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Abstract
Today, the Web is at the center of our digital society. Unfortunately, this omnipresence

also makes it a worthwhile target for attacks. Thus, security testing should be part of every

web development project to identify vulnerabilities before attackers do so. To support

this process, this thesis covers advanced attack and vulnerability detection techniques as

part of a security scanner for the modern Web. For this, we focus on automated black-box

dynamic analyses, as manual work would not scale to the size of the Web platform. We

introduce four major web development trends that make scanning modern websites more

challenging: complex client-side code, a blurring of involved parties, volatile content, and

the use of emerging features. Consequently, we show how a modern security scanner can

overcome these challenges by integrating an instrumented browser.

Throughout this thesis, we present three real-life use-cases for our scanner and conduct

empirical analyses on a scale of millions of websites to demonstrate its ability to detect

attacks and vulnerabilities in the wild. First, we show how our scanner can be used in

a preventive manner, i.e., by determining the compatibility of a defensive mechanism on

websites that are not yet vulnerable. Second, we present an automated methodology to de-

tect anti-debugging techniques that try to hinder the manual analysis of a website. Third,

we investigate the abuse of WebAssembly as part of the cryptojacking phenomenon and

also as a new way to write evasive malware for the Web. However, the very same technol-

ogy that enables these accurate security scans can also introduce new vulnerabilities for

the unwary. To account for this, we conclude this thesis with an additional study on the

potential danger of using an instrumented browser within publicly exposed web applica-

tions.





Zusammenfassung
Das Web spielt heutzutage eine zentrale Rolle in unserer digitalen Gesellschaft. Leider

macht diese Omnipräsenz es auch zu einem lukrativen Ziel für Angriffe. Um Verwund-

barkeiten zu identifizieren bevor ein Angreifer diese findet, sollte das Prüfen auf Sicher-

heitslücken ein fester Bestandteil während der Entwicklung von Webanwendungen sein.

Um diesen Prozess zu unterstützen, behandelt diese Dissertation die fortgeschrittene

Erkennung von Angriffen und Verwundbarkeiten im Rahmen eines Sicherheitsscanners

für das moderne Web. Dabei fokussieren wir uns auf automatische, dynamische Black-

Box-Analysen, da manuelle Arbeit für die Größe der Web-Plattform nicht angemessen

wäre. Wir stellen vier wichtige Webentwicklungs-Trends vor, welche das Scannen auf

modern Webseiten anspruchsvoll machen: Komplexer Code auf der Client-Seite, ein Ver-

schwimmen der involvierten Parteien, wechselhafte Inhalte und die Verwendung von neu

entstehenden Funktionalitäten. Darauffolgend zeigen wir, wie ein moderner Sicherheitss-

canner diese Herausforderungen überwinden kann, in dem ein instrumentierter Browser

integriert wird.

Im Laufe dieser Dissertation stellen wir dann drei realistische Anwendungen für un-

seren Scanner vor und führen empirische Studien in der Größenordnung von Millionen

an Webseiten durch, was die Fähigkeit des Scanners Angriffe und Verwundbarkeiten in

freier Wildbahn zu finden demonstriert. Zuerst zeigen wir wie unser Scanner als Präven-

tivmaßnahme verwendet werden kann, indem wir die Kompatibilität eines Verteidigungs-

mechanismus auf Webseiten, die noch nicht verwundbar sind, messen. Danach präsen-

tieren wir eine vollautomatische Methodik um Anti-Debugging-Techniken zu finden, die

versuchen die manuelle Analyse von Webseiten zu unterbinden. Als Drittes untersuchen

wir den Missbrauch der WebAssembly-Technologie als Teil des sogenannten Cryptojack-

ings, sowie als neuen Weg um evasive Schadsoftware für das Web zu programmieren.

Allerdings kann genau dieselbe Technologie, die es uns ermöglicht diese akkuraten Sicher-

heitsscans zu realisieren, auch in neue Verwundbarkeiten für Unachtsame resultieren.

Um dies zu berücksichtigen, endet diese Dissertation mit einer zusätzlichen Studie über

die potentiellen Gefahren bei der Verwendung von instrumentierten Browsern im Rah-

men von öffentlich zugänglichen Web-Anwendungen.
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1 Introduction
I use maps to find out where explorers have already been. Then I go the other way.

— Javad Nasrin, Ondu relic hunter

1.1 Motivation
What started as a new way for scientists to share information at CERN in 1989 turned out to

be one of the most important inventions of the 20th century [253]. Today, the Web allows us

to access information from hundreds of millions of websites from all over the world [183],

with the very largest websites each receiving over one billion visits per day [184]. More-

over, the Web not only connects us to servers that provide information but also people

regardless of how far away they are in the physical realm. This means we can use it to

stay in touch with friends and loved ones, to work remotely without missing a meeting, to

transfer money and digital goods, to access the largest collection of knowledge in human

history, to share our favorite cat videos [277], and so much more.

However, the omnipresence of the Web and its ever-increasing relevance for commerce

and finance also makes it a lucrative environment for malicious actors. For example, in

2018 the booking website of British Airways was modified by hackers to exfiltrate all cus-

tomer information as it was entered into the page, resulting in a breach that affected over

400,000 customers and a fine of 20 million GBP for the company [18]. Unfortunately, this

is not just an isolated incident, but rather only the tip of the iceberg. At the time of writ-

ing, the Have I Been Pwned project lists data breaches of 580 popular websites that resulted

in over 11 billion compromised accounts [112]. While such leaks often get a lot of media

attention, there are also targeted attacks on the other end of the spectrum, of which only

little is known. Google’s Project Zero found that about 50% of all 0-day exploits that were

discovered in the wild in 2020 and 2021 do target a web browser [205], again highlighting

the importance of the Web as an attack vector.

Writing completely secure code in the first place would be ideal but is a utopian goal

as humans are bound to make mistakes, especially given the high complexity of software

projects, e.g., browsers with over 25 million lines of code [23]. A widely popular approach

to nevertheless prevent vulnerabilities is to employ security testing of a software product,

such as a web application or browser. In contrast to software testing, which evaluates the

functionality of a software product for a given purpose, security testing is concerned with

evaluating non-functional properties such as confidentiality, integrity, and availability [75].

Security testing consists of techniques that can be classified based on multiple criteria:

White-box testing has access to design documents and the source code of the product and
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thus tests from an internal point of view, while black-box testing has no such information

and only relies on the observable behavior of the software [25]. Static testing relies on access

to design or code artifacts to check the product without executing the code, while dynamic
testing evaluates the software by observing its in- and outputs during execution [8]. More-

over, the level of automation is another important aspect, with manual testing by a human

on one side and fully automated testing on the other [12].

Since artifacts such as code, models, and annotations are often unavailable in prac-

tice [71], we focus on black-box and consequently dynamic security testing in this thesis.

This approach emulates an external hacker and is thus standard practice for security pen-

etration tests [200]. In contrast to hired penetration testers who spend multiple days on

a single web application, we as researchers are instead interested in analyzing millions of

websites to reason about the whole ecosystem and make generalized claims. Therefore,

we focus on completely automated testing for attacks and vulnerabilities in the form of a

security scanner that was developed as part of this thesis. However, automatically detecting

vulnerabilities in modern web applications has become increasingly hard and black-box

scanning is especially challenging [71]. In the next chapter, we give an overview of these

challenges and describe web development trends that further complicate analyses. First,

however, we summarize our thesis contributions and outline the overall structure.

1.2 Thesis Contributions
In this thesis, we discuss automated attack and vulnerability detection techniques in the

context of a black-box security scanner for the modern Web. This focus on automation and

not requiring access to the server-side source code allows us to conduct empirical studies

on a scale of millions of websites. In particular, we make the following contributions:

Advancing the state of scanning We take a look at traditional web scanning and, in a col-

laboration with Google, create a fast and scalable pipeline based on their Tsunami scanner.

We subsequently use this pipeline to scan all websites in the whole IPv4 space in a single

day. From there, we discuss how to generalize such scans to support whole vulnerabil-

ity classes and the resulting challenges. In particular, we focus on four web development

trends that further complicate the security scanning of modern websites and necessitate

novel solutions. Using the example of SMURF, we then showcase how to overcome one of

these challenges by integrating a real browser controlled by our customized instrumen-

tation code (Chapter 2).

Preventing Client-Side XSS We demonstrate how to use a security scanner in a preventive
manner, i.e., instead of searching for existing vulnerabilities, we measure the compatibility

of a defensive mechanism on websites that are not yet vulnerable. For this, we first develop

a novel defense called ScriptProtect that protects websites from benign-but-buggy third-

party integrations. Our approach transparently wraps dangerous JavaScript functions and
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prevents misuse by third parties, without affecting many benign use cases. We measure

usage of these APIs on real websites and use this to predict the compatibility of our ap-

proach with existing web applications, as seamless support of legacy applications was one

of our major design goals. Thereby, we conclude that a compromise between security

and compatibility is sometimes necessary and create a version of ScriptProtect that works

out-of-the-box on 30% of all websites while still preventing 90% of the attacks (Chapter 3).

Discovering anti-debugging techniques We present our work under a new threat model

that considers attackers who want to prevent the manual analysis of a website through the

integrated Developer Tools of the browser. To show that this is already happening in the

wild, we design an automated approach to detect these attacks with our security scanner.

First, we introduce 6 basic anti-debugging techniques and then 3 additional, sophisticated

techniques, which are based on side-channels. To detect the latter, we rely on a replay

system to compare multiple executions of the same website in different environments,

thereby facing the challenge of volatile content in websites. We then use our detection

methodology in the first large-scale study on this issue and report our results. In particu-

lar, we investigate websites that simultaneously use multiple of these techniques in more

detail (Chapter 4).

Studying malicious WebAssembly We showcase how a modern security scanner is ideally

suited to detect completely new attacks that make use of emerging technologies. For this, we

design a detection methodology for cryptojacking attacks, which abuse the computational

efficiency provided by the new WebAssembly language to mine cryptocurrency directly

in the browser. Our approach uses three phases that at its core rely on a sampling-based

profiler to detect hot functions that correspond to mining activity. As one result of our

study of cryptojacking attacks in the wild, we show that our three-phase approach sig-

nificantly outperforms the static approaches used by existing defenses. Moreover, based

on a manual analysis of the WebAssembly ecosystem, we present the first evidence that

this new language is also already used evasively, i.e., by hiding JavaScript malware inside

WebAssembly modules (Chapter 5).

Revealing insecure automated browsers All our previous contributions relied on using

an instrumented browser as part of an automated security scanner. In our final study, we

investigate the use of such automated browsers on the server-side, where they represent a

unique threat by exposing a wide attack surface. We present a scanning methodology that

uncovers these automated browsers and use a combination of fingerprinting and timing

information to learn more about them. While the total number of automated browsers

is moderate, the ones we find are often running severely outdated versions. Remarkably,

the majority of them had not been updated for more than 6 months and over 60% of the

discovered implementations were found to be vulnerable to publicly available proof-of-

concept exploits (Chapter 6).
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1.3 Thesis Overview
In the remainder of this thesis, we discuss approaches to detect vulnerabilities and attacks

as part of a modern security scanner. In the next chapter, we first introduce the required

background knowledge and foundation required for the rest of this thesis. The following

three chapters then present three use cases for such a modern security scanner. Then, we

conduct one final study on the potential drawbacks of utilizing instrumented browsers

on the server-side. We conclude with a summary of this thesis and an outlook.

Chapter 2 motivates the need for modern web security scanning approaches to detect

vulnerabilities as well as ongoing attacks. First, we take a look at an exemplary scanning

pipeline and discuss the scanning and analysis challenges we will run into when trying

to expand its capabilities. Moreover, we introduce four web development trends that fur-

ther complicate such scanning endeavors on the Web, thus necessitating further research

in this area. Finally, we show how to incorporate an automated browser into a security

scanner as one part of the solution and discuss the various instrumentation approaches.

Chapter 3 demonstrates how such a modern web security scanner can be used in a pre-

ventive manner. For this, we design a backward-compatible defensive mechanism that

protects against benign-but-buggy third-party JavaScript code. We then use our modern

scanner to evaluate the effectiveness and compatibility of this mechanism, in particular

by accurately tracking inclusion relations and code provenance.

Chapter 4 shows how such a modern scanner can also detect subtle attacks against the

manual analysis of websites. We create a methodology to automatically detect anti-debugg-

ing techniques implemented in JavaScript, with a focus on advanced techniques that rely

on side-channels and are thus especially difficult to detect. We present a systematization

of techniques and then conduct a large-scale study on their prevalence and severity.

Chapter 5 discusses the difficulty of dealing with a platform that is constantly evolving,

as the introduction of new features can also result in new capabilities for attackers. We

present two studies on the ecosystem of malicious WebAssembly, which relatively new

addition to the browser and the first time that another programming language besides

JavaScript was introduced.

Chapter 6 diverges from the previous chapters by not introducing yet another use case

for modern security scanning. Instead, it shows the potential drawbacks of automated sys-

tems that incorporate a full browser. For this, we conduct a study on outdated automated

browsers in the wild that visit arbitrary URLs and are vulnerable to known exploits.

Chapter 7 summarizes our results and contributions. Moreover, it also provides an out-

look on potential future research endeavors.



2 Web Security Scanning
In this chapter, we will now take a closer look at how dynamic analysis techniques can

be implemented for web technology. For this, we first briefly describe how a typical web

security scanning pipeline works in Section 2.1. Then, we look into one specific use case

in detail and discuss the challenges we would run into if we would want to extend this spe-

cific scanner into a generic one. In Section 2.2, we then expand on this idea of a generic

web vulnerability scanner and investigate four web development trends and the challenges

they cause for scanning on the modern Web. These four trends are: a heavy reliance on

JavaScript code, a blurring of the involved parties due to script inclusions, a general non-

deterministic behavior on page load, and the use of emerging browser features accessible

via JavaScript APIs. Finally, in Section 2.3 we discuss how to overcome these challenges by

integrating a real browser into our security scanner. For this, we describe several browser

instrumentation approaches, including browser extensions, the Chrome DevTools Proto-

col (CDP), and native instrumentation. We discuss the advantages and drawbacks of the

respective approaches and conclude with a showcase of how to solve one of the previ-

ously outlined challenges, in this case the blurred parties, with the CDP instrumentation

approach.

2.1 Traditional Web Scanning
Imagine a new critical vulnerability for a web application is publicly disclosed and you are

tasked with designing a tool that discovers all affected machines in a given large network.

On a high level, you likely come up with a process that looks roughly as follows: As a first

step, you either need an already existing and up-to-date list of all assets in the network,

or you need to discover all hosts that are online yourself, e.g., through a port scan. Next,

you have to determine which of these hosts are actually running a web server and thus

speak HTTP(S). Then, you might want to determine if the discovered web server is in

scope, which means making certain it actually runs the affected web application before

probing further. But at this point, it is still not clear if the server is running an outdated

and insecure version, or if the latest security patches were already applied. Therefore,

we need the crucial step that determines whether a vulnerability is present but without

causing any harm. Depending on the complexity of the application and the particular

vulnerability this might be achieved with one single request or might require multiple,

subsequent requests.

So far, this description was only an abstract overview of the different stages of a security

scanning pipeline. In the following subsection, we will go into more detail by examining

the scanning pipeline that we used to check the whole routed IPv4 space, i.e., roughly
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3.5 billion IP addresses, for the presence of 18 different pre-authentication vulnerabilities

within a single day. After that, we will discuss some new scanning challenges that emerge

when the goal is to detect generic vulnerabilities, i.e., when the details such as vulnerability

location and context are not known beforehand. Then, we describe potential solutions

in the form of emulated browsers, which support many more features than our presented

scanning pipeline based on plain HTTP requests.

2.1.1 Exemplary Pipeline: Tsunami

Nowadays, applications expose administrative endpoints to the Web that can be used for a

plethora of security-sensitive actions. Typical use cases range from running small snippets

of user-provided code for rapid prototyping to managing job scheduling on whole clus-

ters of computing devices. While such web applications make the lives of administrators

easier, they can be leveraged by attackers to compromise the underlying infrastructure.

This is especially true because many of these applications have been designed for usage

within an intranet or on localhost and thus are lacking strong authentication mechanisms.

However, with the advent of cloud computing, more and more of these applications are

getting deployed to the cloud and need to be accessed through the Web. Due to the lack of

authentication mechanisms, it is dangerous to expose such applications to the Internet.

For example, an exposed admin panel of a continuous integration server can be abused

by an attacker to push a malicious binary to a build server.

In our paper “No Keys to the Kingdom Required” [128] we investigate the prevalence

of what we called missing authentication vulnerabilities (MAVs). For this, we first selected 25

popular applications that contain an administrative web endpoint (AWEs), manually analyzed

them, and found that 18 of the 25 endpoints are in scope for our study on MAVs. We set

up to conduct a large-scale study that aims to determine the prevalence and longevity

of these 18 MAVs in the wild. To perform this study on the whole IPv4 address space

in a reasonable time frame, we built a custom scanning pipeline consisting of four stages

based on existing open-source tools as well as specialized components of our own. In what

follows, we describe each stage and its components in more detail, serving as one concrete

example of how the abstract scanning pipeline from the beginning of this section can be

applied in one specific scenario.

Stage I – Discovery As the first step, we checked which hosts are actually online and ex-

pose a service to the Internet by running a port scan. For this, we made use of the existing

tool Masscan [93], which is an extremely fast port scanner written in C. We excluded all

IANA reserved allocations [113] from our scan, such as those reserved for Multicast, pri-

vate use, or the US Department of Defense, leaving us with roughly 3.5B IPv4 addresses to

scan. As an Internet-wide scan produces a large amount of traffic, we limited our scan to

the 12 most important ports for our study: 80, 443, and all default ports of the 18 selected

applications, which have some overlap. To prevent using stale results, i.e., running the
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next two stages on hosts that went offline in the meantime, we alternated between these

three stages by only scanning a tiny fraction of all hosts and immediately following up

with the other stages before we continued the port scan. In this stage, we already could

reduce the number of potential scanning targets from 42B (3.5B hosts * 12 ports) to about

165M ports that are actually open and need further scanning with our subsequent stages.

Stage II – Prefilter For all open ports identified by the first stage, we then checked if

they speak HTTP and/or HTTPS, otherwise we discarded them as out of scope. If one

or both connections succeeded, we followed redirects until we received a response body

and searched it with our prefilter signatures. These signatures are short regular expressions,

which indicate that the response was generated by one of the 18 applications of our study.

We crafted these signatures manually, by looking for unique keywords or snippets that

stayed stable across many different versions of the applications, e.g., wp-json for Word-

Press, name="Generator" content="Drupal for Drupal, and /static/yarn.css for Hadoop.

In total, we created 90 such signatures, an average of 5 per application. These signatures

do not determine if the detected applications are vulnerable, but instead reduce the num-

ber of targets to scan in the third stage from about 103M ports speaking HTTP(S) to about

2.5M targets running one of the 18 AWEs in scope for our study. We implemented this

prefilter in Node.js using the popular requests package to handle the underlying HTTP

communication including the redirects. Our signatures are applied as a simple string

search on the response body, so we do not need to parse and render the response and

also do not need to request embedded resources like scripts and stylesheets. Thus, we

can run this stage easily for hundreds of targets in parallel on a single machine without

performance issues.

Stage III – Tsunami At this point, we confirmed that the application is in scope for our

study and now need to verify whether it is running in an insecure state due to a MAV. For

this, we created and open-sourced a generic network security scanner called Tsunami [86].

It has an extensible plugin system and each MAV verification logic is implemented as a

dedicated Tsunami plugin. Based on the port and application information we had already

collected from Stage I and Stage II, Tsunami selects the appropriate MAV detection plugins

for each matching application. For example, in order to check whether a WordPress instal-

lation can be hijacked, we have a plugin that queries the /wp-admin/install.php page and

checks whether the WordPress installation process was served on that link. Compared to

the simple signatures of the prefilter, these plugins can involve more complex logic, e.g., a

verification that involves two or more requests or one that involves extracting information

first and then conditionally acting on that. Under the hood, the Tsunami scanner is writ-

ten in Java and uses a custom HTTP client based on the OkHttp library. Like the prefilter,

it supports basic HTTP features like redirects and POST requests, but for performance

reasons does not try to parse or even render HTML responses.
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Stage IV – Fingerprinting To enable detailed analyses of the discovered AWEs, we added

an additional step that goes beyond vulnerability verification and also tries to determine

the exact version of the deployed applications. This way, we can infer their default settings,

which could have changed over time, as well as their up-to-dateness in general. Manual

inspection showed that 13 out of the 18 applications reveal their version number some-

where on the website even to unauthenticated requests. For example, Kubernetes reveals

the version when requesting the /version API endpoint, while Consul includes an HTML

comment with the version on the front page. Therefore, our version fingerprinting first

tries to extract the exact version number from the 13 applications where this information

is usually voluntarily revealed on the page or in the HTML source.

For the five remaining applications, as well as cases where this version number was

removed, we employ a more elaborate fingerprinting mechanism. This fingerprinter is

based on two major components, a knowledge base and a crawler, and implemented as an

additional Tsunami plugin. The knowledge base holds the information about an appli-

cation, including interesting static files served by the application, unique hashes of these

static files, and the release version of the hashes. Static files like logos and favicons will

help the fingerprinter to identify the application as they are usually unique per software,

while other files like scripts and stylesheets will help locate the versions as they are fre-

quently updated across versions. To identify an unknown application we first crawl the

application and collect all static files from the responses. Then we match their hashes

against the knowledge base to identify the application and version. Consequently, this

stage is by far the most time- and resource-intensive one, as crawling and downloading

all embedded resources can result in several hundreds of requests for a single target.

Related Work The two most popular tools to conduct fast port scans are masscan [93] and

ZMap [63], which were both released in 2013 and resulted in many publications making

use of them in the following years. Similarly notable are the search engines Shodan [225]

and Censys [62], which conduct regular scans and host a website that allows others to query

their data, supporting researchers without the means to conduct scans themselves. How-

ever, checking for open ports and subsequently for Web services that respond to HTTP(S)

requests is just the first part of our scanning pipeline. In particular, we also want to iden-

tify whether the deployed application suffers from a missing authentication vulnerability,

which makes it related to works on black-box web security scanners [e.g., 124, 61, 60, 199, 71].

Yet these tools mostly focus on more widely known vulnerabilities such as SQL injection

and XSS. Our tool, on the other hand, tries to detect MAVs in web applications, which

were, to the best of our knowledge, not yet studied by the academic community and are

also often not yet considered by commercial scanning tools, as we demonstrate in our

paper.

Moreover, the fingerprinting methodology we employ is related to tools like WhatWeb [110]

and BlindElephant [252]. WhatWeb uses a list of manually curated signatures to detect spe-

cific applications, i.e., it can only extract version information if it is voluntarily disclosed by
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the application to anonymous visitors. BlindElephant, on the other hand, tries to request

as many resources, like images and stylesheets, as possible and then maps their hashes

to known versions of previously indexed applications. However, we found BlindElephant

to be severely outdated and discontinued and therefore created our own fingerprinting

pipeline which combines the advantages of both these approaches into one.

Contribution The author of this thesis contributed to this scanning pipeline by design-

ing and implementing the prefilter, about one-third of all our Tsunami detection plugins,

the "glue" code combining the three stages, as well as all post-processing and data anal-

ysis code. Moreover, he designed the employed fingerprinting methodology and created

a prototype of it during a 3-month research internship at Google in 2019. Guoli Ma im-

plemented the general Tsunami framework and the final fingerprinter plugin used in the

study. Manuel Karl, Sebastian Lekies, and Guoli Ma implemented the remaining MAV

detection plugins.

2.1.2 General Scanning Challenges

What we could learn from the example of the Tsunami scanning pipeline is that the ap-

proach with multiple stages that act as a filter for subsequent slower stages scales well,

if the amount of targets is extremely large and we also expect most of them to be out of

scope for a detailed scan. Beyond this, the pipeline also has many other advantages such

as a manageable complexity due to modularization into multiple stages and further into

individual plugins for the later stages. However, the aforementioned design also has a

significant limitation: It only works for known vulnerabilities. This is still useful, either as a

way to quickly scan for affected hosts once the details of a particular vulnerability go pub-

lic or as part of regression tests to make sure no further outdated versions are accidentally

introduced to a network. However, to prevent vulnerabilities in custom applications un-

der active development, e.g., a company’s own web applications, a scanning pipeline would

also need to detect whole vulnerability classes such as XSS. Moreover, if the scanner could

identify generic vulnerabilities without having seen that particular instance before, that

would also remove the burden of implementing a new detection plugin for every newly

discovered vulnerability.

