 1
n

1 0
.
.
.

.
.
.

1 · · · 1

 ∈ Rn×n,

respectively.

3. We choose the middle points of the intervals ti =
i− 1

2
n . This

way we get

Aij =
1
n


1
2

1
.
.
.

.

.

.

.
.
.

.
.
.

1 · · · 1 1
2

 ∈ Rn×n

△
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