Back in 2006, Kals et al. [124] had already worked on trying to improve the state of the art

for web scanners and presented their generic black-box vulnerability scanner called Secu-
bat. Compared to previous works, it did not rely on a list of known vulnerability instances

and could detect more than a single class; in this case both SQL injections and XSS flaws.

This requirement of detecting vulnerability classes instead of specific vulnerabilities in-

stances resulted in two major challenges many researchers attempted to tackle over the

subsequent years, namely crawling and vulnerability analysis, which we will introduce in the

following.
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The crawling challenge When we want to detect whole vulnerability classes, we do not

have the a priori knowledge anymore where exactly a vulnerability resides. So the question

is now: How can we make sure to fully traverse the web application and interact with all

discovered features, in order to execute as much client- and server-side code as possible?

This is step is crucial, as only the functionality we discover during the crawling phase can

later be investigated by the vulnerability analysis components of the scanner. If we already

miss something here, we surely miss it in all later stages of the pipeline as well.

Notably, there is a big difference between the crawling that search engines like Google

conduct for content indexing and crawling in the security context. The main reason for

this is that search engines want to discover all content while security scanners want to dis-

cover all functionality. For example, given a blog with 100 posts on different subpages, a

search engine would want to visit all these subpages to index their text content so that they

can be included in its results. However, if only the text content differs on these 100 sub-

pages, then from the perspective of a security scanner these are all identical, and visiting

one would be enough, as they include the same functionality and execute exactly the same

server-side logic. On the other hand, given a login subpage, the search engine will dis-

cover almost nothing interesting there, while the security scanner might send hundreds

of requests to only this one page to test for weak credentials, authentication bypasses, or

injection vulnerabilities. Therefore, previous research from the domain of search engines

can not be directly reused for security scanning as the perspective and underlying require-

ments are very different. This is also the reason why we generally prefer the term security
scanning throughout this thesis, which implies a crawling step but is optimized to discover

functionality over content.
Back in 2010, Doupé et al. [61] conducted a comprehensive study on the limitations

of existing black-box web vulnerability scanners in order to determine why they perform

poorly. For this, they created WackoPicko, a vulnerable web application that they used as

a testbed to evaluate eleven popular scanning tools. Their site contains several crawling

challenges such as the use of HTML frames and malformed HTML in general, vulnerabil-

ities hidden behind authentication or other multi-step actions, forms with file uploads,

and an infinite calendar severing as a crawling trap. Moreover, they also evaluated the

scanners’ ability to extract links with 54 different ways of embedding links to other pages

using WIVET [194]. They found that crawling is “as critical and challenging” as the vul-

nerability analysis step afterward, confirming that more research is needed to improve

the discovery capabilities of security scanners. Additionally, incorrect parsing and lack of

support for pervasive web technologies prevented the tools from reaching many of the

vulnerable pages in the first place.

Application state Another specific limitation of the Tsunami pipeline that affects our

crawling is that we were only looking for pre-authentication vulnerabilities, i.e., vulnera-

bilities exposed to all anonymous users. Obviously, this is a special case and a generic web

vulnerability scanner would also need to support login functionality and deal with cook-
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ies to reach parts of the web application that are only available to authenticated users. In a

more general sense, this means we have to consider the state of the web application, as vis-

iting the same URL might lead to quite different results when logged in and when logged

out. A typical example besides authentication is an e-commerce application where a user

adds an item to their shopping cart and then proceeds to the checkout page. As long as the

shopping cart is empty, the checkout page might either be unreachable or contain vastly

different functionality than when we are in a state with items in our cart.

Dealing with application state is challenging, as black-box scanners can only observe

the output of an application without knowledge of its internal state on the server-side.

Specific challenges are triggering state changes, as we first need to find out which (potentially

complex) actions cause a state change, state navigation, as URLs might not directly map

to states, i.e., navigating back will not necessarily result in the previous state, and state
explosions, as even simple applications can have infinite states [257]. In their publication

called Enemy of the State, Doupé et al. [60] approached these challenges by trying to infer the

internal state machine of the web application in a fully-automated fashion. They then use

this partial model to crawl and fuzz the application in a state-aware manner. Depending

on the complexity of the application under test, their evaluation showed that the state-

aware scanner significantly increased the code coverage compared to simpler crawling

tools like wget or w3af [212] that are not aware of application states.

The analysis challenge As previously discussed, the crawling functionality of a web se-

curity scanner is very important, since what we do not discover we also can not analyze.

While the Tsunami pipeline could discover known vulnerabilities, the goal of a generic

security scanner is much broader and such a scanner wants to detect whole vulnerability

classes on the web pages discovered during the crawling process. The resulting analysis

challenge basically boils down to the following question: Given a specific functionality

of the website, how can we automatically determine if it is vulnerable or used in an at-

tack? It should be noted that traditional security scanners usually are only interested in

the former, i.e., finding vulnerabilities. However, in the context of this thesis, we will also

use our security scanner to find ongoing attacks in the wild, i.e., websites that distribute
malicious code to their visitors. Therefore, our scanner will share some similarities with

features more often associated with anti-virus products such as VirusTotal [260] that visit

user-submitted links and subsequently analyze that website.

Generally speaking, the analysis of websites can be divided into static and dynamic ap-

proaches. Since our scanner uses a black-box approach, it will always need a crawling

component that dynamically explores the web application. So while we can not apply

static analysis on the server-side code, static analysis of all discovered client-side code is

still an option. However, the lack of types in JavaScript code as well the prevalent mini-
fication, i.e., renaming of variables and functions to shorter identifiers for less network

traffic, means that the static analysis of JavaScript is rather challenging [227]. Therefore,

dynamic analysis or a combination of static and dynamic analysis is often used instead
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when analyzing web applications for vulnerabilities and attacks.

The amount of works in the area of the analysis challenge is vast, so for brevity we

will focus only on the analysis of one particular vulnerability class that will also become

relevant in a later chapter, namely Client-Side XSS. While server-side XSS attacks had been

known for a number of years, its client-side counterpart was only later discovered by Klein

[132] in 2005 and happens if user-provided input is insecurely processed on the client-side

instead. For example, the code in Figure 2.1 is meant to dynamically add an image to the

DOM, which then sends both the query parameter as well as the URL fragment of the

including site back to the advertisement company. However, this snippet suffers from a

Client-Side XSS flaw, since both the query parameters and the fragment are simply con-

catenated with the HTML code — without any sanitization or encoding. It should be noted

that the automatic encoding of parts of the URL is different between browsers and also

has changed over time. In this thesis, we still consider the old behavior of not encoding

the URL fragment in location.hash. Hence, an adversary can inject markup into the frag-

ment of the URL to trigger the flaw, e.g., with the payload ’><script>alert(1)</script>

to demonstrate the attack with an alert box.

document.write("<img src='http://ad.com/ad.jpg?query=" + location.search + "&hash=" +

location.hash + "'>");↪→

Figure 2.1: Example of a Client-Side XSS vulnerability

From a conceptual standpoint, Client-Side XSS is caused when an unfiltered data flow

occurs from an attacker-controlled source to a security-sensitive sink. In the case of such

a Client-Side XSS, the source can be, e.g., the URL, whereas an example for a sink is eval

or document.write. Therefore, a popular approach to detect these kinds of vulnerabilities

is taint tracking, i.e., flagging all strings from those untrusted sources with "taint" and then

propagating that taint information through the whole application to see if parts of it end

up in one of the monitored sinks. For example, in 2013 Lekies et al. [144] created a modified

version of the Chromium browser that supports taint tracking and discovered client-side

XSS flaws on almost 10% of the Alexa top 5000 domains. For this, they not only needed a

taint-aware JavaScript engine and DOM implementation but also a context-sensitive ex-

ploit generation to provide accurate analysis of the prevalence of these flaws. Since then,

many works investigated this phenomenon further, such as the complexity [244] and his-

tory [241] of these vulnerabilities, a follow-up study on its prevalence in 2018 [156], an ap-

proach for the automatic discovery of a persistent variant [239], and improved techniques

for exploit generation [20]. All these works have in common that they focus on improving

the analysis techniques for just one specific vulnerability, thus showcasing the extent of

the analysis challenge in a security scanner that likely wants to detect multiple of these

complex vulnerability classes.
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Emulated browsers The previously described challenges, as well as the complications

caused by application states, mean that we need to bid goodbye to our highly perfor-

mant but basic HTTP communication as used in the presented Tsunami pipeline in

Section 2.1.1 and move towards something with more browser-like features like tolerant

HTML-parsing, form submission and cookies support. As a potential solution, we could

instead use so-called emulated browsers instead of plain HTTP libraries. While sometimes

referred to as simulated browsers in literature, these implementations are actually much

closer to an emulator, i.e., they only try to mimic the observable behavior of a real browser

without running a full simulation of its internal state. Therefore, they should only be

seen as rough approximations that do not support many features and edge cases. One

of their advantages though is that they do not incur the high performance overhead of

running a full desktop browser like Google Chrome or Firefox. Moreover, they are compar-

atively easy to integrate into a scanning pipeline, as they were designed to be controlled

via a programmatic interface and not by an end-user with a graphical interface.

For example, HTMLUnit [27] describes itself as a “GUI-Less browser for Java programs”

that was first released in 2002 and, at the time of writing, is still maintained almost 20 years

later. It is mainly intended as a way to automate the testing of websites and can emulate

Chrome, Firefox, or Internet Explorer. Among other features, HTMLUnit supports cook-

ies, submitting forms, and provides wrappers for easy DOM access. Moreover, it uses the

Rhino engine, which is also written in Java, to provide JavaScript support. HTMLUnit was

used in several influential security papers, such as Enemy of the State [60], You are what you
include [185], and Revolver [127]. Another popular emulated browser was PhantomJS [106],

which launched in 2011. Compared to the custom Java implementation used by HTM-

LUnit, it is instead based on WebKitQt, i.e., a fork of the rendering engine WebKit used by

Safari and earlier versions of Google Chrome. Therefore, PhantomJS behaves much closer

to a real browser. It was used in various security and privacy publications, e.g., to detect

website defacements [24], observe typosquatting [246], and audit third-party data collec-

tion [147]. However, unable to keep up with the fast evolution of browsers due to a lack of

active contributors, the project was discontinued in 2018 [105].

2.2 Necessity of Modern Web Scanning
For now, it seems that emulated browsers might be a good solution to the scanning chal-

lenges introduced in the previous chapter. However, the Web continued to evolve ever

more quickly: As one example, if we look back at the release history of the Firefox browser,

we can also see that its development cycle speed up from approximately one major re-

lease per year around 2010 to a major release every month as of 2021 [168]. While the

monthly releases most certainly do not contain as many features at once as the yearly re-

leases might have, this is still a considerable change and means that new web standards

result in changes for end-users much faster today. However, this also means it became

much harder for the developers of emulated browsers to keep up with the constant intro-
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duction of new features to the Web platform.

This change of pace along with certain web development trends means that there are

many reasons why even emulated browsers would not be good enough to comprehensively

scan and analyzed modern websites today. In the context of this thesis, we will look at four

web development trends in particular:

Complex client-side code, i.e., high reliance on JavaScript support

Blurring of involved parties, i.e., heavy use of third-party scripts

Volatile content, i.e., websites that expose non-deterministic behavior

Use of emerging features such as WebWorkers, WebSockets and WebAssembly

For each of them, we first introduce their technical details and then discuss how they

affect web scanning endeavors and thus result in new research challenges. Moreover, for

each trend, we also discuss noteworthy related works on that topic.

2.2.1 Complex Client-Side Code

Traditionally, the crawling component of a web security scanner found new URLs by ex-

tracting them from the HTML, e.g., by using regular expressions, but this is not sufficient

anymore to explore modern websites [199]. The main reason for this is that they no longer

consist of purely static HTML code, but instead part of the HTML might also be dynam-

ically generated from client-side code. Because of this, elements that are important for a

security scanner, such as forms and links, might only be present if the whole client-side

code is executed and all resulting transformations are applied to the DOM. Figure 2.2

shows one such example that fetches further HTML content from a remote resource and

adds it to the DOM after the initial page load.

window.onload = async function() {

let response = await fetch("http://example.com/news/latest");

document.querySelector("body > div").innerHTML = await response.text();

}

Figure 2.2: Dynamically adding further HTML content to the page

Back in 2012 already, researchers found that many URLs on modern websites were dy-

namically generated from client-side code [278]. In 2013, others found that almost all web

applications had hidden states which can only be revealed after interacting with the web-

site on the client-side and not be accessed directly via a specific URL [19]. Since then, the

amount of client-side code only increased due to trends such as the introduction of pro-
gressive web apps (PWAs) in 2015, i.e., web applications that are designed to provide app-like

features even when the user is currently offline [140]. Beyond the increased difficulties
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in traversing websites that make heavy use of JavaScript, this trend also leads to the in-

voluntary introduction of entirely new vulnerabilities classes like client-side validation

errors [221, 271] and DOM-XSS [132, 144], which is now usually called client-side XSS and

will be the target of the protection mechanism presented in Chapter 3.

While emulated browsers generally have some JavaScript support due to its paramount

importance on the Web, their support for modern features of the language is lacking.

And while the ECMAScript language specification on which the JavaScript implementation is

based had only two releases between 1999 and 2014, beginning with 2015 the specification

received a major update on a yearly basis. In particular, the release in 2015, which is also

known as ES2015 or ES6, added a vast amount of new syntax and features such as classes,

modules, promises, proxies, and template literals [66]. However, as of 2021 the Rhino

engine used by HTMLUnit still only supports a minority of the ES6 features, and almost

no features which had been added with ECMAScript releases in the following years [171].

Therefore, a script that uses any of the new and popular features such as async-await, let
and const, the for-of loop, or template literals would throw an error when executed with

HTMLUnit.

Related work In the following, we briefly discuss a few publications that worked on im-

proving scanners to make them function even on websites with lots of client-side code.

In 2008 Mesbah et al. [157] presented Crawljax, which is a crawler with special support for

AJAX websites. AJAX, which stands for Asynchronous JavaScript and XML and is based on

asynchronous communication and DOM manipulations, was a popular way to create re-

sponsive sites back then. However, this new design paradigm presented a challenge for

security scanners, as state changes do not necessarily have a corresponding URL anymore.

In 2015, Pellegrino et al. [199] published their scanner called jÄk, which is combines tra-

ditional web crawling with dynamic program analysis. They found that their approach

based on JavaScript API hooks and a runtime DOM analysis can explore 86% more of

the surface of a web application than existing approaches, highlighting the relevance of

this research challenge. Most recently, Eriksson et al. [71] published their work on Black
Widow, a black-box approach to deep web crawling and scanning. In particular, they fo-

cus on combining approaches from previous works that provided solutions to individual

crawling challenges such as asynchronous requests and inferring server-side state into

a single scanner. This resulted in a further improved code coverage during scans when

compared to previously discussed scanners such as jÄk and Enemy of the State.

2.2.2 Blurring of Involved Parties

Modern web applications consist of functionality originating from many different parties.

To allow for easy integration into existing sites, such third-party functionality is often

added via client-side JavaScript code. This is enabled by the fact that sites may include

external JavaScript from other origins, which is subsequently executed in the origin of
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the including site. Hence, such code runs with full privileges, e.g., can modify the DOM to

add a frame pointing to an advertisement or observe user interaction for analytic purposes.

Apart from ads and analytics, other use cases for third-party code include location services,

social media integration, or support functionality.

<head> <!-- HTML code delivered from https://shop.example -->

<script src="https://chat.example/service.js"></script>

</head>

[...]

<script> //Code of https://chat.example/service.js

if(!window.jQuery) {

let script = document.createElement('script');

script.type = "text/javascript";

script.src = "https://code.jquery.com/jquery-latest.min.js";

document.getElementsByTagName('head')[0].appendChild(script);

} </script>

Figure 2.3: Two different ways to include third-party scripts

The example in Figure 2.3 shows an online shop hosted at shop.example that wants to

integrate a chat service provided by chat.example. The chat service, however, has a de-

pendency to the popular jQuery library and does not want to bundle it with its own chat

script to reduce network load. Therefore, they dynamically add the required script from

jQuery.com. While reducing network load and increasing cache hits, this approach also has

the advantage that it allows seamless updates, since changes to the third-party code are

immediately "applied" to all including sites. However, this practice also has some severe

consequences for the security of the first-party website. As all these scripts run in the same

context, we are putting full trust into the servers that provide these scripts to us. If they

get hacked or decide to turn rogue, they can directly deliver malicious client-side code

into our page. Sometimes the attack vector might even be simpler, for example in 2012

Nikiforakis et al. [185] investigated inclusion relations on the top 10,000 sites and found

various inclusions to IPs and domain names that were not allocated anymore, which thus

could be obtained by an attacker.

In a more general sense, it is crucial to differentiate between actions of first- and third-

party code. The user usually only has a trust relationship with the first party, e.g., if we

order something from an online shop we obviously need to provide our postal address

to that shop. However, if the third-party code is embedded directly into the first-party

context, i.e., without any isolation through iframes, then these scripts also have access to

all the sensitive data that we trusted the first-party with. In 2017, Acar et al. [1] investi-

gated third-party scripts that exfiltrate sensitive data on a large scale. They found invasive

practices such as inserting invisible login forms to trigger the browser’s autofill feature,

as well as third-party session replay libraries that exfiltrate the whole DOM including all

personal information such as health conditions or financial data. Unfortunately, keeping

track of which actions are conducted by which party is actually a fairly difficult task. For
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example, a first-party script might use code provided by the third-party library jQuery

to insert further script code to the page, blurring the lines between the different parties.

Correctly attributing actions to a certain party requires mechanisms that currently neither

emulated nor real browsers provide out of the box.

Related work In the following, we briefly summarize a few recent works on the topic of

third-party script inclusions. In 2017, Kumar et al. [137] focused on the structure of these

inclusions and introduced the concept of implicit trust. They furthermore showed that

a quarter of the top 1 million sites were blocked from deploying HTTPS due to their in-

clusions. The risks of including outdated third-party libraries were analyzed by Lauinger

et al. [138], showing that 37% of the top 75,000 sites include at least one library contain-

ing a vulnerability. In 2019, Ikram et al. [114] investigated how often malicious inclusions

happen over implicit trust relations in the Alexa top 200,000. They found that 73% of the

websites in their study loaded one or more scripts from third parties labeled as suspicious

by VirusTotal. With respect to detecting third-party hosting, Matic et al. [150] proposed to

use RDAP information about the resolved IPs of sites as well as information extracted

from the start pages to detect hosting environments. In particular, they investigate if a

given site is self-hosted or provided via a CDN or third party.

2.2.3 Volatile Content

While the previous trends motivated the use of a real browser to correctly deal with mod-

ern websites, there are cases where even that is not enough. Some analyses might require

multiple visits to the same URL from slightly different environments, e.g., to confirm the

presence of a vulnerability by comparing different execution traces. However, websites

can be highly volatile and multiple visits even within a few seconds might yield different

responses. One typical example is a front page like reddit.com that shows the most re-

cent or most popular posts and constantly changes. In this case, only the content might

change while still executing the same code on each page load, but another reason for

volatile pages are ads and ad bidding in particular, where the actual ad is determined in

real-time and might behave differently on each page load. One recent work that highlights

the extent of volatility is the study by Urban et al. [254] from 2020, in which they create trees

that represent the relationships between third-party script includes. They found that the

third parties were often non-deterministic, with around 50% of the branches in their tree

changing between repeated visits of the same page.

The previously described reasons make the analysis of benign websites unintentionally

harder, as no two visits might execute exactly the same code. However, when investigating

web attacks in the wild, attackers also can make it intentionally hard to reproduce and ana-

lyze incidents later, thus requiring a fine-grained recording of all browsing activities. For

example, beyond very short-lived attacks in general, the payload might be only delivered

to very specific victim environments, might require specific user interactions to trigger,

reddit.com
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and might be delivered via malicious advertisements [146]. As popular browsers such as

Chrome and Firefox do not provide a fine-grained recording out of the box, there were

multiple works that attempted to create a comprehensive replaying system with accept-

able overhead, as we will discuss in the following.

Related work On one hand, several so-called record-and-replay (R&R) systems have been

proposed over the years, such as Webcapsule [182] which is an instrumented version of

Google Blink’s rendering engine and the corresponding V8 JavaScript engine. However,

it does not collect JS-level events that are needed for a deterministic replay, prompting the

development of JSgraph [146] which features even more extensive recording capabilities.

Compared to recording and replaying whole virtual machines of all system-level events,

these browser modifications are rather lightweight. On the other hand, they still intro-

duce a considerable overhead and resulted in works that instead enhance the browser’s

logging capabilities, such as ChromePic [255] and Mnemosyne [7]. Compared to ChromePic,

Mnemosyne is far more portable, as it does not require any browser modifications and is

instead deployed via a passive auditing demon. The main advantage of these approaches

is the lower performance overhead and smaller storage requirements compared to a full

R&R system but this naturally comes at the cost of completeness, as even the extended

logs are not guaranteed to contain all necessary data for a successful reconstruction of an

attack.

2.2.4 Use of Emerging Features

Previously, we discussed the general trend of using more and more JavaScript on the Web

and the many additions to the core language over the recent years, such as new keywords.

In addition to that, there is also the separate trend of browser vendors continuing to add

more features in the form of APIs accessible from JavaScript code. As one example of

such an API, take another look at the code example in Figure 2.2. In this case, fetch()

is short for window.fetch(), which is an API provided by the browser to conduct HTTP

requests via JavaScript code. The fetch-API serves as a more powerful replacement for the

old but popular XMLHttpRequest API. Both these APIs are not part of the JavaScript lan-

guage specification and are not supported when running JavaScript outside of a browser

environment. While Node.js has similar functionality in the requestmodule, many other

APIs have no equivalent outside of the browser, e.g., because they interact with the DOM.

As an approximation for the increasing number of features, we can look at the num-

ber of properties that were part of the global window object over time. Based on the MDN

compatibility data [169], we found that this number increased from about 250 properties

in Chrome version 4 at the beginning of 2010 to over 900 about 11 years later in Chrome

version 88 as Fig. 2.4 shows. This is only a very rough approximation as properties were

not resolved recursively, e.g., everything below of window.document was not counted in

this case, so the actual number is much higher. However, the comparison over time nev-
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ertheless serves to highlight just how many new features get added to the browser each

year.
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Figure 2.4: Number of properties of the global window object in Chrome over time.

In the following, we focus on three particular features because (a) their prevalence has

been rising over the recent years, (b) they would be hard to support in an emulated browser

without significant engineering efforts, and (c) they are useful from an attacker’s perspec-

tive, as we will describe in the following with examples from related work, as well as in

more detail with one particular attack that combines all of these three technologies in

Chapter 5.

WebSockets The WebSocket protocol has been standardized as additional browser func-

tionality in 2011 [77] and enables full-duplex communication from the browser to a web

server with less overhead than HTTP. In particular, WebSockets are useful for web appli-

cations that need updates from the server multiple times per second, such as multiplayer

action games and collaboration services, where multiple users write in the same docu-

ment. According to the anonymous JavaScript feature usage stats collected by Chrome,

WebSockets were used on about 9% of all page loads in 2021, and this number has slowly

but steadily increased over the last few years [34]. It should be noted that these statistics

are biased due to relatively few popular pages creating most of the page loads. For com-

parison, a study [174] conducted in 2020 found only 5.5% of the top 1 million websites to

be using WebSockets, while the Chrome stats reported a prevalence of 8.5% on all pages
loads at the same point in time. Moreover, the study also found that an overwhelming

95% of all scripts that initiate WebSocket connections are served by third parties, suggest-

ing that this technology is, so far, mostly used for tracking, analytics, and advertisements.

One noteworthy example of how such an emerging feature can be abused was reported by

Bashir et al. [15] in 2018 where they describe how advertisement and analytics companies

were abusing a bug in Chrome’s webRequest-API that prevented ad-block extensions to
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block their WebSocket traffic.

WebWorkers Another addition was the so-called WebWorkers, which have been intro-

duced in 2015 [104]. This programming primitive enables JavaScript code to schedule

multiple threads and conduct concurrent computations in the background. While the

original programming model underlying JavaScript already supports event-driven con-

currency, orchestrating the available computing resources, such as multiple cores, has

been technically involved. This problem is alleviated with WebWorkers, where the num-

ber of concurrent threads can be scaled with the available processor cores easily. According

to the Chrome usage stats, workers are used on about 12% of all page loads in 2021 and this

number has almost doubled over the last three years [35]. However, this number does not

only include WebWorkers but all types of workers such ServiceWorkers as well. One of the

possible abuses of WebWorkers is for thread spraying, in which many threads are created

to fill up the available memory space in order to circumvent low-level countermeasures

such as code-pointer integrity [82].

WebAssembly While WebWorkers allow to use more cores at the same time, JavaScript

code is still rather inefficient as it requires a costly parsing and interpretation within the

browser. This problem was addressed by the WebAssembly standard from 2017 [217]. The

standard proposes a low-level bytecode language that is a portable target for compila-

tion of high-level languages, such as C/C++ and Rust. WebAssembly code, or Wasm code

for short, is executed on a stack-based virtual machine in the browser and improves the

execution as well as loading time over JavaScript code [99]. Compared to the other two

presented technologies, its usage is still relatively low, with about 1.8% of all page loads

at the end of 2021 up from 0.3% in 2019 [33]. Nevertheless, WebAssembly already has been

actively abused by websites shortly after it became available in browsers. In particular, the

performance gains enabled efficient cryptojacking, an attack that covertly abuses the com-

puting power of all website visitors to mine for cryptocurrencies and will be the focus of

Chapter 5.

To summarize, we have seen that browsers constantly evolve and add new APIs that

are relevant for security research. This means a modern website will only be fully func-

tional if we visit it with an user agent that supports emerging features such as WebSockets

and WebWorkers. Thus, even if we had access to an emulated browser that uses a recent

JavaScript engine, these emerging features would need to be implemented into their em-

ulation as well – a most likely infeasible task for small development teams, especially for

complex features such as WebAssembly.
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2.3 Browser Instrumentation
The web development trends in the previous section highlighted the need for a real browser

over an emulated solution. This way, our security scanner can keep up with the constant

changes of the web platform, as we will always support the latest features as long as these

browsers get regular updates. However, using a real browser also results in new challenges,

as we will discuss here.

One drawback is that running a full browser comes with a serious performance impact.

For one, parsing and rendering HTML code and then additionally executing JavaScript

code is a CPU-heavy process. Moreover, modern browsers are split into many processes,

each of which might consume a considerable amount of memory. Last but not least, be-

cause a browser will require all embedded resources such as scripts, stylesheets, and im-

ages, the amount of network traffic required to load a page also significantly increases.

However, as in most cases we are not interested in how the web page would actually look

like for a visitor, we can apply some optimizations. For example, we could replace all

images and videos with a locally cached placeholder to reduce the network load. Going

further, we can even try to disable all parts of the browser that we do not need for an

automated scanner, such as the whole browser GUI. Fortunately, browser vendors also

recognized this need and recently began to add command-line switches which achieve ex-

actly that. For example, Chrome released Headless Chrome [21] in 2017, which is optimized

for running in server environments and reduces the CPU and RAM overhead by disabling

features that are unnecessary for that use case.

Another drawback is that the massive size of the codebase results in a much larger attack

surface for real browsers compared to tools with a very narrow scope like curl. As we are

willingly exposing this attack surface to any website that we visit during our crawls, we

must diligently keep the underlying browser up to date to avoid compromise through

publicly disclosed exploits. In Section 6 we will discuss this security threat in more detail

and present a study on the prevalence of outdated browsers running on the server-side.

However, the main challenge that we will discuss in this section, is that these desktop

browsers were traditionally not designed with automation in mind, especially before the

headless feature had been added. Therefore, we need browser instrumentation, i.e., we need

a way to programmatically interact with a real browser to control it and extract the data

that we are looking for in our experiments. In this section, we will first briefly describe

a few useful approaches on how such an instrumentation can be implemented and then

give a concrete, real-life example that was used in one of our publications.

2.3.1 Overview of Approaches

Generally speaking, our browser instrumentation needs to do two things: 1) control the

browser, e.g., open a new tab and navigate it to a website, wait a certain amount of time,

handle errors and crashes, etc. and 2) record and extract the information related to a vul-
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nerability or an attack that our scanner is actually looking for. In the following, we will

introduce several different instrumentation approaches that all have their unique advan-

tages and drawbacks.

JavaScript wrappers First, let us focus on the second step, which can often be solved via

JavaScript instrumentation using only features of the language and thus independent of

any browser. For example, suppose we want to monitor all calls to a certain JavaScript

function, e.g.,document.write because if used insecurely the function can lead to injection

vulnerabilities such as client-side XSS that our scanner wants to detect. One way to achieve

this is through monkey patching, i.e., wrapping the function to extend its functionality as

shown in Figure 2.5. As long as we would execute these wrappers before any other code on

the website can save a reference to the original function, all calls would be logged thanks

to our JavaScript instrumentation.

let original = document.write;

document.write = function() {

// Could report the call and parameters to our backend here

logCall(arguments);

// Call the original function

original.call(document, ...arguments);

};

Figure 2.5: Monkey patching a JavaScript function

Creating wrappers for security-relevant JavaScript functions is a proven concept in web

security research and was used in publications for more than one decade. For example,

it allows the creation of lightweight security mechanisms [201, 248] without the need for

browser modifications. Instead of merely logging the calls as shown in Figure 2.5, the pa-

rameters can also be checked against a policy. If the supplied values do not adhere to a

predefined policy, the call to the original function is not executed, preventing access to

protected functionality. By writing the protection mechanism entirely in JavaScript, it is

easy to deploy by bundling it with the website itself and also does not incur the cost of

maintaining as the browser’s codebase changes over the years. In Section 3, we will present

one protection mechanism against client-side XSS in detail, which is implemented en-

tirely using such a JavaScript instrumentation.

Network interception While the JavaScript wrappers solve the problem of recording the

relevant data – at least as long as the data is related to the usage of JavaScript features –

we still need a way to automatically inject these wrappers into all websites that we load

with our scanner. As previously outlined, it is important to ensure that our wrappers are

executed before any other code on the page. Again, we first take a look at one generic

solution by approaching this on the network level. By using a local proxy server to act as

a man-in-the-middle for the scanner, we could inspect and modify all responses from the
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server. The main advantage is that the proxy is completely independent of the underlying

browser, therefore we do not need to keep up with upstream changes in the browser.

However, it also has severe disadvantages that make this solution generally undesirable.

First of all, we need to either support all the various content and transfer encodings

to actually inspect the traffic or need to strip all unsupported ones from the outgoing

request headers. Then, we need to parse the responses looking for HTML documents in

order to add our instrumentation script to the very top as an inline script that will be

executed first. However, security headers such as CSP might disallow our modifications

and in particular any inline scripts, which is why we would need to rewrite these headers as

well, which might later cause false positives during analysis due to the weakened settings.

Even if we do account for all of this, there is still the problem that one document can

create many different environments that would not be instrumented. For example, any

dynamically created iframes or WebWorkers run in a different global context and thus

would be missing our instrumentation that is running only in the main window. While one

might attempt to also wrap the creation of all iframes, workers, etc. so that they propagate

the instrumentation, it is very complicated to implement this in a correct and complete

way. Therefore, network interception outside of the browser can not be recommended for

instrumentation purposes.

Browser APIs Instead of trying to solve everything outside of the browser, we could also

use well-defined APIs offered by the browser. The main advantage of this approach is

that the browser does all the heavy lifting, e.g., decoding and parsing all responses if we

want to intercept network requests. Moreover, we often do not low-level access to requests

anymore as we could just instruct the browser to execute our JavaScript instrumentation

code every time a new execution context is created. One option for this comes in the form

of browser extensions, which are small modules written in HTML, CSS, and JavaScript that

can extend the core functionality of the browser. The code for each extension runs in

a separate execution context, this means if we were to overwrite built-in functions with

our wrappers, the wrappers would only be active for code that runs inside our extension.

However, assuming the extension has the correct permissions, it can inject code into the

execution context of the loaded website as shown in Figure 2.6.

let script = document.createElement('script');

script.textContent = `/* Add the code to inject here*/`;

document.head.appendChild(script);

Figure 2.6: Injecting code from an extension into the document

While these extensions are portable and provide a mostly stable and somewhat browser-

independent API, they also are the least powerful option for browser instrumentation

purposes. For example, due to Chrome’s architecture the often requested feature of mod-

ifying the response body of intercepted requests is, as of 2021, still not available with also
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no plans to add this feature in the future [45] Moreover, browser vendors are increasingly

locking down the capabilities of extensions due to wide-spread abuse, such as unwanted

ad injections [251]. An alternative to creating browser instrumentation via an extension is

to instead use the WebDriver API offered by the Selenium testing framework [223]. As this

browser instrumentation relies on the installation of additional native programs to in-

teract with the browser, it can circumvent some of the limitations of browser extensions.

Compared to the previously outlined approaches, the WebDriver API was specifically de-

signed with browser instrumentation in mind. Figure 2.7 shows a complete example that

uses a real browser to load the given URL, waits until the document has fully loaded and

then searches for a specific element in the DOM. However, its API is still rather limited

compared to the alternative that we will discuss next.

const documentInitialised = () => driver.executeScript("return initialised");

await driver.get("http://example.com");

await driver.wait(() => documentInitialised(), 10000);

const element = driver.findElement(By.css("p"));

Figure 2.7: How to control the browser via the WebDriver API

Chrome DevTools Protocol (CDP) While browser extensions and the WebDriver were a

good work-around for the lack of an instrumentation API in the past, modern browsers

nowadays ship with a much more powerful interface by default. This interface is based

on the integrated Developer Tools, or DevTools for short. The DevTools is a GUI that acts

like an IDE for web development inside the browser that can be attached to any tab. For

example, the DevTools allow to inspect and modify the DOM and ship with a debugger for

client-side code that supports breakpoints and stepping through the code. Moreover, the

DevTools also allow the execution of JavaScript in an interactive shell and offer a way to in-

spect all network traffic including response bodies as well as headers and timing data. On

top of that, the DevTools offer many advanced features like measuring site performance

with a stack-based profiler, creating a heap snapshot to investigate memory leaks, and the

ability to measure and inspect code coverage.

All functionally that the DevTools offer is also accessible programmatically through the

Chrome DevTools Protocol (CDP) [38] for all browsers based on Chrome, while Firefox offers

somewhat similar functionality with their Remote Protocol [78], which implements a subset

of the CDP. Internally, the CDP uses serialized JSON objects and is divided into domains,
each of which offers many commands and events that can be subscribed to. To enable a

more convenient usage of the protocol, wrappers for many programming languages such

as Node.js and Python exist. For example, Figure 2.8 shows how to control an instance of

Chrome from Node.js via the CDP, using the chrome-remote-interface library [58].

In the following, we will introduce a few of the most useful features that the CDP of-

fers for browser instrumentation: First of all, the page domain can be used to navigate to
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//Launch the browser (with optional command line flags)

const port = await browser.initialize(flags);

//Connect to the CDP via the debugging port, open a new tab and enable the page domain

const target = await CDP.New({port: port});

const client = await CDP({target: target});

await client.Page.enable();

//Navigate to a website and wait for it to load

await client.Page.navigate({url: "https://tu-braunschweig.de"});

await client.Page.loadEventFired();

Figure 2.8: How to control a browser via the CDP from Node.js code

a URL, capture screenshots, and manipulate the navigation history. Moreover, it allows

defining JavaScript code that is executed in every frame upon creation before the frame’s

scripts, including the main frame of the website during the initial navigation. The debug-
ger domain, on the other hand, emits an event every time JavaScript code is parsed, which

includes dynamically created code like via eval or the Function constructor. Other useful

features of the debugger domain are setting conditional breakpoints and evaluating code

in any scope. As the name suggests, the network domain offers useful features related to

recording and intercepting network requests. Additionally, it allows to manipulate cook-

ies, to define additional HTTP headers for all requests, as well as to change the default

user agent string.

Compared to browser extensions and Selenium’s WebDriver, the API of the CDP is less

stable with many methods marked as experimental that might change in future versions

of Chrome without advance notice. On the other hand, the CDP enables analyses that

would be impossible on the network level or via a mere extension, such as running a code

profiler that records which JavaScript statements were executed for precise code coverage

information. To make the CDP even more accessible than the low-level wrappers as shown

above, Google built the Puppeteer [85] library for Node.js which provides a more high-level

API but internally uses the CDP. As each Puppeteer version is bundled with one specific

version of Chrome, it is also guaranteed to work even if the underlying unstable CDP

changes over time.

Native instrumentation While the CDP is certainly a powerful option for browser in-

strumentation, it does not allow arbitrary changes to the behavior of the browser and its

JavaScript execution. In some cases, it might be necessary to modify the browser’s source

code to add the required logging capabilities or functionality changes directly, resulting

in native instrumentation. Obviously, this allows for complete control over the browser, but

finding the correct location and then implementing a working change can represent a

challenge for everyone who is not familiar with the codebase. For instance, in 2020 the

Chromium browser had over 25M lines of code, of which around half are written in C++

[23]. Moreover, another challenge is to constantly maintain these changes as new browser
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versions are getting released which can result in complex merge conflicts that need to

be manually resolved. This means that even if the authors make their browser patches

available after the publication of a project based on native instrumentation, this does not

guarantee that the patches will remain useful in the future. Overall, native instrumenta-

tion by patching the browser should only be attempted as a last resort if the attempted

analysis can not be realized through other means such as the CDP. One example of a use

case that often only can be solved via native instrumentation is the forensic record and

replay engines like WebCapsule [182] that were discussed in Section 2.2.3.

2.3.2 Exemplary Instrumentation: Smurf

In Section 2.2 we described the web development trend of heavily relying on third party

scripts, which results in a blurring of the involved parties and their code. This analysis

challenge will now serve as a real-life example of how such challenges can be solved by

instrumenting a real browser with the CDP.

In our paper “Who’s Hosting the Block Party?” [238], we set out to understand to what

extent the trend of outsourcing functionality to third parties has adverse effects on two

key security mechanisms: Content Security Policy (CSP) and Subresource Integrity (SRI). CSP

primarily aims to mitigate the impact of XSS vulnerabilities [236] while SRI aims to secure

including sites against compromise of third-party servers by only executing scripts that

match the cryptographic hash attached to their definition [172]. Unfortunately, both mech-

anisms lack widespread deployment [10]. Assuming that a first-party wants to deploy CSP

and SRI and is able to make their codebase compliant with these mechanisms, we assess

how many sites could fully deploy the mechanisms without cooperation from their third

parties. To enable these detailed analyses, we needed to accurately depict trust relations

to create holistic views into inclusion chains within all pages of the investigated sites. In

what follows, we describe how our instrumentation can keep track of the code’s provenance
even for dynamically inserted scripts, showcasing the advantages of using the CDP.

Script inclusion terminology Before going into the details of our analysis, we first provide

a brief recapitulation on script inclusions and introduce our terminology. On the initial

delivery of an HTML document to the browser, developers can include the code inline into

the document, as well as point the browser to the URL from which an additional script

should be fetched. Any included script resource can interact with the full DOM func-

tionality of the web application, which allows inclusions to display ads or augment native

DOM functionality. As outlined in Section 2.2, this essentially enables all running code

to further conduct additional inclusions via the addition of dynamic script. For example,

this can be achieved by writing script tags or event handlers through document.write, in-

voking eval to convert a string to code, or programmatically adding scripts to the DOM

through document.createElement and appendChild. By default, inclusions cannot be re-

stricted, i.e., any included script can add additional content to its liking. Therefore, our
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instrumentation needs to handle all these different variants that can be used to include

scripts to keep track of their initiator, i.e., the original script that caused the new inclusion

to happen. By connecting all nested inclusions with their respective initiators, we obtain

an inclusion tree for each web page.

Precisely Capturing Inclusion Relations To analyze inclusion relations, we first need to

record which entity initiated a particular script inclusion. For this, we rely on the stack

traces that the CDP provides for most events. Events such as Network.requestWillBeSent

allow us to register a callback that can log the stack traces for dynamically inserted script

tags with a URL in the src attribute. The Debugger.scriptParsed, on the other hand,

provides stack traces for dynamically created via eval and similar functions. Figure 2.9

demonstrates how simple it is to save the stack traces of these events in a hashtable to

resolve them later.

let networkTraces = new Map();

client.Network.requestWillBeSent(function(params) {

if (params.type == "Script" && params.initiator && params.initiator.stack) {

networkTraces.set(params.request.url, params.initiator.stack);

}});

let debuggerTraces = new Map();

client.Debugger.scriptParsed(async function(params) {

if (params.stackTrace) {

debuggerTraces.set(params.scriptId, params.stackTrace);

}});

Figure 2.9: Saving stack traces of dynamically inserted scripts in a hash table. The params are values

that the CDP provides to these callbacks.

For inline scripts and event handlers, we need to rely on additional JavaScript instru-

mentation for DOM manipulations such as document.write and Element.innerHTML to

get accurate stack traces. Our custom JavaScript wrappers then notify our Node.js back-

end, every time an inline script or event handler is dynamically inserted and enable us

to save the stack trace in these cases as well. Figure 2.10 shows how such a wrapper

would work in detail at the example of event handlers. This instrumentation only works

because the CDP attaches stack traces to console.log calls. Moreover, it relies on the

Page.addScriptToEvaluateOnNewDocument function to create these wrappers in all windows

and iframes.

Resolving stack traces As we have seen, the CDP makes capturing the stack traces for

most variants of script inclusions relatively easy. Now, we need to traverse these stack

traces to identify the initiator of the respective inclusion. What makes this a bit more

difficult is that because of modern JavaScript features such as Promises, call stacks can be

asynchronous. And while async stack traces have been enabled by default in Chrome since
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// First, use monkey patching to wrap all functions like document.write to call

// this function first, then the original (not shown for brevity)

function intercept(htmlCode) {

let fakeDOM = (new DomParser()).parseFromString(htmlCode, "text/html");

// Dealing with event handlers

for (let ele of fakeDOM.getElementsByTagName("*")) {

for (let attr of ele.getAttributeNames()) {

if (attr.startsWith("on")) {

// Create a short identifier for the event handler

let hash = hashCode(ele.getAttribute(attr));

// Notify our backend to attach the stack trace caused by this log event

// to the identifier that we include in the message

console.log("[Initiator found] " + hash);

}

}

}

}

Figure 2.10: Creating stack traces for dynamically inserted event handlers via JavaScript wrappers

2017 [16], these cases still require special consideration in the implementation. In particu-

lar, all preceding stack traces must be recursively resolved via the Debugger.getStackTrace

API of the CDP with the current trace’s parentId in the arguments to get the full chain of

events that led to a given inclusion. With the increasing language support, e.g. async/await

in ECMAScript 2017 [67], we believe not handling these cases correctly to be an emerging

threat to such analyses. So while the actual implementation details are not needed to un-

derstand the rest of this theses, they serve as a practical example of how working with the

CDP can result in more accurate results.

Contribution In the spirit of open science, the implementation was open-sourced and is

available as part of a lightweight analysis tool called SMURF Monitor Unveils Roadblocking
Features [81]. SMURF is designed to help developers uncovering potentially dangerous

inclusion decisions and allows other researchers to compare against our work. The author

of this thesis contributed the mechanisms described in this section, which are capable of

collecting precise inclusions relations that were used for the data collection in our paper,

as well as in the open-source counterpart. The remaining implementation as well as all

analyses on the collected data were conducted by Marius Steffens, except the analysis on

code drift which was conducted by Ben Stock. Therefore, further details about SMURF

and our results on CSP and SRI blockage in the wild were omitted from this thesis and

can be found in the resulting publication [238].
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2.4 Summary
In this chapter, we first took a deeper look at a security scanning pipeline using the ex-

ample of Tsunami, which had been designed to find a predefined list of pre-authentication

vulnerabilities in web applications. From there, we discussed how to extend such a pipeline

so that we can find unknown instances of known vulnerability classes. However, this tran-

sition resulted in new crawling and analysis challenges and we saw emulated browsers as

one potential improvement for the pipeline. Then, we investigated four web develop-

ment trends in detail and found that rather than emulated browsers, we need to rely on

real browsers to keep up with the constant evolution of the web platform. Thus, we exam-

ined several browser instrumentation approaches that turn the browser into a crawling

and analysis tool that can be integrated into our pipeline. Finally, we concluded with a

showcase of how browser instrumentation can solve one of the analysis challenges using

the example of SMURF.

Now that we have established browser instrumentation as a useful tool for security scan-

ning, we describe three use cases in more detail in the following. First, in Section 3 we cre-

ate a mechanism to measure the compatibility of a novel defense for client-side XSS, which

is complicated by the analysis challenge of blurred third-party code. Then, in Section 4 we

explore abuses of JavaScript capabilities that allow malicious websites to detect if they are

under analysis, where we ran into the crawling challenge of volatile websites. After that,

in Section 5 we investigate the malicious usage of WebAssembly for parasitic computing

and obfuscation, which is an analysis challenge due to their reliance on many emerging

technologies. The trend of heavy usage of JavaScript affects all three chapters and is one

of the main motivations to conduct these experiments in a real browser in the first place.

However, in Section 6 we present a study on the usage of instrumented browsers in the

wild and highlight how they can, unfortunately, also introduce new vulnerabilities.





3 Measuring Compatibility
of an XSS Defense

In Section 2.1.2 we saw how the insecure usage of attacker-controllable data in functions

like eval or document.writemay cause a Client-Side XSS vulnerability. On the other hand,

in Section 2.2 we outlined that web applications nowadays often contain code from many

different parties and that this third-party code runs with full privileges in the origin of

the including site. To prevent the accidental introduction of Client-Side XSS vulnerabil-

ities into a otherwise secure website through third-party code, we designed a protection

mechanism called ScriptProtect [177]. In this chapter, we will describe how a modern secu-

rity scanner based on a headless browser can be used to evaluate the compatibility of this

XSS defense. In particular, this chapter will focus on the analysis challenge of blurred third-
party code as a motivation for our scanning methodology. Moreover, this chapter serves as

an interesting use-case because we are not only looking for security flaws but simulta-

neously also test if applying our novel protection mechanism would have prevented the

exploitation without breaking any functionality of the website.

In Section 3.1, we first motivate the problem and briefly introduce ScriptProtect’s ap-

proach. Then, we outline our threat model and explain what is in and out of scope for

the protection mechanism. Next, in Section 3.2 we describe the two different protection

modes that ScriptProtect offers to support both existing and new web applications, which

are based on a dynamic access control and the introduction of unsafe variants, respec-

tively. Moreover, we also introduce all dangerous APIs that are covered by ScriptProtect in

the same section. After that, we explain our methodology based on the instrumentation

of these dangerous APIs in Section 3.3, with an emphasis on the different implementation

approaches for the different types of APIs. In Section 3.4, we then follow up with an evalua-

tion of our proposed defense in a real-world scenario, where we examine the compatibility,

effectiveness, and performance of ScriptProtect in detail. Finally, in Section 3.5 we discuss

publications related to Client-Side XSS protections and the securing of third-party code.

3.1 Use Case: Third-Party Client-Side XSS
The direct client-side inclusion of cross-origin JavaScript resources in web applications

is a pervasive practice to consume third-party services and to utilize externally provided

libraries. The first-party code is under the control of the site’s developer, who may employ

secure coding practices to avoid vulnerabilities or use tools to find and patch them [196].

In contrast, the developer has no control over third-party code and cannot address vul-
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nerabilities in included code. Specifically, if a third-party script is included, it has the

power to add additional scripting content to the including site. Given this model of in-

cluding scripts from other parties, flaws in third-party code result in vulnerabilities that

directly affect the including website. As we will see in this chapter, a significant fraction

of all Client-Side XSS flaws is caused by such third-party code. Thus, vulnerabilities are

introduced in otherwise secure sites merely by the inclusion of such a benign-but-buggy

third-party script.

3.1.1 ScriptProtect
A study from 2018 by Melicher et al. [156] has shown that the general threat of Client-Side

XSS is still widespread in modern web applications. Moreover, as an earlier work from

Stock et al. [244] has shown, a significant fraction of the exploitable flaws is caused by

third-party content. This paints a grim picture for the security-aware developer who in-

vests time in securing the web applications against the threat of XSS, only then to notice

that a third party introduced a vulnerability. Especially given that modern web applica-

tions and their interconnectivity appear to grow even further [241], it is unreasonable to

burden developers with banishing third-parties from their security perimeter. Instead, we

would want an environment that prevents other parties from inadvertently introducing

new vulnerabilities. This way, we enable first-party developers to focus on the security and

functionality of their own code. More specifically, we want to allow the third party to add

benign content like images, but ensure they cannot add markup containing script code

such as event handlers. For this, we propose ScriptProtect, which functions as a lightweight

drop-in solution to harden a web application against benign but buggy third-parties. At

its core, ScriptProtect ensures that third-party code is unable to accidentally add unsafe

markup into a document. Before we describe this protection mechanism in more detail,

we first introduce the threat model we considered for its design.

3.1.2 Threat Model
Over the past decade, there have been many attempts to allow the inclusion of third-party

code without compromising the security of the including site itself [5, 115, 201, 248]. How-

ever, these papers assume a malicious third-party and hence require very strict isolation of

the third-party code, which in turn tends to break many use cases like analytics and en-

richment of pages in general. In contrast, in the context of ScriptProtect, we consider the

third-party scripts to be non-malicious but vulnerable. This means that the initially executed

third-party code has no intent of undermining our protection scheme. While the trusted

third party is meant to operate within the security bounds of the first-party application,

a attacker can try to attack in three distinct ways. First, they can try to inject malicious

inline scripts. Second, when an HTML injection is possible, they can resort to including

an externally hosted JavaScript file containing their payload. Finally, they can use eval or

similar functions to conduct a string-to-code transformation and gain code execution.
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The attacker in this scenario is a malicious actor, who aims to exploit the Client-Side

XSS problem, which was unwillingly introduced by the third-party script. As such, the

attacker has to perform a string-to-code conversion while abusing an XSS flaw to intro-

duce his new, malicious code into the origin. Hence, while a malicious third party could

undermine our protection scheme, e.g., by getting a reference to an unprotected version

of document.write from a newly created frame, the attacker in our scenario does not

have that capability. The honest third party, on the other hand, was trusted through the

action of including a script from its host. As such, a malicious third-party has no need

to circumvent our protection, e.g. of document.write, as it can already execute arbitrary

JavaScript code without requiring additional scripts elements in the DOM. Therefore,

our goal is to prevent third parties from accidentally introducing new code where writing

passive markup – without scripts and event handlers – to the page would be sufficient.

Consequently, attacks that involve compromising the third-party servers are out of scope

for our protection.

3.2 System Overview
On a conceptual level, ScriptProtect works as follows: All potentially dangerous browser

APIs and properties which could cause Client-Side XSS vulnerabilities, e.g., innerHTML or

document.write, are instrumented at runtime. This is achieved by our protection mecha-

nism which is simply included by a developer in the head portion of the hosting HTML

document as an external script resource before any other external script is loaded. After

the execution of ScriptProtect’s code, all instrumented APIs are secure-by-default, meaning

they cannot be used to add additional script content to the DOM.

3.2.1 Protection Modes

To allow trusted first-party code to still use the script-introducing functionality of these

APIs, we offer two different protection modes:

New applications — Unsafe API variants While the standard API remains unable to intro-

duce new script content into the web document, ScriptProtect introduces a second version

of the API, e.g., document.unsafeWrite, to be used explicitly by first-party code in cases in

which additional script code should be added to the document. As these cases are in the mi-

nority and clearly marked through the explicit usage of the unsafe versions, it is straight

forward to audit such occurrences during development to avoid vulnerabilities. On the

other hand, third-party scripts won’t use the unsafe variants, as they are designed and

implemented for standard browser functionality, and thus, are completely safe. If third

parties are aware of the unsafe variant, they could obviously simply call that. However, as

discussed in our threat model, we assume no intentional circumvention of our protection

from a party that already has achieved code execution anyways.
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Using these unsafe API variants (if really necessary) is the recommended way in case

a new web application is created from scratch. However, as this change merely renames

the original functionality, this can also be used for existing applications in combination

with a rewrite proxy or static analysis tool. While giving the first party full access to the

dangerous APIs by default is not ideal, we see this option useful for a transitional phase:

access for the third party is immediately blocked while the first-party code is rewritten to

use the unsafe variant by default. Then gradually all usages of the dangerous APIs need

to reviewed and, depending on each individual case, changed to use the safe variant, if

possible.

Existing applications — Dynamic access control In case a significant codebase for the tar-

get application already exists, ScriptProtect offers the option to dynamically adapt the

behavior of the APIs and DOM properties, depending on the calling party. In this case,

the mechanism transparently checks the stack trace of the current execution thread to

obtain the top-most execution context causing the execution chain, which then ended up

in a potentially harmful operation. If the call originally was initiated by a trusted first-

party functionality, the value is passed unaltered to the respective API or property. If the

original call came from a third-party script, the value is automatically sanitized, so that

no additional script content is added to the web document. In particular, this protection

mode is useful if a codebase already exists that cannot be adjusted to use the unsafe API

variants, e.g., legacy code that includes minified components.

3.2.2 Dangerous APIs

The purpose of ScriptProtect is to ensure that vulnerabilities in third-party code cannot be

leveraged for an XSS attack. Hence, our security policies are set such that creation of addi-

tional script content cannot occur, whereas other types of content injection, e.g., including

iframes or images hosted by other domains, are outside of our threat model. In essence,

these considerations result in a policy which strictly forbids third-party JavaScript code to con-
duct string-to-code conversions, i.e., the introduction of additional executable JavaScript code

that was derived or referenced from potentially untrustworthy data. For one, ScriptProtect

prevents third-party code from creating additional script tags. Furthermore, a given third

party is not allowed to introduce code via the inline event handlers of newly introduced

HTML elements. The creation of an iframe with a srcdoc attribute or javascript: URI

is prevented, as otherwise code execution on the origin of the first party can be achieved.

Finally, ScriptProtect also strips third-party code from the ability to conduct direct string-

to-code conversion via APIs like setTimeout. There exist a variety of different APIs and

DOM properties which have the ability to introduce new code through one of the means

above. These APIs and properties can further be divided into different classes of function-

ality, types of access and accept different kinds of inputs. In the remainder of this section,

we briefly describe the characteristics of each of the classes of functionality including with
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table for all their representatives. Each of these needs to be considered by the ScriptProtect

implementation to cover all possible cases through which vulnerabilities can accidentally

be introduced by a third-party.

Raw DOM content at rendering time For one, JavaScript offers a set of APIs which add

additional HTML code to the document directly during the initial rendering of the doc-

ument. The code is seamlessly interpreted right after the script terminates and before

subsequent HTML code is parsed/interpreted. The best known and most widely used API

here is document.write. As Table 3.1 shows, the only alternative function of this class is the

very similar document.writeln.

Table 3.1: APIs and properties that introduce new JavaScript code at rendering

Functionality Type Sink

document.write Global API HTML

document.writeln Global API HTML

Runtime creation of DOM content The next relevant class are DOM APIs and properties

that allow the alteration of the HTML content at runtime, i.e., after the initial render-

ing process has terminated. Unlike document.write this functionality is not provided as a

global API. Instead, it is achieved through a set of properties and APIs which are directly

attached to DOM elements. This way, the relative location of the new content is provided

implicitly. The most used element in this class is the innerHTML property, which on as-

signment inserts new HTML subtree-structures as a DOM child of the hosting HTML

element. However, this class also includes all means to modify existing DOM elements,

e.g. modifying the src attribute of a script tag as Table 3.2 summarizes.

Direct code conversion Apart from the addition of HTML markup to the document,

JavaScript code may also be executed directly. In particular, a set of APIs and DOM prop-

erties allow the direct conversion of string data into JavaScript code. The most used rep-

resentative of this class is the function eval, all other variants are listed in Table 3.3.

3.3 Protection Methodology
On a high level, ScriptProtect is a JavaScript library that instruments dangerous APIs with

HTML sinks in such a way that all values passed to them are sanitized, before the API’s

DOM altering functionality is executed. In the context of this chapter, the process of

sanitizing HTML input is regarded as an orthogonal problem and we assume that a safe

implementation exists. At the time of writing in 2019, the browser did not yet provide

a native way to sanitize JavaScript values for safe DOM inclusion, therefore we leveraged
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Table 3.2: APIs and properties that can introduce new JavaScript at runtime

Functionality Type Sink

Element.innerHTML Property HTML

Element.outerHTML Property HTML

Element.setAttribute Local API all

Element.insertAdjacentHTML Local API HTML

HTMLScriptElement.src Property URI

HTMLScriptElement.text Property JS

HTMLScriptElement.textContent Property JS

HTMLScriptElement.innerText Property JS

HTMLIFrameElement.src Property URI

HTMLIFrameElement.srcdoc Property HTML

HTMLTag.onEventName Property JS

Range.createContextualFragment Local API HTML

Table 3.3: APIs and properties that can introduce new JavaScript code through direct code conver-

sion. Asterisks denote non-standard APIs.

Functionality Type Sink

eval Global API JS

Function Global API JS

setTimeout Global API JS

setInterval Global API JS

setImmediate* Global API JS

execScript* Global API JS

the established DOMPurify [102, 52] library for this purpose. Combined with the fact that

ScriptProtect is implemented as one single JavaScript file, this results in a lightweight

approach that is easy to deploy and does not rely on custom modifications to the browser,

which means ScriptProtect could be used immediately.

We achieve our measurement and protection by wrapping all functionality that could

lead to code execution so that each call to an unsafe API is intercepted by our hook. There-

fore, ScriptProtect is a JavaScript instrumentation that is implemented through monkey

patching as introduced in Section 2.3.1. This also means that ScriptProtect needs to be

the first script that is loaded into a page to ensure all following code automatically uses

the secured APIs. One advantage is that this instrumentation is completely transparent

to the rest of the application: pre-existing code which intends to call the original API

keeps functioning without requiring any code changes. Moreover, we can use the same

instrumentation to enforce our security policies in the modified dangerous APIs also to
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report all attempted violations during our compatibility measurements. If there are no

violations during benign interaction, then the site is compatible with ScriptProtect. This

means that by describing our instrumentation for the protection mechanism, we also im-

plicitly describe the scanning methodology for our measurements in the next section, which

solely relies on this instrumentation. Each of three types from Tables 3.1 to 3.3 requires a

different instrumentation strategy, as we describe in the following.

3.3.1 Instrumentation of HTML Sinks
Global APIs The reference to global APIs such as document.write is readily available af-

ter document initialization and is very similar to the classic example of monkey patching

JavaScript functions, as introduced in Section 2.3.1. We first preserve a link to the original

implementation for future usage with sanitized values. Subsequently, we overwrite the

global reference and replace it with a reference to a function which first executes the san-

itizing step on all arguments, before calling the original functionality to achieve a trans-

parent instrumentation.

Local APIs In the case of the instrumentation of element-local APIs that are directly at-

tached to DOM node, no single global reference to an API exists as each individual DOM

element exposes the API to the calling code. In this case, we have to leverage JavaScript’s

prototype-based object oriented features. All DOM nodes are decedents of JavaScript’s

Element object class. Thus, via altering Element’s prototype, we are able to change the be-

havior of all DOM nodes transparently. Fig. 3.1 shows this process. Specifically, we first

get a reference to the original insertAdjacentHTML method in line 2. Subsequently, we

overwrite the method in the prototype and only invoke the original variant after sanitiz-

ing the HTML markup passed as the second parameter to insertAdjacentHTML. For APIs

that exist only for a subclass of DOM nodes, such as the createContextualFragment API of

range elements, we instrument the respective, more specialized prototype.

(function() {

let old = Element.prototype.insertAdjacentHTML;

Element.prototype.insertAdjacentHTML = function() {

if (arguments.length == 2) {

arguments[1] = sanitize(arguments[1]);

}

return old.call(this, ...arguments);

}

})();

Figure 3.1: Transparent instrumentation of local APIs

Properties DOM properties, on the other hand, cannot be instrumented directly. In-

stead, their setter property has to be replaced with the safe wrapper. As the DOM prop-
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erties themselves are again attached to individual DOM nodes, we have to change the

elements’ prototype, similar to the element-local APIs. Figure 3.2 shows how we achieve

this. Object.defineProperty allows us to overwrite the set property, i.e., the setter to be

called when assigning a value to innerHTML. We then proceed to sanitize the input and

invoke the original, stored setter.

(function () {

var old = Element.prototype.innerHTML;

Object.defineProperty(Element.prototype, "innerHTML", {

set: function (val) {

val = sanitize(val);

old.call(this, val);

}

});

})();

Figure 3.2: Transparent instrumentation of properties

3.3.2 Instrumentation of JS and URI Sinks
JS sinks For APIs like eval, which directly result in code execution of the complete string,

there exists no harmless subset of inputs. This is also true for the assignment of DOM

properties that take JavaScript code as a parameter like script.innerText. Therefore, calls

to these APIs with a JS sink do not involve a sanitization step, as shown in Figure 3.3.

Instead, the call is completely blocked unless the introduction of new code was allowed

through one of the two mechanisms described in the following sections.

(function () {

let old = window.setTimeout;

window.setTimeout = function() {

//Allow only if there is no string-to-code conversion

if (typeof arguments[0] != "string") {

old.call(window, ...arguments);

}

};

})();

Figure 3.3: Instrumentation of setTimeout

URI sinks The same is also mostly true for the assignment of a URI, e.g. script.src, with

the only exception that including further scripts from the host of the same third-party

could be allowed as this domain is already trusted. However, allowing the inclusion of

same-site scripts has some subtle drawbacks: For one, if the third-party is a CDN, then

the attacker could abuse this to include older versions of libraries hosted on that CDN,



3.3 Protection Methodology 49

allowing potential script gadget attacks [143]. Moreover, these might contain publicly dis-

closed vulnerabilities, which then could re-enable old attacks on patched and up-to-date

sites. Furthermore, it is notoriously difficult to correctly identify the effective top-level do-

main. A script hosted on *.amazonaws.com should not trust other hosts on amazonaws.com,

as they are all part of Amazon’s public cloud infrastructure and anyone can obtain a sub-

domain for this domain to host malicious scripts. This could be solved by using the Public
Suffix List (PSL) [80], which includes a list of both official ICANN suffixes, e.g. co.jp, and

private suffixes like cloudfront.net or those for Amazon’s AWS. With over 20,000 entries

the list is rather large and weighs about 200KB, which is about 10 times the size of Script-

Protect itself and would have a negative impact on the loading time. For these reasons, we

decided to block the assignment of URIs in general and treat these sinks in the same way

as the JS sinks.

3.3.3 Unsafe API Variants

As previously discussed, ScriptProtect’s measures create API variants that are secure by de-
fault. This means that if no script-reenabling steps are taken it is impossible to introduce

additional JavaScript content into the web document. However, first-party code might re-

quire this capability occasionally. In this case, the majority of the application code uses

the standard – now safe – APIs. Only in selected cases, in which the introduction of further

script code is explicitly intended, a second, newly introduced variant of the API is called

which allows the potentially unsafe action. The occurrence of such cases is most likely sel-

dom and can be audited thoroughly, as the insecurity is now explicit. Implementation-wise,

for global APIs we just attach the original, native function to a global object outside of our

instrumentation closures under a new name like document.unsafeWrite. In case of local

DOM properties, additional properties are added to the respective element’s prototypes

as shown in Fig. 3.4 at the example of innerHTML.

(function () {

var oldSet = Object.getOwnPropertyDescriptor(Element.prototype, "innerHTML").set;

Object.defineProperty(Element.prototype, "unsafeInnerHTML", {

set: oldSet

});

})();

Figure 3.4: Introduction of an unsafe innerHTML property variant

3.3.4 Dynamic Access Control

One important goal for the design of ScriptProtect was to also offer a protection mode that

works without any changes to existing applications. Thus, instead of rewriting an application

to use the unsafe API variants as discussed in Section 3.2.1, we offer an alternative protec-
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tion mode based on dynamic access control. In this scenario, whether or not a call to a

problematic API is allowed, depends on the party that induced that call in the first place.

Calls that originate from the first party are then routed to the original, unaltered API while

all calls induced by a third party will use the safe, instrumented APIs and properties.

By inspecting the current execution thread through the Error object, we can obtain the

stack trace from within JavaScript code at runtime without requiring an external debugger.

We then proceed to extract the URL of script at the top of this call stack, as shown in

Figure 3.5. The script at the top of the stack trace represents the initiator of the actions

that lead to the call in the first place. If the hostname of the script’s URL matches the

first party the call is allowed without modification. Otherwise, the function argument is

subjected to value sanitization or blocked, depending on the sink.

function isAllowed() {

//Extract all URLs from the stack trace

var regex = /(https?:\/\/.+?):\d+:\d+/g;

var urls = (new Error).stack.match(regex);

if (urls && urls.length > 0) {

//Use last entry and extract its hostname from URL

var topCaller = getHost(urls[urls.length - 1]);

return topCaller == location.hostname;

}

return true;

}

Figure 3.5: Code snippet showing how stack trace is parsed and the top caller extracted

3.4 Large-Scale Study
In this section, we want to answer three important questions about our approach:

Compatibility: How many websites can use ScriptProtect without any changes?

Effectiveness: How many of the discovered Client-Side XSSes would it prevent?

Performance: How large is the impact to page load performance for website visitors?

3.4.1 Data Collection
To analyze the compatibility and effectiveness of ScriptProtect in the Alexa Top 5,000 we

let our instrumented browsers crawl these web applications. However, we found that the

Alexa list contains 103 google.tld domains and a total of 82 subdomains of tmall.com. To

gravitate our analysis to a more diverse set of web applications we opted to skip those en-

tries in the list for which we either already had a site included which has the same eTLD+1



3.4 Large-Scale Study 51

or the same second-level domain. Additionally, we remove any entry for which we are un-

able to connect to the website according to the following pattern http://ENTRY. After this

preparation step, we arrive at a new list of 5,000 sites to be crawled. Our crawlers follow

each same-site link up to depth 2 with a maximum of 1,000 unique links per site. This

allows us to analyze the web applications in more depth than the previous approaches [144,

156] and leaves us with around 3.5 Million pages on 4528 different sites.

On the remaining 472 sites, however, we were unable to visit more than one link suc-

cessfully. Investigating these cases reveals that for 106 sites we were unable to connect to

the main site via HTTP due to the connection being preemptively terminated (e.g., con-

nection resets, unresolvable hostnames) or the site needing more than 30 seconds to load

which triggers a timeout in our infrastructure in order to prevent infinite loading sites.

Randomly sampling 5% of the other 366 reveals that on 9 sites our crawlers were blocked

visiting the site and were instead served a static site indicating the block, with 1 loca-

tion and 3 IP-based blocks. Further 6 sites only served static content such as CDN main

sites and domain selling sites, and 3 sites would have required to circumvent interstitial

JavaScript dialogs, e.g., GDPR interstitials. Of these remaining 4528 sites with more than

one successfully visited page, only 65 do not include any third-party script on their Web

presence. Thus, for our further analyses in the rest of this section, we focus only on these

4463 sites which could theoretically benefit from ScriptProtect.

In a separate study, we used taint tracking to search for Client-Side XSS flaws in the

same set of websites. As this part of the evaluation was conduced by Marius Steffens and

Ben Stock, we only briefly summarize the results here and refer the interested reader to

our ScriptProtect publication [177] for more details. During this study, we found a Client-

Side XSS on 351 sites, of which 129 sites are vulnerable due to scripts originating from

third-party hosts. Moreover, on 37 of these, we also found a vulnerable flow originating

from the first-party code, leaving us with 92 (26%) sites, which are solely vulnerable due to

third-party code.

3.4.2 Website Compatibility

Ideally, ScriptProtect is used when creating new applications. Then, the unsafe API vari-

ants clearly indicate which code parts could lead to vulnerabilities, aiding both manual

and automated security analysis. Still, existing applications can also profit from the pro-

tection today without requiring any code changes by using the trace-based inspection of

calls. A site is compatible as long as all included third-party scripts do not add additional

JavaScript on their own during normal operation, i.e., through external scripts, inline

scripts, or event handlers. In this case, ScriptProtect would not block any action of the

third party during a normal visit without an attempted attack — the site could add our

protection without any changes and without breaking existing functionality.

By artificially injecting the protection via our instrumented browser and visiting these

sites and all their subpages in the set of the initial 3.5 Million pages, we observe that on the
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vast majority of sites, a third party dynamically adds new code at least once. This is due to

the fact that constructing and assigning script URLs at runtime is extremely popular, e.g.,

in advertisements, and used by third parties on about 94% of sites. On the other hand, only

70% of these sites include a third party, which uses APIs and properties with an HTML

sink like innerHTML to insert new JavaScript code, triggering the sanitization step to block

that new code. Furthermore, only 35% sites have a third-party which use methods with a

direct JavaScript sink like setTimeout. Our results on the usage of the different sinks are

summarized in Table 3.4.

Table 3.4: Number of sites for which a third-party used a sink in order to add new code. See Ta-

bles 3.1 to 3.3 for a mapping of APIs and properties to sinks.

Description # of sites

Successfully crawled 4528 (—)

With third-party scripts 4463 (100%)

Third-party adds code via URI sinks 4180 (94%)

Third-party adds code via HTML sinks 3122 (70%)

Third-party adds code via JS sinks 1562 (35%)

Coming back to the 129 sites that are vulnerable due to flaws in third-party code, we

investigated which sink was actually responsible for the vulnerability in the first place.

We find that 122 of the 129 sites were exploitable due to the injection of HTML markup,

4 due to an injection into eval, 2 sites had an injection into script.src, and on another

2 sites the attacker can hijack the content of a script.text attribute. One site had both

an injection into an HTML context and into eval, resulting in 130 sinks on 129 sites. This

shows that the APIs and properties with a JS or URI sink are preventing compatibility with

a significant amount of existing sites, while the real-world vulnerabilities are only rarely

caused by them. Intuitively this makes sense, as the direct assignment of a script.text

or call to eval makes it very obvious to the developer that new code is created. On the

other hand, for example, a call to innerHTML to adjust the content of a div tag does not

make its security implications completely obvious, again highlighting the need to make

the insecurity explicit. Therefore, to achieve backward-compatibility with a larger number

of existing applications, we activate our instrumentation only for the HTML sinks, which

still mitigates most risks. With our approach of only instrumenting the HTML sinks,

ScriptProtect can be used on 1341 of the 4463 sites with third-party code without any code
changes.

3.4.3 Mitigation Effectiveness

To verify that this backward-compatible version of ScriptProtect indeed provides the tar-

geted protection, we artificially added our scriptprotect.js to the top of the head of all
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pages in the set of the 129 sites with vulnerable third-parties. Subsequently, we checked

whether the proof-of-concept exploits discovered by the taint engine were blocked by our

protection mechanism. Due to the design choice to exclude them, the 8 sites with non-

HTML sinks could not be protected. However, another 13 also continued to be vulnerable,

as their third-party scripts were vulnerable to an HTML injection, but then proceeded to in-

sert our payload without using one of the protected HTML sinks. Manual investigation of

these 13 sites showed that this is due to the fact that, when using certain libraries, the line

between the different sinks begins to blur, as also previously discussed in Section 2.2.2.

For example, jQuery’s .html function is a more convenient version of innerHTML, that in-

ternally uses script.text (or eval in older versions) to execute inline scripts, which is not

possible using the standard innerHTML function. As jQuery is widely used we extended

ScriptProtect to also wrap and protect all of jQuery’s HTML sinks. Adjusting our pro-

tection to correctly function with all other popular libraries would have required manual

analysis of each and thus was considered out of scope, but would be straightforward on a

case-by-case basis. After adding the additional protection of jQuery another 6 sites were

protected, leaving only 15 sites vulnerable despite ScriptProtect’s presence.

Overall, this backward-compatible version of ScriptProtect prevents the exploitation of

the discovered third-party vulnerabilities on 114 of the 129 sites. While a more complete

protection certainly would be desirable, a trade-off between security and compatibility

needs to be made. With our approach of only instrumenting the HTML sinks, ScriptPro-

tect can be used on 30% of the sites with third-party code without any code changes while

still preventing almost 90% of all third-party caused vulnerabilities.

To understand if other approaches could mitigate the risk of an exploitable flaw in a

similar fashion, we also checked if the sites in question could deploy a strict Content

Security Policy (CSP). In doing so, we found that all sites with a vulnerable third-party

script also made use of inline scripts or event handlers. Therefore, these sites could not

easily deploy a secure policy without modifications; at the very least, securing inline scripts

would require to use nonces. For event handlers, though, there was a discussion about

allowing these via a new CSP keyword called unsafe-hashed-attributes. While the feature

eventually shipped under the name unsafe-hashes, at the time of writing there was no

solution other than using the unsafe-inline keyword, which would entirely undermine

CSP’s protection capabilities. Hence, the only way to use CSP would be to rewrite large

parts of the application [270]. We see this as a further evidence that ScriptProtect indeed

fills the much needed gap of an easy-to-deploy mechanism that helps to prevent Client-

Side XSS attacks.

3.4.4 Runtime Performance

As ScriptProtect is an always-on mechanism that adds additional access-control checks

to important APIs we expect it to have some performance impact during runtime. To

evaluate this we randomly sampled 50 different pages from a set of compatible sites with
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Table 3.5: Performance measurements of ScriptProtect, showing the time in milliseconds until the

load event fired.

Avg. Median Std. deviation Slowdown

Baseline 1280 1278 -

ScriptProtect 1360 1377 1.06

the condition that these specific pages included at least one third-party script. We used a

2015 Macbook Pro with a 2,2 GHz Intel i7 processor, 16 GB RAM, running Mac OS X 10.14.1

and Google Chrome 70.0.3538 for these experiments.

After an initial visit to populate the cache each page was visited 20 times: 10 times

completely unmodified to establish a baseline and 10 times with ScriptProtect enabled.

After all these visits we took the median for each of the two configurations to be more

resistant against outliers caused by the network or remote server. ScriptProtect was locally

injected by us, but we argue that after the first page load it would be loaded from cache

anyway. The final overall results were obtained by averaging over the medians of all 50

pages and are shown in Table 3.5.

The minified version of ScriptProtect used in the evaluation consists of 19 KB and in-

creases the load time by about 6%. However, our proof-of-concept relies on DOMPurify

to sanitize inputs and with 14 KB most of the size is from this library, while ScriptProtect

itself only weighs about 5 KB. Consequently, most of the increase in load time is caused by

the parsing and initialization of the script itself. Fortunately, in the current standardiza-

tion of trusted types for the DOM [96] the introduction of a browser-native sanitizer is on

the roadmap [97]. Thus, as soon as this functionality is available directly in the browser,

ScriptProtect also loses DOMPurify’s network traffic and parsing time. In addition, it is

to be expected that a native sanitizer vastly outperforms any JavaScript solution, further

adding performance improvements.

3.5 Related Work
In the following, we discuss how ScriptProtect relates to previous papers in the area of

defenses against different types of Cross-Site Scripting and previous work on the secure

inclusion of untrusted code.

3.5.1 XSS Defenses and Mitigation

Given that XSS has been around for almost 20 years, a number of researchers have pro-

posed defenses and mitigations against these attacks. Early research focused on deploying

such tools on the server, such as Vogt et al. [261] or Bisht and Venkatakrishnan [22]. Later,

Ter Louw and Venkatakrishnan [249] proposed BluePrint, a tool enabling Web sites to pro-
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vide a specification of the expected DOM structure; this way, any anomalous script content

could be easily identified and removed. This approach, however, requires changes to the

browser itself, which our approach does not.

In 2010, Bates et al. [17] analyzed the security of existing browser-based XSS detection.

In doing so, they found a number of flaws in Internet Explorer’s filter, which would even

allow for XSS in error-free Web sites. Based on their insights, they proposed a new concept

for an XSS filter, dubbed XSSAuditor. This filter is nowadays deployed in all Webkit-based

browsers, such as Google’s Chrome. However, as Stock et al. [242] showed in their work,

design choices in the XSSAuditor make it susceptible to bypasses: in 2014, 73% of the sites

with vulnerabilities carried at least one flaw for which the Auditor could be bypassed.

Pelizzi and Sekar [197] proposed an improvement variant with more aggressive filtering,

naturally accompanied by an increased chance of false positives. Hence, the improved

changes were not applied to the original Auditor.

In the area of defenses against Cross-Site Scripting, Stock et al. [242] proposed to use

taint tracking to stop code injections. They extended their taint engine to forward taint

into the JavaScript parser and enforcing policies to ensure that user-provided data could

only be interpreted as literals and not lead to code execution. While their approach pro-

tects against all types of Client-Side Cross-Site Scripting, it requires immense changes to

the codebase of the browser and causes an overhead between 7% and 17%. Consequently,

this has not been implemented into browsers as of now.

3.5.2 Securing Third-party Code

Over the years there have been many attempts to allow the inclusion of third-party code

without compromising the security of the including site itself. In 2007, Jim et al. [121]

proposed BEEP, a browser-enforced embedded policy that controls which scripts are al-

lowed to run. Similar to today’s CSP, it allows whitelisting of specific scripts by including

their SHA1 hash in the policy. For a more fine-grained approach, Meyerovich and Livshits

[158] designed Conscript, which allows for specific security policies that are added to each

script tag. Possible policies could, for example, forbid the use of dynamic scripts or calls

to specific functions like postMessage. In a similar fashion, Van Acker et al. [256] created

WebJail in 2011. While certainly powerful, these approaches require drastic modifications

of the browser to enforce the policy and, without adoption by popular vendors, have not

found widespread use. Finally, Snyder et al. [228] built a browsing extension that works in

a similar fashion to our hooking approach. In particular, this enables a user to selectively

disable DOM features which are not needed by a site. In contrast, however, in our work

we do not require a user with an extension or a study what a given site requires to func-

tion correctly. More importantly, though, our approach allows the continued usage of all

DOM APIs, yet securing access to them.

In a different kind of approach, Miller et al. [161] created a subset of JavaScript called

Caja, an object-capability language which isolates objects from the outside world. How-
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ever, this means that all untrusted code must be written in Caja. Following the same con-

cept, Agten et al. [5] proposed JSand in 2012, a system that isolates third-party scripts from

each other and the DOM through the use of an object-capability model. In the same year,

Ingram and Walfish [115] presented Treehouse, a JavaScript sandbox based on web work-

ers. While these and similar approaches can be implemented without modifications to

the browser, they require changes to the untrusted code. Hence, adoption of this type

of defense is inhibited by the lack of support from the third-parties like advertisement

networks.

Finally, there are defensive mechanisms which are implemented as transparent wrap-

pers, so that neither the browser nor existing code needs to be modified. In 2009, Phung

et al. [201] published their work on self-protecting JavaScript, in which they intercept se-

curity relevant events by monitoring the methods and fields of built-in objects. One year

later, Ter Louw et al. [248] proposed AdJail, an isolation framework specifically designed

for advertisements. The isolation is achieved by running the code in a so-called shadow

page and by providing a controlled interface for interaction with the real page. Yet, all

these papers assume a malicious third-party in their attacker model and hence require

very strict isolation of the third-party code. This, in turn, tends to break many use cases

like analytics and enrichment of pages in general. In contrast, our concept is much more

lightweight and simpler to integrate. In particular, there is no need to tamperproof our

hooked functions, as we block all untrusted code before it is executed.

Still, there also has been some work on securing benign-but-buggy third parties, con-

firming the relevance of our threat model: In 2015, Weissbacher et al. [271] presented their

system ZigZag, which transparently instruments JavaScript code to perform anomaly de-

tection during runtime. After an initial learning phase, the generated models are used to

harden the client-side code.



4 Discovering Abuses of
JavaScript Capabilities

In an ideal world, all security analyses would be fully automated and never require hu-

man intervention. Clearly this unrealistic and in practice the manual inspection of a po-

tentially malicious website is sometimes still necessary. When discussing the different

instrumentation approaches in Section 2.3, we already introduced the DevTools that act

like an IDE and can be attached to any tab to inspect and analyze its content. Unfortu-

nately, by running JavaScript code on a malicious website, attackers have various ways to

mess with the results of such an inspection. Even more worryingly, some techniques can

detect the mere presence of the DevTools, therefore enabling attackers to exhibit different

behavior when under analysis, thus invalidating all results. In this chapter, we investigate

these abuses of JavaScript capabilities that prevent or at least slow down, any attempts at

manually inspecting and debugging of a website and call them anti-debugging techniques.
Therefore, in contrast to the previous chapter where we used the scanner to detect vulner-

abilities and evaluated a potential defense, these anti-debugging techniques will serve as

an use case for our web security scanning pipeline to detect ongoing attacks in the wild.

In Section 4.1, we first describe the manual analysis of websites and thus the general

attack scenario in more detail. Moreover, we outline our threat model and explain what

we consider in and out of scope for this study. Then, we provide a description and sys-

tematization of 9 anti-debugging techniques in Section 4.2, which we divide into 6 basic
and 3 sophisticated techniques. As we consider these techniques as an interesting use case

for our modern security scanner, we then focus on discovering such abuses automati-

cally, i.e., through an instrumented browser as part of our scanning pipeline. Thereby, we

also run challenge of volatile content from Section 2.2, as some techniques only become

apparent when visiting the website multiple times. We describe how we address this chal-

lenge, as well as our detection methodology for each of the 9 anti-debugging techniques

in Section 4.3. Then, we report the results of two studies on anti-debugging techniques

on 1 million websites in the wild in Section 4.4 and conclude with a review of related work

in Section 4.5.

4.1 Use Case: Anti-Debugging Techniques
We use our browsers to visit new websites almost every day, some of which might not

be trustworthy at all. Nevertheless, we visit them and execute their JavaScript code on

our computers, while relying on the browser to keep us safe. Yet browsers are incredibly
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complex applications, e.g., in 2020 the Chromium browser had over 25M lines of code

[23]. Unsurprisingly, some of these lines have bugs that can have severe security implica-

tions [e.g., 56, 55, 57, 54]. Therefore, detecting and analyzing JavaScript malware is a crucial

task to maintain the security of the Web platform.

Heavy obfuscation and the ability to generate new code during runtime makes a fully

static analysis of malicious JavaScript largely infeasible. Therefore, effective detection of-

ten relies on a dynamic analysis or a combination of both [e.g., 51, 213, 53, 126]. This then

led to a shift towards evasive malware which abuses implementation differences between a

real browser and dynamic analysis systems, leading in turn to new approaches to deal with

such evasive techniques [127]. Yet one, so far, overlooked scenario is the manual analysis

of websites using a normal browser, since we can only combat evasive malware deceiving

our automated tools if we can manually inspect and learn from it. Unfortunately, this sce-

nario opens up new paths for inventive attackers to interfere with the analysis by creating

anti-debugging techniques targeting humans using real browsers.

4.1.1 Manual Analysis of JavaScript Code

While previously developers and malware analysts might have relied on browser exten-

sions such as FireBug [188] to inspect a website, nowadays all browsers ship with powerful,

integrated Developer Tools [88], or DevTools for short. At the time of writing the DevTools

of Chromium shipped with 24 different tabs, each focusing on a different feature. In the

following, we will briefly introduce the four most useful of these features.

The elements tab shows the DOM tree of the currently displayed page. It automatically

updates all elements if JavaScript code manipulates them and all elements can also be

changed by the user and directly affect the rendered page. The sources tab not only allows

the inspection of the whole client-side code but also includes a full debugger. With it,

the user can set breakpoints anywhere, step through the code, inspect the call stack and

variable scopes, and even change the value of variables on the fly. The console tab acts like

an interactive shell, which allows you to execute arbitrary JavaScript code in the top-level

scope of the currently loaded page. If execution is currently suspended at a breakpoint, all

code executed in the console will run in the scope of the breakpoint’s location instead. The

network tab, like the name suggests, allows full inspection of all network traffic including

the headers and timing data. On top of that, the DevTools offer many advanced features

like measuring site performance with a stack-based profiler, creating a heap snapshot to

investigate memory leaks, and the ability to measure and inspect code coverage.

Using any other analysis tool that is not part of a browser, e.g., static analysis or exe-

cuting a single script in isolation is usually not an option if one wants to obtain reliable

results, due to multiple reasons: First of all, JavaScript code written for the Web expects

many objects that are not part of the language specification, like document or location.

Moreover, scripts often load additional code on the fly, e.g., one particular script might

generate code for an iframe with a URL as the source and add that to the DOM. The
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browser then requests the content for that iframe over the network, which might contain

additional script code which then again loads additional code via an XMLHttpRequest. Pre-

vious research has shown that such patterns of deep causality trees in script inclusions are

a common occurrence today [138, 137]. Only a real browser is able to correctly handle the

inherent complexity of modern Web applications and thus only a real browser can be used

to accurately inspect and analyze JavaScript code on the Web.

4.1.2 Threat Model and Scope

Throughout this chapter, we consider the following scenario: A user, also referred to as the

analyst, manually visits a given website in a real browser to analyze and interact with the

website’s code. In particular, the user intends to browse the source code of that website,

set breakpoints and step through the code, and inspect variables and functions. On the

other hand, the website does not want to be analyzed and contains evasive measures to

detect and hinder or, at least, slow down and deter any attempts at inspection.

We consider the browser’s integrated DevTools the tool of choice for the user to achieve

their analysis goals. As previously outlined, the DevTools are not only full of useful fea-

tures, but with their integration into the browser also the only way to correctly execute

the JavaScript code in the first place. Moreover, using them also avoids the problem of

evasive malware potentially detecting the inspection by noticing it does not run in a real

browser.

In scope In general, the underlying problem in this scenario is that the analyst can not

fully trust the capabilities used during a live inspection, e.g., any logged output during

execution, as the website might have manipulated the logging functionality on-the-fly.

Furthermore, if the website is able to detect the presence of the inspection, it could also

alter or completely suppress any malicious activity to appear benign during analysis. In

this chapter, we investigate all these techniques that affect the dynamic analysis of a website,

like altering built-in functions or detecting the presence of a debugger. We refer to such

techniques as anti-debugging techniques from now on.

Out of scope Since we only focus on techniques that are affecting the code at runtime,

all static code transformation techniques, in particular obfuscation, are out of scope. While

these can certainly be a powerful tool to greatly slow down manual analysis, especially

when combined with some of the anti-debugging techniques introduced in the following,

these static techniques have already been extensively studied in the past [e.g., 32, 275, 274,

74]. Similarly, all techniques that do not affect a real browser but rather aim to break

sandboxes or other analysis systems, e.g., by intentionally using new features or syntax

not yet supported by these systems, are out of scope as well.



60

4.2 Systematization of Techniques
In this section, we will introduce 6 basic anti-debugging techniques (BADTs) and, after that, 3

sophisticated anti-debugging techniques (SADTs). These techniques each have one of the fol-

lowing three different goals: Either to outright impede the analysis, or to subtly alter its

results, or to just detect its presence. During its introduction, we will give each technique

a short name, e.g., ModBuilt, by which it will be referenced throughout the remainder of

the paper and will also provide a link to a mention of this technique on the Web. Addi-

tionally, we provide a testbed available at https://js-antidebug.github.io/ with one

or two exemplary implementations for each technique so that the interested reader can

experiment with each technique while reading this chapter. Moreover, we will also briefly

describe possible countermeasures for each BADT to give a better impression of how ef-

fective they are. We conclude with a systematization of all techniques that summarizes

this section.

4.2.1 Basic Anti-Debugging

The first three BADTs all just try to impede attempts at debugging the website. They

are generally not very effective but still might cause an unsuspecting user to give up in

frustration.

Preventing Shortcuts (ShortCut) Before any meaningful work can begin, the analyst first

needs access to the full client-side code of the website and thus the following BADT simply

tries to prevent anyone from accessing that source code. The quickest way to open the

DevTools is by using a keyboard shortcut. Depending on the browser and platform there

are multiple slightly different combinations to consider, e.g., for Chrome on Windows

F12, Ctrl+Shift+I, and Ctrl+Shift+J all work. As JavaScript has the ability to intercept

all keyboard and mouse events as long as the website has the focus, these actions can be

prevented by listening for the respective events and then canceling them, as shown in

Figure 4.1 [232]. This obviously can not prevent someone from opening the DevTools by

using the browser’s menu bar.

Besides the advanced DevTools, common browsers also have a simple way to just show

the plain HTTP response of the main document. This can usually be accessed by right-

clicking and selecting "View page source" from the context menu, or directly with the

Ctrl+U shortcut. Again, both these actions can be prevented by listening for these events

and then canceling them. There are many ways to easily bypass this, e.g., by prefixing the

URL with the view-source: protocol or opening the sources panel of the DevTools.

Triggering breakpoints (TrigBreak) The debugger statement is a keyword in JavaScript

that has the same effect as manually setting a breakpoint [68]. As long as no debugger is

attached, i.e., the DevTools are closed, the statement has no effect at all. This behavior

https://js-antidebug.github.io/
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window.addEventListener("keydown", function(event){

if (event.key == "F12") {

event.preventDefault(); return false;

}});

Figure 4.1: Disabling the F12 shortcut

makes the statement a perfect tool to only interfere with debugging attempts. The tech-

nique can be as simple as just calling the debugger in a fast loop over and over again. As

a simple measure to counter this technique, the DevTools of popular browsers have the

option to "Never stop here", effectively disabling only the debugger statements while still

allowing breakpoints in general. However, many variations exist which make it harder to

reliably block it, e.g., constantly creating new anonymous functions on the fly instead of

always hitting the breakpoint at the same location [224]. On the other hand, this can still

be countered by specific code snippets that remove all debugger statements on the fly, like

the Anti Anti-debugger script [94] for the Greasemonkey browser extension [9].

Clearing the Console (ConClear) While the sources panel for the DevTools offers the

ability to inspect and change variables in the scopes of the current breakpoint, the con-

sole can be very useful in this regard as well. For example, it allows one to easily compare

two objects or to run a simple statement at the current location of the suspended ex-

ecution. However, it is possible to make the console unusable by constantly calling the

console.clear function [233]. If done fast enough, this makes it near impossible to inspect

the output and thus the value of variables during runtime without setting breakpoints

with the debugger. However, this technique can be circumvented by enabling "Preserve

log" in the DevTools options or by disabling the clear function by redefining it to an empty

function.

Instead of only blatantly trying to impede the analysis, the following technique can also

subtly alter what an analyst observes during debugging attempts.

Modifying Built-ins (ModBuilt) As JavaScript allows monkey patching, all built-in func-

tions can be arbitrarily redefined. For instance, a popular music streaming service for a

while had modified the alert function, which many bug bounty hunters use to test for

XSS, to secretly leak all client-side attempts to trigger an XSS attack to their back-end, as

shown in Figure 4.2.

As this example demonstrates, the possibilities to redefine built-in functions and ob-

jects to make them behave differently are basically endless. Furthermore, there are many

legitimate use cases, like polyfills that provide a shim for an API not supported by older

browsers. Since we are only interested in functions that a human analyst is likely to use

in the DevTools console, we focus our search on modifications to the console, String and
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// Wrapping funcs in a naive attempt to catch externally found XSS vulns

(function(fn) {

window.alert = function() {

var args = Array.prototype.slice.call(arguments);

_doLog('alert', args);

return fn.apply(window, args);

};

}(window.alert));

Figure 4.2: This code including the comment was found on spotify.com in 2018 [269]. The _doLog

function reports the current URL along with a full stack trace to their backend any time

the alert function is called.

JSON objects, and their respective functions. Figure 4.3 shows a somewhat contrived ex-

ample of how malicious code could hide itself [76]. Note that this technique can also be

used to impede the analysis instead, e.g., by redefining all functions like log and info to an

empty function [224, 235]. A possible countermeasure is to save a reference to every native

function one intends to use before executing any of the malicious code, a tactic popular

in JavaScript rewriting and sandboxing literature [e.g., 201, 177].

let original = console.log;

console.log = function(arg) {

if (arg == "shellcode") { arg = "benign code"; }

original(arg); }

Figure 4.3: Redefining the log function to hide malicious code

Finally, the most subtle of all techniques only try to detect the presence of the analysis.

In contrast to the previous technique which directly altered the behavior of built-in func-

tions an analyst would use, these techniques instead aim to alter the control flow of their

own code. This way, attackers could suppress executing malicious code for any user that

opens the DevTools or had them previously open on the same domain.

Inner vs. OuterWidth (WidthDiff) By default, opening the DevTools either splits the

browser window horizontally or vertically. In JavaScript, it is possible to obtain both the

size of the whole browser window including all toolbars (outer size) and the size of the con-

tent area without any toolbars (inner size). Thus by constantly monitoring the outerWidth

and innerWidth properties of the window object, we can check if the DevTools are cur-

rently open on the right-hand side. The same works if the DevTools are attached to the

bottom, by comparing the height instead, as shown in Figure 4.4. This is the method

used by the popular devtools-detect package [226] that, at the time of writing, already had

over 1000 stars on Github and is thus probably often used in the wild. This is also the

technique used by the credit card skimming case [220] from the introduction.
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setInterval(() => {

if (outerWidth - innerWidth > threshold ||

outerHeight - innerHeight > threshold) {

//DevTools are open!

}

}, 500);

Figure 4.4: Monitoring the window size to detect the DevTools

However, this technique does not work if the DevTools are undocked, i.e., open in a

separate, detached window. Additionally, this technique will report a false positive if any

other kind of sidebar is opened in the browser.

Log Custom Getter (LogGet) Exactly because of the just described drawbacks of theWidthD-

iff technique, some developers are interested in more reliable alternatives. A StackOver-

flow question titled "Find out whether Chrome console is open" [231] back from 2011 so

far received 130 upvotes and 14 answers. While many of the suggested approaches have

stopped working over the years, some answers are still regularly updated and present

working alternatives.

In particular, for at least the last three years, some working variations of what we call

the LogGet technique existed. The technique works by creating an object with a special

getter that monitors its id property and then calling console.log on it. If the DevTools

are open, its internals cause it to access the id property of every logged object, but if they

are closed, the property is not accessed. Therefore, this getter was a reliable way to deter-

mine if the DevTools are open. While the original approach stopped working sometime

in 2019, someone created a variation of it that uses requestAnimationFrame to log the ele-

ment with the custom getter which still works as of time of writing. As an alternative, it

is also possible to overwrite the toString function of an arbitrary function and then log

that function, as shown in Figure 4.5. Since the DevTools internally also use toString to

create the printed output, we know that the DevTools are opened whenever this toString

function is called.

var logme = function(){};

logme.toString = function() {

//DevTools are open!

}

console.log('\%c', logme);

Figure 4.5: Approach from 2018 to detect the DevTools

As long as one of these variations continues to work, this method is a very reliable way

to detect if the DevTools are open, as it also works if they are detached or already open

when the website is loaded. There is no real countermeasure except to remove all logging
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functions of the console object, an invasive step which by itself also might get detected.

4.2.2 Sophisticated Anti-Debugging

In contrast to the BADTs seen so far, the following sophisticated anti-debugging techniques
(SADTs) are much more elusive. The following three SADTs are timing-based, i.e., they rely

on the fact that certain operations become slower as long as the DevTools are open. On

a high level, these techniques get the current time, e.g., via Date.now or performance.now,

perform some action and then check how much time has passed. If that time is above a

specified threshold or changes significantly at one point, then the DevTools were likely

opened. These techniques thus use the time between operations as a side-channel about

the state of the DevTools. Firefox, for example, lowers the resolution of timers due to

privacy concerns and to mitigate side-channel attacks like Spectre [154]. Yet a precision in

the range of milliseconds is still more than enough for these techniques to work.

Monitor existing Breakpoint (MonBreak) As the debugger statement only halts the exe-

cution if a debugger is attached, we can simply compare the time directly before and after

that statement. If it took longer than, e.g., 100ms then we can be sure that the DevTools

are open [76]. Figure 4.6 shows how this technique can be implemented in a few lines of

JavaScript code. The main difference to TrigBreak is that the goal here is not to disrupt

the user but rather to infer the state of the DevTools. So, in this case, triggering the break-

point only once is already enough to know somebody is analyzing the website and there

is no need to trigger additional breakpoints afterward.

function measure() {

const start = performance.now();

debugger;

const time = performance.now() - start;

if (time > 100) { /*DevTools are open!*/ }

}

setInterval(measure, 1000);

Figure 4.6: Detecting the DevTools by checking for an attached debugger

Wait for new Breakpoint (NewBreak) A more stealthy variation of the MonBreak tech-

nique does not trigger breakpoints by itself, but rather detects when the analyst is adding

a new breakpoint anywhere. As soon as this new breakpoint is hit, we can again observe

this through timing information. If we call a function repeatedly in the same interval and

suddenly it took way longer to execute again, there is a good chance that a breakpoint was

hit. While this approach is more stealthy, it obviously has no effect as long as someone

uses the DevTools without setting a breakpoint at all. Also, note that setInterval and sim-

ilar functions are throttled if the user switches to another tab. Therefore, an additional
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check with hasFocus is needed to confirm that this page is currently in the foreground, as

shown in Figure 4.7.

function measure() {

const diff = performance.now() - timeSinceLast;

if (document.hasFocus() && diff > threshold) {

//DevTools are open!

}

timeSinceLast = performance.now();

}

setInterval(measure, 300);

Figure 4.7: Detecting the DevTools by checking the time between multiple executions

Console spamming (ConSpam) While the debugger statement is a useful tool to imple-

ment anti-debugging measures, it still has the drawback that halting at breakpoints can

easily be disabled in the DevTools. The following technique instead abuses the fact that

certain functions of the browser-provided window object run slower while the DevTools

are open. Historically, this worked by creating many text elements with long content and

quickly adding and removing them to the DOM over and over again [231]. This caused a

noticeable slowdown, as the elements tab of the DevTools tries to highlight all changes

to the DOM in real-time. However, this approach no longer works in both Firefox and

Chrome. What still works, at the time of writing, is to write lots of output to the console

and check how long this took [98]. As the browser needs to do more work if the console is

actually visible, this is a useful side-channel about the state of the DevTools. Conveniently,

this technique also works regardless of which tab in DevTools currently has the focus.

Figure 4.8 shows a possible implementation of this ConSpam technique. An alternative

is to first measure the time a few rounds in the beginning and then always compare to

that baseline. This has the advantage that a visitor with slow hardware does not trigger

a false positive, as there is no fixed threshold. However, this approach then assumes the

DevTools are going to be opened after the page has loaded and not right from the start.

function measure() {

const start = performance.now();

for (let i = 0; i < 100; i++) {

console.log(i);

console.clear();

}

const time = performance.now() - start;

if (time > threshold) { /*DevTools open!*/ }

}

setInterval(measure, 1000);

Figure 4.8: Detecting the DevTools by repeatedly calling functions of the console
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4.2.3 Summary

To put all 9 techniques into context, we examine them based on four properties: Effec-

tiveness, stealth, versatility, and resilience. An effective technique has a high likelihood

of activation and thus causing an impact on the analyst. As such, LogGet is an effective

technique while ShortCutmight never really affect anyone. A stealthy technique wants to

remain unnoticed, i.e.,WidthDiff is a stealthy technique (although the measures it takes

upon detection of the DevTools might be not so stealthy) while TrigBreak is the very

opposite of stealthy. A versatile technique can be used to achieve many different outcomes,

as opposed to something very specific. Therefore, ModBuilt is a versatile technique as it

can redefine a built-in function to anything else and LogGet can react in many different

ways if it detects the DevTools. For the same reason, all SADTs are versatile since they

only detect the presence of the analysis and do not prevent the use of certain features. A

resilient technique is not easily circumvented, even if the user is aware of its existence. For

example, LogGet is a resilient technique because there is no good countermeasure, while

DevCut was easily bypassed by using the menu bar. While MonBreak stops working if

breakpoints are disabled, the other two SADTs are rather resilient since they are hard to

disarm unless one finds their exact location in the code. Table 4.1 shows the full results

of our systematization for each technique. As all four properties are desirable from the

perspective of an attacker, the techniques LogGet and ConSpam offer the most potential.

Table 4.1: Systematization of anti-debugging techniques. A filled circle means the property fully

applies, a half-filled circle means it applies with limitations.

Technique Goal Effective Stealthy Versatile Resilient

ShortCut Impede # # # #
TrigBreak Impede  # # G#
ConClear Impede G# # # #
ModBuilt Alter/Impede G# G#  G#
WidthDiff Detect G#   #
LogGet Detect  G#   

MonBreak Detect  #  #
NewBreak Detect G#   G#
ConSpam Detect  G#   

4.3 Scanning Methodology
The previously mentioned devtools-detect package [226] and also the question on Stack-

Overflow [231] already indicated a certain interest in anti-debugging techniques, in par-

ticular in detecting whether the DevTools are open. However, so far, there has not been
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a comprehensive study on the prevalence of these techniques in the wild. In this section,

we will therefore present a fully automatic methodology to detect each of the BADTs from

the previous section. This methodology will then be used in the next section to conduct

a measurement of anti-debugging techniques in the wild.

In the following, we will briefly outline how we can detect the presence of each BADT

during a single, short visit to the website. After that, we will explain our methodology to

detect SADTs, which is more generic and thus also more complicated and requires mul-

tiple visits to the page. As in previous chapters, we are again relying on a real Chromium

browser instrumented via the CDP. This way we can, for example, inject JavaScript into

each context before the execution of any other code occurs or programmatically control-

ling the behavior of the debugger, which are both very useful to detect anti-debugging

techniques.

4.3.1 Methodology for BADT Detection

To detect BADTs, we use the fact that all these basic techniques have an obvious "signature"

that is easy to detect, e.g., logging an object with special properties. While the detection

methodology presented in this section is specifically tailored to each technique and only

able to detect exactly them, this methodology is simple, effective, and scales very well.

ShortCut To detect intercepted key presses, we first collect all event listeners via the

getEventListeners function. For each collected keydown or contextmenu listener, we create

an artificial keyboard or mouse event to imitate the shortcut or right click. We pass this

event to the listener and then check if the defaultPrevented property of the event was set,

i.e., the respective normal behavior was blocked by this listener.

TrigBreak By registering the Debugger.paused event of the DevTools protocol, we can ob-

serve the location of each triggered breakpoint. We log this data and immediately resume

execution, to not reveal the presence of the debugger itself.

ConClear To check for attempts at constantly clearing the console, we first register a call-

back to the Runtime.consoleAPICalled event of the DevTools protocol. This API notifies

us of all invocations of functions of the console object and thus allows us to observe how

often console.clear is called.

ModBuilt We inject JavaScript code into each website which is guaranteed to execute

before any of the website’s code. Our injected code then creates a wrapper around each

object and all of its properties we want to observe. This wrapper will notify our back-end

if someone overwrites them or one of their properties. We ignore code that only adds

new properties that do not overwrite existing functionality, e.g., a polyfill that adds a new

function like String.replaceAll to browsers that do not yet support this feature.
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WidthDiff We use a similar wrapper as described in ModBuilt, only this time we mon-

itor for read accesses instead of writes to the property innerWidth and its siblings. Since

we expect that tracking and fingerprinting scripts, in particular, might be interested in

some of these values to determine the screen resolution of all visitors, we only flag scripts

that access all four properties.

LogGet Similarly to the ConClear technique, we observe all interactions via the console

APIs. As the technique requires one to log some specifically crafted objects that are un-

likely to be logged during normal operations of a website, we can look out for those. Thus,

if we observe a format string logged together with a function that has a custom toString

function like in Figure 4.5, we flag the page. The same applies if we observe the logging of

an object that has an id property which is a function instead of a value.

Triggering breakpoints or clearing the console once or twice is rather harmless, they

only become a problem if they happen constantly. Therefore, for all these 6 BADTs we not

only detect if they happen but also how often per script. One disabled shortcut could be a

coincidence, but disabling all five within the same piece of code is most likely a deliberate

attempt at preventing access to the source. For this, we only count occurrences in the main

frame of the loaded page, since (usually rotating) advertisements should not influence the

numbers. Moreover, many techniques lose their effectiveness in iframes, e.g., ShortCut

would only prevent the shortcut while the iframe is focused. We aggregate all numbers

by site, i.e., if a given technique is present on multiple subpages of the same site, we only

count it once. The same applies if one site has multiple different scripts that trigger the

same technique. In all cases, we only use the most significant occurrence of each technique

within a site for further analysis, e.g., the script that cleared the console most often.

4.3.2 Methodology for SADT Detection
The main challenge in detecting SADTs is that they are a lot more flexible and thus not as

easy to detect as the BADTs. In particular, we can not identify them by just monitoring a

few specific function calls and property accesses. While all SADTs rely on timing informa-

tion, they do not necessarily need access to the Date or performance objects, as they could

also get a clock from a remote source, e.g., via WebSockets. Therefore, we need a more

general approach to reliably detect sophisticated techniques in the wild. In the following,

we will describe how we address this challenge and then report on our findings.

While these SADTs can differ in how they are implemented, they still have something

in common: They try to figure out whether they are currently analyzed or not and then

behave accordingly. Therefore, code execution must diverge from the default, benign case

as soon as the analysis is detected. If we somehow could monitor the executed code twice,

once with the DevTools open and once with them closed, and then compare those two

executions, we would be able to isolate the SADT. Thus, our methodology is based on two

concepts: deterministic website replay and code convergence.
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Deterministic website replay To obtain meaningful results when visiting the same web-

site multiple times, we first need a way to reliably load it exactly the same way. In particular,

this means we do not want the server-side logic to have any influence on the response and

we also do not want dynamic content like different ads on every page load. Therefore, we

must load the website only once from the remote server and cache all content on a local

proxy. Afterward, we ensure that our browser can not connect to the outside world and

loads the page only from our proxy to avoid any interaction with the remote server. How-

ever, we also must disable all ways to obtain randomness on the client-side. Otherwise, if

a URL parameter contains a random id, the proxy will not have seen this request before

and be unable to answer as expected. Thus we replace Math.random with a PRNG imple-

mentation with a fixed seed and use a fixed timestamp as a starting point for all clock

information in Date and performance.

In theory, without any external logic or randomness, the page should behave entirely

deterministic every time we load it, which is exactly what we need for our analysis. Unfor-

tunately, the replays are not entirely perfect. Since in the browser and also the underlying

operating system many actions are executed in parallel, the exact order of events is not

always deterministic. For example, consider a website with multiple iframes which all

send a postmessage to the main frame upon completion. The main frame could exe-

cute different code depending on which frame loaded first. So even if our replay system

otherwise works perfectly, we can not prevent that small performance differences in this

multi-process system sometimes cause one iframe to load faster than another, leading to

different behavior in the main frame in the end. Getting rid of these performance fluctua-

tions is unrealistic, as it would require immense changes to both browser architecture and

the underlying operating system’s scheduler. Therefore, we instead rely on the concept of

code convergence to deal with this problem.

Code convergence The idea here is that the more often we replay the same website, the

lower the likelihood becomes that we will discover any new execution paths caused by

small timing differences. Or to describe it more briefly: The executed code converges over

time. We thus replay each page multiple times and always measure the code coverage, i.e.,

we track which statements in a script are executed and which are not, across all scripts on

the page. By merging all seen code from the previous replays, we can check if the current

replay introduced any new statements. In the same way, we can also build the intersection

of all previously executed code and check if some parts were not executed, which always

had been executed before. If now, for multiple replays, no new code is added nor always

executed code missing, we likely have executed until convergence.

By combining these two concepts, we can now replay any website in the same environ-

ment until convergence. We can then inject analysis artifacts into the page, like attaching

a debugger or adding a breakpoint. As long as we do not make any changes to the website’s

code, it should behave like during the previous replays. This means we should not see any
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completely new code, nor should code be missing that previously was always executed. If,

however, we reliably observe different code execution only when our analysis artifacts are

present, then these differences are most likely caused by an anti-debugging technique.

Implementation We implemented our approach as a tool that can detect SADTs in a

fully automated fashion. As in our first study, we control the browser from Node.js by

using the Chrome DevTools Protocol (CDP). This protocol exposes all features of the Dev-

Tools for programmatic access and gives us low-level information and callbacks for many

useful events. In particular, the CDP gives us fine-grained code coverage data with the

Profiler.takePreciseCoverage command. Moreover, the protocol lets us control the de-

bugger, so we can programmatically enable breakpoints and set them at specific locations,

which we need to detect MonBreak and NewBreak. Since the CDP does not include a

way to open the DevTools on demand, we instead cause an artificial slowdown of the con-

sole to detect the ConSpam technique. We implemented this by wrapping all functions

of the console object to first execute a busy loop for a short time, which approximates the

slowdown normally caused by an open DevTools window.

For the replaying part, we use a modified version of Web Page Replay (WPR) [90], a tool

written in Go that is developed and used by Google to benchmark their browser. The tool

is designed to record the loading of a website and creates an archive file with all requests

and responses, including the headers. This archive file can then be used to create a de-

terministic replay of the previously recorded page. WPR also tries to make the replays as

deterministic as possible, by injecting a script that wraps common sources of client-side

randomness like Math.random and Date to always use the same seed values. Additionally,

we improved the accuracy of the replays by extending WPR to always answer with the same

delay as the real server during the recording. By combining our Node.js browser instru-

mentation and this modified Go proxy, we can now automatically detect anti-debugging

techniques in the wild.

4.4 Large-Scale Study
In this section, we first describe our results from a large-scale study on 1 million websites

in the wild. As the detection methodology for SADTs does not scale enough to use on such

a large number of pages, this first study is limited to the detection of BADTs. Then, we

also present our findings from a second, targeted study of SADTs on the websites with the

most severe BADTs discovered during the first study.

4.4.1 Large-Scale Study of BADTs
Experiment setup For our study on BADTs, we visited the 1 million most popular web-

sites according to the Tranco list [139] generated on 21 Dec 2020. We started 80 parallel

crawlers using Chromium 87.0.4280 on 22 Dec 2020 and finished the crawl three days later.
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On each page, our crawler waits up to 30 seconds for the load event to trigger, otherwise

we flag the site as failed and move on. After the load event, we wait up to 3 more seconds

for pending network requests to resolve to better handle pages which dynamically load

additional content. Finally, we then stay for an additional 5 seconds on each loaded page,

so that techniques that take repeated actions like TrigBreak or WidthDiff have enough

time to trigger multiple times.

Of all the sites of the initial 1 million, about 15% could not be visited at all, despite

having used the most recent Tranco list. Of these, about 8% were due to network errors,

in particular, the DNS lookup often failed to resolve. In another 4%, the server returned an

HTTP error code and the remaining 3% failed to load before our 30 seconds timeout hit.

In total, we successfully visited around 2.8M pages on about 846k sites, where site refers

to an entry in the Tranco list which then consists of one or more pages. We did not only

visit the front page because research on the cryptojacking phenomenon has shown that a

common evasive technique is to not run any malicious code on the front page to avoid

detection during brief inspections. In line with previous research [134, 178], we therefore

additionally selected three random links to an internal subpage and visited these as well.

Prevalence First of all, we are interested in the general prevalence of BADTs in the wild.

As can be seen in Table 4.2, we can find indicators of behavior resembling the six BADTs

on over 200k sites. The overwhelming majority of these are caused by ModBuilt and

WidthDiff, which, judging from the high numbers, seem to be common behavior also in

benign code. Moreover, we can see that visiting subpages did indeed significantly increase

the prevalence by about 17% compared to only crawling the front pages. Interestingly, in-

dicators of the more desirable techniques (using the properties from our systematization

in Table 4.1) are also more often hidden in subpages. Specifically, TrigBreak is a clear

outlier here and breakpoints occurred a lot more often only on subpages.

Table 4.2: Number of sites with indicators for each technique and the increase from also visiting

subpages.

Technique # Websites % Total # Subpages only

ShortCut 4525 0.53 818 (+22%)

TrigBreak 1128 0.13 502 (+80%)

ConClear 3061 0.36 981 (+47%)

ModBuilt 101587 12.00 15345 (+18%)

WidthDiff 114154 13.49 18615 (+19%)

LogGet 3044 0.36 756 (+33%)

Total 206676 24.42 30494 (+17%)

These results in Table 4.2 should only be seen as indicators for behavior resembling

those of the six BADTs. Next, we analyze how confident we are for each occurrence that
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it is used in an intentional and malicious manner. As previously stated, there is a huge

difference between clearing the console once and clearing it 50 times within a few seconds.

On the other hand, it makes little difference anymore if it is cleared 20, 50, or even 1000

times which are all highly unusual and hard to cause by accident. In between those two

extremes, there is a window of values that are suspicious but not definitely malicious, e.g.,

clearing it 5 times. As Figure 4.9 shows, for many techniques about 50% of all detections

were caused by just a single occurrence. Looking at ConClear, we can see that of all sites

that cleared the console at least once, only about 4% cleared it between 6 and 10 times and

only 1% cleared it more than 10 times.
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Figure 4.9: Occurrences within each BADTs grouped into 7 bins, e.g., all sites on which a technique

triggered 11-20 times share the same bin. The bins are only used for data visualization

and not for further analysis.

To compare indicators of different techniques, we first need a normalized value that

incorporates these insights from Figure 4.9. Therefore, we calculate the confidence score
by taking the squared value of the percentile within that technique. For example, if we

visit a site and see one script that clears the console twice, we would assign a confidence

score of 0.62 = 0.36 to this script. On the other hand, if the same script would trigger 30

times, we would assign a confidence score of 0.952 = 0.9025 to it. The rationale behind

this formula is that the percentile encodes how often the number of occurrences was ob-

served compared to observations of the same technique on other websites. Squaring this

value then puts more weight on the unusually high occurrences, e.g., when the console

is cleared dozens of times, resulting in a higher confidence that this usage is intentional

and resembles anti-debugging efforts.
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Yet, we still have to consider that clearing the console is by itself an uncommon oc-

currence, with only about 0.53% of all sites behaving this way. A ConClear event with

low confidence can still be more significant than e.g.,ModBuilt with a higher confidence

score. Thus, we next calculate a severity score, which combines the confidence score with

the inverse frequency of the techniques, i.e., the more common a technique the less it in-

creases this score. For this, we use the Inverse Document Frequency (IDF) from the domain

of information retrieval and adapt it to count techniques instead of word terms. Thus,

the weights for each technique are calculated as follows: ln(number of sites with any tech-

nique / number of sites with given technique). This means that the presence of ConClear

has a weight of 4.21 while ModBuilt only has 0.71. We then multiply the confidence score

with these weights and build the sum over all techniques on the site to obtain the final

severity score. Overall, this score considers that 1) some techniques are rarer than oth-

ers, 2) some sites use these techniques more aggressively than others, and 3) combining

different techniques on the same site is more effective.

Results Based on our severity score, we can now analyze the most significant cases of

anti-debugging in more detail. In this and the following sections, we focus on the 2,000

sites with the highest severity score, which represents approximately the top 1% of all

sites with any indicators. These sites all had a severity score of 3 or higher, as shown in

Figure 4.10. Moreover, the same figure shows that more than two-thirds of these sites had

multiple BADTs on the same site, with a few sites as many as 5 simultaneously. On average,

the severity score on these 2,000 sites was 4.63 and the average amount of techniques on

the same site was 2.28, as the raw numbers in Figure 4.11 show.

First, we wanted to see if there is a correlation between the popularity of a website and

the prevalence of BADTs. We investigated this separately for each technique, to account

for their high variance in the total number of occurrences. As shown in Figure 4.12, BADTs

were slightly more prevalent in the higher ranking and thus more popular websites, with

the notable exception of ShortCut.

Next, we analyzed the code provenance of the scripts we found to be responsible for ex-

ecuting the BADT by distinguishing between first- and third-party scripts, for which we

used the eTLD+1. The eTLD is the effective top-level domain, e.g., for foo.example.co.jp the

eTLD is .co.jp and thus the eTLD+1 is example.co.jp which corresponds to the "registrable"

domain. However, it should be noted that the following analysis based on the eTLD+1 is

only a rough estimation. For example, a third-party library could also be hosted on first-

party servers or first-party code on another domain like a CDN which then would appear

to be third-party code. In general, it is rather complex to correctly determine if multiple

domains belong to the same owner, as previous research has shown [e.g., 137, 150, 254, 238].

Now as Table 4.3 shows, we get a very different picture depending on the technique:

ShortCut was mainly caused by first-party code, while ModBuilt was more balanced.

On the other hand,WidthDiff showed the exact opposite and was with an overwhelming

majority present in third-party code. But even if a technique was triggered by third-party
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Figure 4.10: Scatter plot showing the distribution of the severity scores over the Tranco ranks. Size

and color both indicate the number of simultaneous techniques on the website.

code, it still can very well be the first party’s intent to interfere with an analysis by includ-

ing their code. For example, the most prevalent script for causing both ShortCut and

TrigBreak in third-party code is a plugin for the popular e-commerce platform Shopify

called Vault AntiTheft Protection App [69], which promises to protect the website from com-

petitors that might want to steal one’s content.

Now we next want to know if the number of third-party inclusions is caused by relatively

few popular scripts or not. In Figure 4.13 we can see that, e.g., for WidthDiff the most

popular script is already responsible for about 51% of all cases in third-party code and the

top 5 together cover already 77%. This means that only a very small number of scripts is re-

sponsible for the high prevalence of this technique, while for other BADTs this behavior is

Figure 4.11: Severity scores on the left and sites with multiple techniques on the right.

Severity # Sites

3-4 1095 (54.75%)

5-6 563 (28.15%)

7-8 330 (16.50%)

9-10 12 (0.60%)

(a) Severity scores

Combo # Sites

1 201 (10.05%)

2 1142 (57.10%)

3 565 (28.25%)

4 88 (4.40%)

5 4 (0.20%)

(b) Combinations of BADTs
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Figure 4.12: Normalized correlation between website rank and prevalence of each technique in

100k buckets. The most popular sites are on the left.

less pronounced. Moreover, LogGet and ConClear almost perfectly overlap each other,

as the most popular implementations also try to hide the suspicious logged elements by

clearing the console immediately afterward each time.

To further investigate this, we performed a manual analysis of the 10 most prevalent

third-party scripts for each of the 6 BADTs. We found that many of these scripts are related

to advertisements, bot detection, content protection, and cryptojacking. Moreover, many

of them were not just minified but completely obfuscated. In total, 35 of the 60 most

prevalent scripts and in particular 9 of the 10 most common scripts causing LogGet were

obfuscated, indicating that these scripts would rather not be analyzed and might even be

Table 4.3: BADT occurrence by first- and third-party code.

Technique # First-party # Third-party

ShortCut 283 (73%) 103 (27%)

TrigBreak 282 (81%) 68 (19%)

ConClear 221 (17%) 1084 (83%)

ModBuilt 145 (43%) 195 (57%)

WidthDiff 19 (3%) 707 (97%)

LogGet 197 (16%) 1059 (84%)

Total 1147 (26%) 3216 (74%)
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Figure 4.13: The 25 most common scripts for each technique and their cumulative share of sites

related to malicious activities.

4.4.2 Targeted Study of SADTs

Experiment Setup To get accurate results for our SADT detection, it is important to replay

each page multiple times to ensure we have reached code convergence. Therefore, we

record each website once and replay it until we get 10 consecutive measurements without

any changes in coverage. If after 50 replays this still did not happen, we discard the website

as being incompatible with our replaying infrastructure. After convergence, we test each

technique 5 times. We only count a technique as present if it caused differences in at least

3 of the replays, to ensure their effect on the code coverage is reproducible.

Replaying this many times is a costly process, especially since we need to restart the

browser with a new profile between each replay. Otherwise, stored state in cookies, local

storage, and other places could lead to different execution branches. Therefore, in this

second study, we only target the 2000 websites with the highest severity score according

to our previous study on BADTs in Section 4.4.1. In the following, we will investigate

whether this score is also a good indicator for the presence of sophisticated techniques.

Prevalence While we started this study directly after the first had finished, nevertheless

33 out of the 2000 selected sites were no longer reachable. Another 6 sites did not converge

even after 50 replays. On 229 out of the remaining 1961 sites, we could find behavior similar

to one or more of the three SADTs. Thus, about 12% of these sites executed different code
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when under analysis.

Table 4.4: Sites with SADTs in first- and third-party code.

Technique # All # First-party # Third-party

MonBreak 138 124 24

NewBreak 85 38 54

ConSpam 8 5 3

Total 229 165 81

As Table 4.4 shows, the MonBreak technique was the most common of the three and

present on around 14% of the investigated sites. On the other hand, ConSpam was rather

uncommon with less than 1% prevalence. The technique MonBreak was mostly seen in

first-party code, while NewBreak was a bit more often seen in third-party code. However,

any difference in third-party code execution might also cause differences in first-party

code and vice versa. Thus, there is some overlap between first- and third-party code de-

tections. When comparing these results to another sample of 100 randomly selected sites,

we only found 1 site with a SADT, in this case NewBreak. We see this low false positive

rate as evidence that our approach to detect sophisticated techniques is reliable. Fur-

thermore, we can see that BADTs are indeed a good indicator for the presence of further

sophisticated techniques.

4.5 Related Work
In this section, we will first present works on anti-debugging in native malware, followed

by publications on the topic of malicious JavaScript in general and conclude with the most

closely related papers about evasive malware on the Web.

4.5.1 Anti-Debugging in General
Anti-debugging techniques are a well-known concept from the area of native x86 mal-

ware. Back in 2006, Vasudevan and Yerraballi [259] proposed the first analysis system that

focused on mitigations for anti-debugging techniques. Their system called Cobra can, in

particular, deal with self-modifying and self-checking code and thus counters many anti-

analysis tricks. In 2010, Balzarotti et al. [13] proposed a technique to detect if a malware

sample behaves differently in an emulated environment when compared to a reference

host. Their main challenge was to achieve a deterministic execution of the malware in

both environments so that a robust comparison of behavior becomes possible. Therefore,

they first record all interaction of the malware with the operating system to exactly replay

the results of the system calls in the second run. One year later Lindorfer et al. [148] ex-

tended on this idea with their system called Disarm, by not only comparing the behavior
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between the emulation and a real system, but instead comparing behavior between four

different emulation systems.

Kirat et al. [131] improved on these previous works by creating an analysis platform called

BareCloud which runs the malware in a transparent bare-metal environment without in-

guest monitoring. However, the cat and mouse game continued by finding new techniques

to detect and evade even these bare-metal analysis systems. In 2017, Miramirkhani et al.

[164] presented their work on "wear and tear" artifacts, i.e., detecting the analysis system

because typical artifacts of human interaction with the system in the past are missing.

To summarize, we can see that the deterministic execution of malware in multiple en-

vironments and then comparing differences in execution is a well-established approach

to analyze malware binaries. However, we are, to the best of our knowledge, the first to

apply this concept for JavaScript code running in browsers and to provide insights into

how wide-spread these techniques are in the wild.

4.5.2 Malicious JavaScript
Over the years, there have been many publications on malicious JavaScript in general with-

out any particular focus on evasive measures or anti-debugging. Multiple works focused

on drive-by attacks, e.g., JSAND by Cova et al. [51] uses anomaly detection combined with

an emulated execution to generate detection signatures, while Cujo by Rieck et al. [213] use

static and dynamic code features to learn malicious patterns and detect them on-the-fly

via a web proxy. Similarly, Zozzle by Curtsinger et al. [53], uses mostly static features from

the AST together with a Bayes classifier to detect malicious code. Targeting drive-by ex-

ploit kits, Stock et al. [243] presented their work on Kizzle. Their approach is based on

the fact that while the obfuscated code of such attacks changes frequently, the underlying

unpacked code evolves much more slowly, which aids the detection process. As a more

general defense that is not based on a detector, Maisuradze et al. [149] proposed Dachshund,

which removes all attacker-controlled constants from JavaScript code, rendering JIT-ROP

attacks infeasible. Other works focused on malicious browser extensions [126], discover-

ing evil websites [116], and creating fast pre-filters to aid the large-scale detection of mal-

ware [32, 73].

4.5.3 Evasive Malware on the Web
A few publications also specifically focused on evasive JavaScript malware, which actively

tries to avoid being detected. In 2011, Kapravelos et al. [125] showed how they can detect

the presence of a high-interaction honeyclient and subsequently evade detection. One

year later, Kolbitsch et al. [133] created Rozzle, an approach to trigger environment-specific

malware via JavaScript multi-execution. This way, they can observe malicious code paths

without actually satisfying checks for browser or plugin versions. Improving on this, Kim

et al. [130] presented their work on forced execution to reveal malicious behavior, with

a focus on preventing crashes. To detect evasive JavaScript malware samples that evolve
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over time, Kapravelos et al. [127] designed Revolver, which utilizes similarities in samples

compared to older versions of the same malware. Their rationale is that malware authors

react to detections by anti-virus software and iteratively mutate their code to regain their

stealthiness. In their work called Tick Tock, Ho et al. [108] investigated the feasibility of

browser-based red pills, which can detect if the browser is running in a virtual machine

from JavaScript code by using timing side-channels.

However, while these previous publications worked on the phenomenon of evasive Web

malware, they all assume the malware is analyzed as part of an automated system and tries

to detect differences in this analysis environment. On the other hand, our threat model

instead considers anti-debugging measures to hinder or avoid detection by a human analyst
using a real browser.





5 Studying Abuses Beyond
JavaScript

In Section 2.2, we looked at the trend of emerging technologies and that new features are

constantly added to the browser. Notably, as a result of the introduction of WebAssembly
in 2017, JavaScript is not the only programming language anymore that the browser sup-

ports. While WebAssembly was designed with security in mind from the start, malicious

actors nevertheless quickly abused this novel technology. This mainly happened as part

of the cryptojacking phenomenon, which abuses the efficient computation offered by We-

bAssembly in a way that generates profits in the form of cryptocurrency for a malicious

website operator. However, we could also discover attempts at abusing WebAssembly to

obfuscate malicious code, as the new technology was mostly not yet supported by tools

such as malware detectors and analysis frameworks. In contrast to the previous chapter

which focused on abuses of JavaScript capabilities, this chapter will thus focus on ma-

licious techniques enabled by the introduction of WebAssembly to the browser, which

would have either been impossible or at least much less efficient when implemented in

JavaScript.

In Section 5.1, we first briefly describe the concept of cryptocurrenies, which are relevant

to understand for the cryptojacking attacks. We then introduce our threat model for We-

bAssembly abuses in general, as well as which types of mining we consider to be malicious

and thus in scope. In Section 5.2, we then provide more technical background specifically

about the memory-bound cryptocurrencies involved during web-based mining, the struc-

ture of WebAssembly modules, and how JavaScript and WebAssembly can interact with

each other. Moreover, we also take a closer look at one popular mining implementation,

to show which relevant browser features are involved during the mining. Then, we outline

our detection methodology based on browser instrumentation in Section 5.3. In particu-

lar, we show how we can collected all WebAssembly modules while crawling the Web and

describe our mining detection approach based on three phases. In Section 5.4, we present

our results on the prevalence of cryptojacking attacks in the wild and also shown that

existing countermeasures were insufficient. Based on a manual analysis of the collected

modules, we also show for what other purposes the early adopters used WebAssembly for

and discuss the discovered modules that used it for obfuscation. Finally, in Section 5.5 we

present related work on the topic of cryptojacking and parasitic computing.
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5.1 Use Case: Malicious WebAssembly and
Cryptojacking

For a long time, JavaScript has been the only option to create interactive applications in

the browser and especially the development of CPU intensive applications, such as games,

has been held back by the subpar performance offered by JavaScript. As a remedy, several

attempts to bring the performance benefits of native code to the Web have thus been made:

Adobe has heavily promoted the Flash platform, Microsoft proposed ActiveX, and compara-

tively recently, Google introduced its Native Client. However, all these are tied to a specific

platform and/or browser and could not gain acceptance on a large scale. While Adobe

Flash marks an exception here, it suffered from a number of critical vulnerabilities over

the years [195, 272], resulting in dwindling acceptance. By now all these technologies have

been deprecated [160, 39, 4]. As already introduced in Section 2.2, WebAssembly instead

has been published as a standardized and platform-independent alternative. Only a few

months after its initial publication, it has been implemented in all four major browser

engines [153] and gained traction ever since, as the low-level bytecode language allows for

significantly faster transmission, parsing, and execution in comparison to JavaScript [47].

5.1.1 Cryptojacking and Web-based Mining

In a completely independent development from aforementioned browser features, cryp-

tocurrencies such as Bitcoin and Ether have gained popularity in the last years as they

provide an alternative to centrally controlled fiat money and a profitable playground for

financial speculation. A basic building block of these currencies is the process of mining,

in which a group of users solves computational puzzles to validate transactions and gen-

erate new coins of the currency [180]. Although the stability and long-term perspectives

of cryptocurrencies are not fully understood, they have attracted large user communities

that mine and trade coins in different markets with considerable volume. For example,

Bitcoin reached an all-time high of 66,900 USD per coin in October 2021 [48], resulting in

a market value comparable to major companies. Unfortunately, this development has also

attracted miscreants who have discovered cryptocurrencies as a new means for generating

profit. In a strategy denoted as cryptojacking, users are tricked into unnoticeably running a

miner on their computers, so that malicious actors can utilize the available resources for

generating revenue in the form of cryptocurrencies.

Web-based mining is a variant of cryptojacking that cleverly combines the previous two

developments for malicious purposes. It works by injecting mining code into a website,

such that the browser of the victim mines during the website’s visit. This way, the effi-

ciency enabled by WebAssembly is abused to covertly perform intensive computations in

a novel form of parasitic computing, without requiring to infect the visitor with native

malware. First variants of these attacks have emerged with the availability of the Coin-

Hive miner in September 2017 [3, 135]. Although originally developed for benign purposes,
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CoinHive has been maliciously injected into several websites [e.g., 83, 95]. In August 2018,

a vulnerability in MikroTik routers has been used to inject a cryptojacking script into

traffic passing through more than 200,000 of these routers [49]. Apart from this specific

mining technique, however, it remains unclear what WebAssembly is widely used for on

the Web and whether other malware based on WebAssembly exists. In this chapter, we

therefore not only provide a study on cryptojacking in the wild, but also conduct the first

comprehensive and systematic investigation of the larger WebAssembly ecosystem.

5.1.2 Threat Model and Scope

WebAssembly can execute at near-native speed, but still runs in a memory-safe, sandboxed

environment in the browser and is also subject to security mechanisms like the same-

origin policy [263]. In this chapter, we investigate new attacks enabled by the introduction

of WebAssembly that previously would have not been possible or at least much less effec-

tive as a mere JavaScript implementation. For this, we focus on abuses of WebAssembly

that do not violate its designed security boundaries. In particular, trying to break out of

the sandbox and the browser to attack the victim’s machine directly are considered out of

scope here.

On one hand, our threat model thus obviously includes cryptojacking in the form of

web-based mining. Such activity certainly also has legit use-cases and may pose an alter-

native to online advertisements as scheme of monetization. Therefore, we define cryp-

tojacking as the practice of automatically starting a web-based miner upon visiting a web

page. For this, we neither consider the disclosure of the mining process to the user nor the

presence of an opt-out mechanism relevant. We view a consent after the fact as an inad-

missible mode of operation, similarly to how the GDPR now requires a “clear affirmative

action” for tracking cookies in the EU [50]. Miners that only run after explicit consent by

the user, such as Authedmine and JSEcoin, are not considered part of the problem and

are thus not examined in our study. To conclude that a website employs cryptojacking,

we further do not differentiate between scripts added by the website’s owner and scripts

injected by a third party by means of hacking the server or hijacking included scripts. On

the other hand, this threat model also includes novel obfuscation techniques that try to

circumvent malware detectors trained on JavaScript files [e.g. 213, 53, 73], which are mostly

unable to detect malicious code hidden in WebAssembly modules [216].

5.2 Web-based Mining
The mining of classic cryptocurrencies, such as Bitcoin and Ether, requires specific hard-

ware to be profitable. Therefore, these currencies are not suitable for web-based mining, as

visitors of a website will not run their browsers on such custom hardware. In this section,

we discuss how so-called memory-bound cryptocurrencies instead enable profitable min-

ing even with of-the-shelf hardware. Moreover, we describe the structure of WebAssembly
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modules in more detail and how JavaScript code can interact with WebAssembly and vice-

versa. Finally, we conclude this section with a closer look at one popular implementation

of a web-based miner.

5.2.1 Memory-bound Cryptocurrencies

Hardware devices designed for demanding computations, such as GPUs and ASICs, pro-

vide a better mining performance than common CPUs. As a consequence, profitable

mining of classic cryptocurrencies has become largely infeasible with regular desktop

and mobile computer systems. This situation has not been anticipated in the original

design of the first cryptocurrencies and violates the “one-CPU-one-vote” principle un-

derlying Bitcoin mining [180]. As a remedy, alternative cryptocurrencies have been de-

veloped in the community that make use of memory-bound functions for constructing

computational puzzles. One prominent example is the cryptographic mixing protocol

CryptoNote [219] and the corresponding proof-of-work function CryptoNight [222]. Cry-

poNight is a hash function that determines the hash value for an input object by exten-

sively reading and writing elements from a 2 Megabyte memory region. This intensive

memory access bounds the run-time of the function and moves the overall mining per-

formance from the computing resources to the available memory access performance. As

memory access is comparably fast on common CPUs due to multi-level caching, Cryp-

toNight and other memory-bound proof-of-work functions provide the basis for alterna-

tive cryptocurrencies that can be efficiently mined on regular desktop systems and hence

are a prerequisite for realizing web-based miners.

The idea of memory-bound proof-of-work functions along with other improvements

over the original Bitcoin protocol has spawned a series of novel cryptocurrencies, each

forking the concept of CryptoNote. The most prominent example is Monero [250] with a

market capitalization of 4.2 billion USD [48] as of 2021. Due to the concept of anonymous

transactions it also provide more privacy than Bitcoin and may conceal the identity of

senders and receivers [165, 136]. Profitable mining on desktop systems render this currency

an ideal target for web-based mining. Furthermore, the increased privacy of transactions

provides a basis for conducting cryptojacking over manipulated web sites.

5.2.2 WebAssembly Modules under the Hood

As already mentioned, WebAssembly is the other piece to the puzzle that enables prof-

itable computations for web-based miners. In general, WebAssembly code is structured

in modules, which are self-contained files that may be distributed, instantiated, and exe-

cuted individually. A WebAssembly module consists of individual sections of 11 different

types, such as code, data, and import. Subsequently, we briefly describe the four most

relevant section types.
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Code Section This usually is the largest section as it encapsulates all function bodies of

the WebAssembly module. One example of a function in this code section can be found in

Table 5.1. This example comprises only basic functionality, like control flow statements,

addition, and multiplication. Of course, there also exist a number of instructions with

more complex mechanics, such as popcnt, which counts the number of bits set in a num-

ber, or sqrt, which calculates the square root of a floating-point value [263]. Note that these

instructions do not involve any registers, but operate on the stack only, which is based in

the design of the underlying virtual machine.

Table 5.1: A simple C function on the left and the corresponding WebAssembly bytecode along

with its textual representation, the Wat format, on the right-hand side [263].

C program code Binary Text representation

20 00 get_local 0

42 00 i64.const 0

51 i64.eq

int factorial (int n) { 04 7e if i64

if (n == 0) 42 01 i64.const 1

return 1 05 else

else 20 00 get_local 1

return n * factorial (n-1) 20 00 get_local 1

} 42 01 i64.const 1

7d i64.sub

10 00 call 0

7e i64.mul

0b end

Data Section The optional data section is used to initialize memory, similar to the .data

section of x86 executables. Amongst others, this section contains all strings used through-

out the module. Figure 5.1 shows the definition of such a data segment in Wat format. In

this example, four bytes are saved at the memory offset 8, which results in the number 42
if read as an unsigned integer.

(data_segment

0 // memory index

(init_expr (i32.const 8)) // byte offset

(data 0x2a 0x0 0x0 0x0) // the data itself

)

Figure 5.1: Initializing memory with the number 42.
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Import and Export These sections define the imports and exports of a WebAssembly mod-

ule. The import section consists of a sequence of imports, which are made available to the

module upon instantiation, that is, any listed function can then be used via the call op-

code. For importing a function the module name, function name, and its type signature

needs to be specified. It is then up to the host environment, for instance the browser, to

resolve these dependencies and check that the function has the requested signature [263].

The export section, in turn, defines which parts of the module (functions or memory) are

made available to the environment and other modules. Everything declared in this section

can also be accessed via JavaScript as well.

5.2.3 WebAssembly and its JavaScript API
WebAssembly is intended to complement JavaScript, rather than to replace it. Conse-

quently, it comes with a comprehensive JavaScript API, that allows sharing functional-

ity between both worlds and allows instantiating WebAssembly modules with only a few

lines of JavaScript code. To speed up the initialization of a new module, the Wasm bi-

nary format is designed such that a module can be partially compiled while the download

of the module itself is still in progress. To this end, the API provides the asynchronous

instantiateStreaming function, to complement the older synchronous instantiate func-

tion. Of course, WebAssembly modules may also be instantiated from data, embedded in

JavaScript code—for instance, as raw bytes in an Uint8Array.

const obj = {

imports: {

imported_func: function(arg) { console.log(arg); }

}

};

const wasm = await WebAssembly.instantiateStreaming(

fetch('example.wasm'), obj

);

let result = wasm.instance.exports.factorial(13);

Figure 5.2: Instantiating a WebAssembly module and calling an exported function.

One short example on how to instantiate a Wasm module and interact with it in only

a few lines of code can be seen in Figure 5.2. In this example, the first parameter of the

instantiateStreaming call uses the fetch function to load a module over the network.

The second parameter is an object specifying the imports for the module and, in this

example, exposes the console.log function to the WebAssembly environment. This is

necessary to grant the Wasm code access to functions from the JavaScript domain. The

same restrictions, for instance, also apply to access and modifications to the DOM. In last

line, the exported function factorial is invoked to pass execution to the WebAssembly

module. The corresponding Wasm code is the called, executed, and the value returned

to the JavaScript environment. Alternatively, the factorial function could be changed
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to make use of the imported console.log functionality to directly print the value from

within the Wasm module.

5.2.4 The CoinHive Miner

To get a better understanding on how web-based miners combine all these presented

technologies, we take a closer look at the CoinHive miner [135], which was the most popular

mining service at the time of writing, as we will later show in our results. The miner itself

is distributed via a single JavaScript file, which the website’s owner includes on the page

along with a small snippet to configure and start the mining process. The snippet and

its configuration may be further customized, e.g., to not execute on mobile devices, but at

least requires a unique id that maps miners to identities. In the case of CoinHive these

are called site-keys and are needed to account payouts for calculated hashes.

Under the hood, the miner is based on three browser technologies previously intro-

duced in Section 2.2 when we discussed the trend of emerging features: WebSockets, Web-

Workers, and WebAssembly. In the context of web-based mining, WebSockets allow the

efficient communication between the individual miners and the mining pool that coor-

dinates their efforts. However, WebSockets are also used in several other types of web

applications, like chats and multiplayer games, and thus represent only a weak indicator

of mining activity. While WebWorkers are not strictly necessary for implementing web-

based mining, they allow for better utilizing the available resources by running the miner

on multiple CPU cores in parallel and thus can also be found in most implementations.

For our study, we hence consider the presence multiple of WebWorker threads as an indi-

cator for potential mining activity. Last but not least, WebAssembly is a perfect match for

implementing mining software, as it enables compiling cryptographic primitives, such

as specific hash functions, from a high-level programming language to low-level code

for a browser. Thus the calculation of the CryptoNight hashes at the core of the whole

mining process is implemented in WebAssembly to increase performance, meaning that

WebAssembly usage is another useful indicator for mining activity.

On startup, the CoinHive miner instantiates the desired number of WebWorkers, e.g.,

one worker per CPU core, and creates a WebSocket connection to the mining pool, where

it registers itself with the supplied site-key. The corresponding worker code is usually

included in the JavaScript code of the miner as a binary blob and instantiated by each

worker. If throttling is configured to use less than 100% of the CPU for mining, the work-

ers constantly monitor the time consumed for each calculated hash and adjust the delay

between hash calculations. This, however, only allows for a rough approximation of the

desired load on the system. While CoinHive allows a website’s owner to conveniently set

up a web-based miner without running a mining pool for themselves, the CoinHive ser-

vice did keep a 30% cut of all mined currencies.
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5.3 Scanning Methodology

Based on the discussed background, our goal is now to conduct a systematic study of We-

bAssembly usage on the Web. We obviously do not want to limit this study to only detect

the known CoinHive miner, but also obfuscated variants and different mining implemen-

tations. For this, we need an automated method to collect all WebAssembly modules for

later analyses and to detect indicators for mining activity, such as an unusual CPU uti-

lization, the excessive repetition of functions and the presence of suspicious scripts. To

achieve this, we again rely on a real browser controlled via the CDP as part of our security

scanning pipeline. In the following, we describe our instrumentation for this use case, as

well as our general approach to detect cryptojacking websites.

5.3.1 Collecting WebAssembly

First of all, we need a way to collect all WebAssembly modules that we discover while crawl-

ing the Web. Previous research mentions the undocumented –dump-wasm-module flag for

Chrome’s Wasm compiler as a simple option to save all executed Wasm modules [134].

However, the flag was only available in debug builds and later completely removed. An-

other option to collect all Wasm code is hooking the CDP’s Debugger.scriptParsed event

and filtering for the wasm:// scheme. Though this event only gives us the code for each

parsed function and not the whole Wasm module in its original form and hence important

parts of the module, like the memory section, are not available. For comprehensiveness,

we instead use monkey patching to transparently hook the creation of all JavaScript func-

tions which can compile or instantiate Wasm modules. Figure 5.3 demonstrates how we

hooked instantiate and the corresponding async version called instantiateStreaming.

For compile and its async counterpart, the process is identical. For the WebAssembly.Module

constructor, on the other hand, we use the built-in Proxy object to create a trap for the new

operator [see 155].

let original = WebAssembly.instantiate;

WebAssembly.instantiate = function(bufferSource) {

//Log bufferSource to backend here

return original.call(WebAssembly, ...arguments);

};

WebAssembly.instantiateStreaming = async function(source, obj) {

let response = await source;

let body = await response.arrayBuffer();

return WebAssembly.instantiate(body, obj);

};

Figure 5.3: Modifying the instantiation of WebAssembly to collect the raw Wasm bytes.
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5.3.2 Detecting Cryptojacking
Compared to merely collecting all WebAssembly modules, accurately detecting which of

these are used for web-based mining is a lot more involved. For this, we designed the dedi-

cated cryptojacking detection process shown in Fig. 5.4 that spans three individual phases:

1) An over-permissive first broad sweep to identify potential miner candidates using heuris-

tics, 2) a thorough run-time analysis to isolate the real miners within the candidate set, and

3) a generalization step, in which we extract static indicators, that allow the identification

of non-active or stealth mining scripts.

Alexa 1 million
websites

Active
miners

Generalized 
miners

Miner 
candidates

Phase 1: 
Detection of candidates

Phase 2: 
Validation of miners

Phase 3: 
Generalization of miners

Dynamic analysis for 5 seconds.
Detection of suspicious functions.

Dynamic analysis for 30 seconds.
Detailed measuring of CPU load

Static analysis of mining code.
Generalization of files and links.

Active
miners

Generalized 
miners

Miner 
candidates

Alexa 1 million
websites

Figure 5.4: Overview of our approach for identification of web-based miners.

Phase 1: Detection of candidate sites In the first phase, our approach conducts a fast and

imprecise initial analysis of websites to create a pool of candidates which likely—but not

necessarily—host a mining script. To do so, we compiled a set of heuristics that hint the

potential presence of a cryptojacking script and that can be measured at run-time while

rendering a webpage in a browser. These heuristics were extracted from a manual analysis

of verified mining scripts. For one, we initiate a short profiling of the site’s CPU usage,

with unusual high CPU utilization levels being interpreted as an indicator for mining.

Furthermore, we mark all sites as suspicious, that use miner-typical web technologies,

which are not in wide-spread use in the general web, namely WebAssembly or non-trivial

amounts of WebWorkers. If at least one of these indicators could be found in a site, this

site is marked as a potential mining candidate. Thus, the result of this phase is an over-

approximation of the set of actual mining sites.

Phase 2: Validation of mining scripts For obvious reasons, none of the used heuristics is

conclusive in the identification of miners, as there is a multitude of legitimate reasons to

use WebWorkers, WebAssembly or temporary high amounts of computation. However,

the constant and potentially unlimited usage of CPU, caused by a single function within

parallelized scripts is a unique phenomenon of cryptojacking. Thus, in the second phase

we conduct a significantly prolonged run-time analysis of the candidate sites, in which the

sites receive no external interaction and hence should be idle after the initial rendering and

set-up in legitimate cases. However, if once the page is loaded, all JavaScript is initialized,

and the DOM is rendered, the CPU usage still remains on a high level and the computation

load is the result of repetitive execution of a single function within the webpage’s codebase,

we conclude that the site hosts an active cryptojacking script.
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Phase 3: Generalization of miner characteristics The run-time measurements of the first

two phases limit our approach to the detection of active mining scripts. We thus might

miss mining sites that are inactive at the time of the test, for instance due to programming

errors in the site’s JavaScript code, a delayed start of the mining operation, or mining

scripts waiting for external events such as an initial user interaction with the page. To

create a comprehensive overview, it is important to identify these sites to document the

intent of mining. To this end, we leverage the results of the second phase to generate a set of

static features of mining scripts which we can be used to reevaluate the data from phase 1.

To this end, we first extract the JavaScript code from the validated mining sites that is

responsible for initiating and conducting the mining operations. From this script code,

we take both the URL and a hash of its contents as two separate features. Furthermore, we

collect all parsed WebAssembly functions, sort them and use the hash of the whole code-

base as the third feature. We then apply each feature to our list of confirmed miners from

the previous phase and keep only those that describe at least a certain number of min-

ers. As the result, we obtain a set of generalized fingerprints, which can identify common

mining scripts even in their inactive state. Applying these onto the data collected during

the first phase in combination with our list of confirmed miners from the second phase

yields to total number sites with a web-based miner.

5.3.3 Implementation Details
While we can not describe all implementation details of all three phases in detail, there

are two specifics of our implementation that we want to nevertheless point out: how we

deal with that fact that our measurement runs on one large server instead of a typical

consumer hardware and how we can measure CPU caused by individual functions and not

just the whole browser process.

Fake number of cores The number of logical cores of a visitor’s CPU is exposed in Java-

Script via the hardwareConcurrency property of the global navigator object. This allows

scripts to adjust the number of concurrent WebWorkers according to the available hard-

ware and is used by miners to start the desired number of threads (usually one per core).

However, we do not want a single mining site to seize all available resources on our server

and interfere with simultaneous visits of other websites. Furthermore, websites might em-

ploy checks on the number of cores and not run if an unusually high number is observed,

thus preventing us from detecting them. Changing the returned value can be achieved by

injecting a script into each document that overwrites the property before executing any

other script content.

CPU Profiling

Most importantly, instead of using standard Unix tools to measure the CPU load on a

per-process level, we utilize the integrated profiler of Chrome’s underlying JavaScript en-
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gine V8 to measure the load on a per-function level. The profiler pauses the execution at a

regular interval and samples the call stack, which enables us to estimate the time spent in

each executed function. This way, we can not only determine if a single function consumes

a considerable amount of CPU time, but also pinpoint the responsible script in the web-

site’s code by aggregating the collected data for each unique call stack. Wasm code itself

cannot be profiled on a function level, so all samples of it are just named <WASM UNNAMED>.

However, from the call stack we can still see how much time the Wasm code took and

trace it back to the JavaScript function which caused the call into Wasm in the first place,

as shown in Table 5.2. By comparing the time spent in a function with the length of the

profiling, we can estimate the caused CPU load for that particular function. Note that if

the same code is running in several workers simultaneously, the combined time from all

workers can be as high as the number of cores times the length of the profiling, e.g., our

profiling for 5,000 milliseconds with 4 CPU cores in phase 1 can result in a maximum

time of 20,000. Thus, taking the value of 14,375 from Table 5.2 as an example, would mean

this function generated a load of approximately 72%.

Table 5.2: Example of a call stack with the aggregated amount of samples and time spent for each

of its functions.

Function name # Samples Time in ms

<WASM UNNAMED> 73,938 14,375.3
Module._akki_hash 1 0.1
CryptonightWASMWrapper.hash 4 0.6
CryptonightWASMWrapper.workThrottled 11 1.8
(root) 0 0.0

5.4 Large-Scale Study
As previously stated, our goal is to paint a comprehensive picture of the current We-

bAssembly practices in the wild. To this end, we measure the prevalence of cryptojack-

ing, examine the effectiveness of the current generation of dedicated anti-cryptojacking

countermeasures, and investigate what WebAssembly is used for beyond that.

5.4.1 Cryptojacking

We used the aforementioned browser instrumentation to automatically find instances of

web-based cryptojacking in the wild. In what follows, we briefly discuss the key parameters

of our experiment setup for each of the three phases. Then, we report on the prevalence

of these attacks in the wild and investigate the effectiveness of existing defenses.
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Experiment Setup We conducted Phase 1 our study on the Alexa list of the top 1 million

most popular sites. We visit the front page of each site and wait until the browser fires

the load event or a maximum of 30 seconds pass. Furthermore, to allow for sites that dy-

namically load further content, we wait an additional 3 seconds or until no more network

requests are pending. We then start the CPU profiler and measure all code execution for

5 seconds and flag the site as suspicious, if there is a function with more than 5% load on

average. As the most CPU-heavy function on each website of the Alexa Top 1 million had

an average load of only 0.2%± 3.21, we reckon that a value of 5% or more warrants further

investigation. We also flag the site for extended analysis, if either any Wasm code or more

than 3 workers are used, which is equal or more than all the CPU cores we pretend to

have. For this phase, we used a single server with 24 CPU cores and 32 GB of RAM run-

ning 24 simultaneous crawlers backed by Chrome v67.0.3396 over a time span of 4 days.

The detailed verification of suspicious sites in Phase 2, we use the same general setup as

the first phase. However, here we only run one crawler on a smaller server with 8 CPU

cores. By visiting the websites one-by-one and profiling for a longer time of 30 seconds,

we can more accurately determine if a website contains a mining script. If there is one

function in the codebase that results in an average load of 10% or more, we label it as a

confirmed and active miner. We argue that while a value lower than 10% certainly would

make the miner very hard to detect, it also severely thwarts the ability to make money

with cryptojacking. Furthermore, such slow mining does not even seem to be supported

by popular mining scripts, as we will describe shortly. In the final Phase 3, we create the

fingerprints as previously outlined using the code of the confirmed miners. However, we

only keep the fingerprints shared by at least 1% of all miners. This restrictive measure

ensures that only mining scripts with multiple validated instances produce fingerprints

and, thus, avoids accidental inflation of potential phase 2 classification mistakes. The re-

sulting fingerprints are then applied to the collected data from the first phase, yielding

the final number of websites employing cryptojacking on their visitors.

To validate that our implementation and setup are working as intended, we created a

testbed with the two popular implementations that start without the user’s consent: Coin-

Hive and CryptoLoot. This testbed consists of 24 locally hosted pages, which each contain

one of the miners at a different throttling levels between 0% and 99%. Interestingly, even

if the miner is configured with a throttle as high as 99%, so that it should utilize only 1%

CPU, we can confirm it as a miner with our 10% threshold. Looking into the implemen-

tation of the throttling, we find that the code never sleeps for longer than two seconds

between hash calculations, which makes it impossible to actually use very low throttling

values. We also confirm this by monitoring Chrome’s CPU usage with htop and find that

no matter how high we set the throttling, the load on our machine never drops to below

20%. As our implementation is able to successfully detect all miners in the testbed, regard-

less of the used throttling value, we are confident its ability to find active cryptojacking

scripts.
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Prevalence As first result of our crawling, we identify 4,627 suspicious sites in the Alexa

ranking using the methodology and parameters outlined in the previous sections. Out

of these, 3,028 are flagged for having a load-intensive function, 3,561 for using at least

as many workers as CPU cores we pretend to have and 2,477 for using Wasm. Note that

these sets overlap, as for example the usage of Wasm often implies a CPU intensive ap-

plication. The detailed analysis of these 4,627 suspicious sites results in 1,939 sites with a

continuously high CPU usage over a profiling for 30 seconds. We use the resulting set of

scripts for the third phase to build fingerprints of the most popular miners, resulting in

15 hashes of JavaScript code, 12 hashes of Wasm codebases, and 8 script URLs. The latter

can be found in Table 5.4. After applying these fingerprints, we obtain the final number

of 2,506 websites, which are very likely to employ cryptojacking. Table 5.3 summarizes our

results.

Table 5.3: Prevalence of miners in the Alexa Top 1 million.

Phase Result # Websites % of Alexa

1 Suspicious sites 4,627 0.46
2 Active cryptojacking sites 1,939 0.19
3 Total cryptojacking sites 2,506 0.25

Table 5.4: Common script URLs responsible for the creation of the mining workers, which resulted

in fingerprints.

URL # Occurrences

//coinhive.com/lib/coinhive.min.js 656
//advisorstat.space/js/algorithms/advisor.wasm.js 311
//www.weather.gr/scripts/ayh9.js 68
//aster18cdn.nl/bootstrap.min.js 59
//cryptaloot.pro/lib/crypta.js 46
//gninimorenom.fi/sytytystulppa.js 35
//coinpot.co/js/mine 27
//mepirtedic.com/amo.js 22

During manual investigation of a sample of the additional 567 sites only detected in

phase 3, we found five reasons why our dynamic analysis missed these miners: (1) A script

for web-based mining is included, but the miner is never started. (2) The miner only

starts once the user interacts with the web page or after a certain delay. (3) The miner is

broken—either because of invalid modifications or because the remote API has changed.

(4) The WebSocket backend is not responding, which prevents the miner from running.

(5) The miner is only present during some visits, e.g., to hinder detection or due to ad

 //coinhive.com/lib/coinhive.min.js 
 //advisorstat.space/js/algorithms/advisor.wasm.js 
 //www.weather.gr/scripts/ayh9.js 
 //aster18cdn.nl/bootstrap.min.js 
 //cryptaloot.pro/lib/crypta.js 
 //gninimorenom.fi/sytytystulppa.js 
 //coinpot.co/js/mine 
 //mepirtedic.com/amo.js 
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banner rotation. This analysis confirms the need for a three-step identification process,

as only the combination of phase 2 and 3 enable us to determine a comprehensive picture

of current cryptojacking in the websites of the Alexa ranking.

Effectiveness of Countermeasures To both compare our findings to existing approaches

for the detection of cryptojacking and to validate our results, we select three popular so-

lutions to block miners in the browser. For one, we use the NoCoin adblock list [186], which

is a generic list for adblockers, such as Adblock Plus or uBlock Origin and is now also

used by Opera’s built in adblocker. For the remainder of this section, we refer to this

list as Adblocker. Furthermore, we include the blacklists used by the two most popular

Chrome extensions with the purpose of blocking web-based miners: No Coin [187] and

MinerBlock [162]. We extract the detection rules these extensions contain and translate

them into SQL statements while preserving the wildcards, in order to apply them to the

data collected during our crawl of the Alexa Top 1 million sites. The number of identified

miners for each system are presented in Table 5.5 in the first column. The other columns

of this table compare these results for each system with the 2,506 websites we identified as

miners. The second column reports on the intersection of both lists, that is the number

of sites on which both approaches are in agreement. Accordingly, the last two columns

each contain the number of sites that one approach reported, but not the other.

Table 5.5: Detection results of our approach and three common blacklists as absolute numbers.

Blacklist # Detections # Both # Only they # Only we

Minerblock 1,599 1,402 197 1,104
No Coin 1,217 1,039 178 1,467
Adblocker 1,136 1,049 87 1,457

Unsurprisingly, our approach mixing static and dynamic analysis clearly outperforms

the three static blacklists and spots a considerable amount of additional web-based min-

ers. Moreover, the large overlap in sites that both we and the extensions found, validates

that our approach and shows that it is indeed suitable to detect cryptojacking in the wild.

There are, however, a few sites that our approach misses, but the blacklists detect. Manual

analysis of a subset showed that besides overly zealous lists, the main reason is that we

can only learn fingerprints of active miners. For example, some website owners copied

CoinHive’s script to host it on their own servers a few months ago. Meanwhile, all these

mining scripts stopped working, as CoinHive changed its API used in the communication

with the pool. Therefore, while this probably represents a cluster of inactive miners, we

are unable to detect them, as no fingerprint for any of the scripts could be generated in

the third phase, due to the fact that the whole cluster was inactive at the time of analysis.

The existing blacklists on the other hand can detect them, as their rules are curated by

humans, which allows them to apply a couple of generic measures. For example, most
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blacklists include a rule for */coinhive.min.js. In contrast, our static indicators are gen-

erated in a fully automated fashion, based on code characteristics from dynamically vali-

dated miner instances. In this process, we cannot generalize our list of fingerprinted full

script URLs towards partial URLs or even only filenames without manual review, as this

could lead to misclassifications. For instance, in our dataset such an attempt would end up

in all scripts named */bootstrap.min.js being blacklisted because a widespread mining

script uses this benign-sounding name, as shown in Table 5.4.

5.4.2 WebAssembly Ecosystem

In a follow-up study later in the same year, we set out investigate the larger WebAssembly

ecosystem, without limiting our efforts to cryptojacking only. We conducted a similar

crawl of the Alexa Top 1 million and discovered 1639 sites loading 1950 Wasm modules.

This is a significant decrease compared to the 2,477 sites using WebAssembly during our

first study. We attribute this to the fact that the price of Monero in USD dropped to about

a fifth of its value between those to studies, thus severely limiting profits [48].

WebAssembly modules Of the 1950 collected modules, 150 are unique samples. This

means that some Wasm modules are popular enough to be found on many different sites,

in one case the exact same module was present on 346 different sites. On the other hand,

87 samples are completely unique and were found only on one site, which indicates that

many modules are a custom development for one website. On some pages, we found up

to 10 different Wasm modules, with an average of 1.22 modules per page on sites that use

WebAssembly at least once. Moreover, Fig. 5.5 shows that the more popular sites also tend

to use WebAssembly more often.
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Figure 5.5: Distribution of Alexa sites using WebAssembly in bins of 100,000 sites.

Regarding the initiator of the modules, on 1118 sites the module was instantiated by a

first-party script, while on 795 sites the module came from a third-party script or iframe

with another origin. In the second case, the site’s administrator might not even be aware
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that WebAssembly is used on his/her site. Note that there is some overlap, as some sites

used multiple modules, especially since we also crawled several subpages for each site. The

mere instantiation of a Wasm module, however, does not mean that a site is actively using

the module’s code. Some sites just test if the browser does support WebAssembly, while

other sites are actually relying on the functionality the module exposes. A first indicator

for this is the size of the module: the smallest was only 8 bytes, while the largest was

25.3 MB with a median value of 99.7 KB per module, as can be seen in Figure 5.6. On

the other hand, the JavaScript code on the sites using Wasm had a median size of 2.79
MB. This shows that currently the amount of Wasm code is often only a fraction of the

total codebase on a site. Nevertheless, this should be seen only as a rough estimate as the

comparison between a text-based and a binary format is inherently unfair.

101 102 103 104 105 106 107

Size of WebAssembly modules in bytes

Figure 5.6: Distribution of the size of WebAssembly modules. The box represents the middle 50%

of the data, with the line in the box at the median. Outliers are shown as red dots.

Manual analysis To find out what they are actually used for, we manually analyzed all

150 collected Wasm modules. We first inspected the modules themselves and looked at

function names and embedded strings to get an idea about the likely purpose of the mod-

ule. In order to confirm our assumptions, we visited one or more websites that used the

module and investigated where the Wasm module is loaded and how it interacts with the

site. Thereby, we arrived at the following six categories: Custom, Game, Library, Mining,

Obfuscation, and Test. The first three are of benign nature, but modules of the categories

Mining and Obfuscation use WebAssembly with malicious intentions. We consider testing

for WebAssembly support in general as neither benign nor malicious itself and thus see

the category Test as neutral.

Unsurprisingly, the largest observed category implements a cryptocurrency miner in

WebAssembly, for which we found 48 unique samples on 913 sites in the Alexa Top 1 Mil-

lion. With 44 samples we found almost as much different games using Wasm, but in

contrast to the miners, these games are spread over only 58 sites and thus often only ap-

peared once. For 4 modules we could not determine their purpose and labeled them as

Unknown. Of these, 2 did not contain a valid Wasm module, but the sites attempted to

load it as such regardless. Table 5.6 summarizes our results and shows that with 56%, the

majority of all WebAssembly usage in the Alexa Top 1 Million is for malicious purposes.

In the following, we will briefly discuss each category except the web-based miners, as they

were already covered in detail in our previous study on the cryptojacking phenomenon.
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Table 5.6: The prevalence of each use case in the Alexa Top 1 Mio. As some sites had modules from

multiple categories, the sum exceeds 100%.

Category # of unique samples # of websites Malicious

Custom 17 (11.3%) 14 (0.9%)

Game 44 (29.3%) 58 (3.5%)

Library 25 (16.7%) 636 (38.8%)

Mining 48 (32.0%) 913 (55.7%) ✗

Obfuscation 10 (6.7%) 4 (0.2%) ✗

Test 2 (1.3%) 244 (14.9%)

Unknown 4 (2.7%) 5 (0.3%)

Total 150 (100.0%) 1,639 (100.0%)

Benign: Custom, Games and Libraries Modules in the Custom category appeared to be a

one-of-a-kind experiment, e.g. one was a fancy background animation and another col-

lected module contained an attempt to write a site mostly in C# with cross-compilation to

Wasm. Games are arguably also of custom nature and often only found on one specific site.

However, they are a very specific subset of custom code, of more professional nature and

often also have a clear business model (e.g. in-game purchases or advertisements). Library,

on the other hand, describes Wasm modules that are part of publicly available JavaScript

libraries. For example, the library Hyphenopoly uses WebAssembly under the hood to speed

up its algorithm for word hyphenation. In this case, the use of WebAssembly might not

be the result of an active decision by the site’s developer.

Neutral: Test As mentioned in the beginning, some sites loaded WebAssembly modules

with a size of only a few bytes. Manual investigation showed that the only purpose of

these modules is to test whether WebAssembly is supported by the visitor’s browser. We

discovered such test modules on 244 sites. Of these, 231 sites then proceeded to load an-

other module after this test, while, on the other hand, 13 sites only made the test without

executing any further Wasm code afterward. The latter might, for example, use this in

an attempt to fingerprint their visitors. However, due to the lack of information we gain

from such a small module, we see these as neither benign nor malicious.

Malicious: Obfuscation While cryptojacking certainly did get a lot of attention from the

academic community in 2018 [e.g. 134, 109, 214, 218], this is not the only type of mali-

cious WebAssembly code already in use in the wild. Rather than using WebAssembly for

its performance improvements, some actors abuse its novelty instead. Fig. 5.7 shows the

HTML and JavaScript code embedded into the memory section of a Wasm module we

found. Through this obfuscation of hiding the JavaScript code in a Wasm module, ma-

licious actors likely can prevent detection by analysis tools that only support JavaScript



98

and do not understand the Wasm format. The code tries to create a pop-under, which is

an advertisement that spawns a new window behind the current one and is basically the

opposite of a pop-up. The idea is that this way, the window stays open for a very long

time in the background until the user minimizes or closes the active browser window in

the foreground. Another 8 modules also contained code related to popups and tracking

in the memory section, likely in an attempt to circumvent adblockers. The last of the

10 modules, which employed obfuscations via WebAssembly, implemented a simple XOR

decryption (and nothing else). This could, for example, be used to decrypt the rest of a

malicious payload. However, in this case, the module seemed to not be used at all after

the initialization. Nevertheless, we see these first, simple examples as evidence that mali-

cious actors are already slowly moving towards WebAssembly for their misdeeds and we

expect more sophisticated malware incorporating Wasm code to emerge in the future.

<script>

var popunder = {expire: 12,

url: '//hook-ups-here.com/?u=8l3pd0x&o=4gwkpzn&t=all'};

</script>

<script src='//hook-ups-here.com/js/popunder.js'></script>

Figure 5.7: Code to create a pop-under advertisement, which was found in the memory section of

a WebAssembly module.

5.5 Related Work
To the best of our knowledge, at the time of publishing these results in 2019, there were

no peer-reviewed publications on the general security impact of WebAssembly modules

on the Web. There were, however, already some tools in the work by academics, e.g., a

dynamic analysis framework for WebAssembly called Wasabi [268].

For the cryptojacking phenomenon, on the other hand, various related works already

existed: The study by Eskandari et al. [72] was the first to provide a peek at the problem.

However, the study is limited to vanilla CoinHive miners, and the underlying methodol-

ogy is unsuited to detect alternative or obfuscated mining scripts. More recently, Konoth

et al. [134] searched the web for instances of drive-by mining and proposed a novel detec-

tion based on the identification of cryptographic primitives inside the Wasm code. Simi-

larly, Wang et al. [267] detect miners by observing bytecode instruction counts, while Ro-

driguez and Posegga [214] use API monitors and machine learning. Our work, on the other

hand, uses a sampling profiler to detect busy functions and is thus more closely related to

the work by Hong et al. [109]. However, we crawled the whole Alexa Top 1 Million, while

their study was limited to the Top 100k. Furthermore, fluctuations in the Alexa lists and

the short timespan of mining campaigns add uncertainty to previously presented results.

Therefore, our study provides an additional, independent data point on this new phe-
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nomenon at a different point in time. These factors are also the reason why we decided

against directly comparing the number of detections between the papers.

Furthermore, unauthorized mining of cryptocurrencies is not limited to web scenarios.

For example, Huang et al. [111] present a study on malware families and botnets that use

Bitcoin mining on compromised computers. Similarly, Ali et al. [6] investigate botnets

that mine alternative currencies, such as Dogecoin, due to the rising difficulty of profitably

generating Bitcoins. To detect illegitimate mining activities, either through compromised

machines or malicious users, Tahir et al. [247] propose MineGuard, a hypervisor-based tool

that identifies mining operations through CPU and GPU monitoring. Our study extends

this body of work by providing an in-depth view of mining activity in the web.

From a more general point of view, cryptocurrency mining is a form of parasitic com-
puting, a type of attack first proposed by Barabási et al. [14]. As an example of this at-

tack, the authors present a sophisticated scheme that tricks network nodes into solving

computational problems by engaging them in standard communication. Moreover, Ro-

driguez and Posegga [215] present an alternative method for abusing web technology that

enables building a rogue storage network. Unlike cryptojacking, these attack scenarios are

mainly of theoretical nature, and the authors do not provide evidence of any occurrence

in the wild. On a technical level, our methodology is related to approaches using high-

interaction honey browsers [e.g., 207, 266, 166, 133], which are mainly utilized to detect

attacks on the browser’s host system via the exploitation of memory corruption flaws, a

threat also known as drive-by-downloads. While our approach shares the same exploration

mechanism — using a browser-like system to actively visit potentially malicious sites —

our detection approach diverges, as the symptoms of browser-based mining stem from

the exclusive usage of legitimate functionality, in contrast to drive-by-download attacks

that cause low-level control-flow changes in the attacked browser or host system.





6 Revealing Insecure
Automated Browsers

The previous three chapters showed how our modern security scanner based on browser

instrumentation can be adapted for many different uses cases and can overcome chal-

lenges like a blurring of involved parties and the use of emergent technologies that tradi-

tional scanners struggle with. Unfortunately, the approach of using a real browser in an

automated tool also has a significant drawback: the huge codebase of a browser also re-

sults in a much larger attack surface compared to simpler tools that, e.g., only handle the

HTTP communication without executing active content. This means exposing an auto-

mated browser as a part of a tool can be problematic, if it visits potentially untrusted URLs.

In this chapter, we will search for such server-side browsers and analyze how many of them

are using outdated versions with known critical vulnerabilities. While we will still use our

scanning pipeline to discover these vulnerable browsers on a large scale, this should not

be considered as yet another use case for our scanner. Instead, the focus of this chapter to

highlight the potential problems of using a real browser as part of an automated system,

regardless of whether it is part of a security scanner or another product.

In Section 6.1, we first introduce our terminology and outline some use-cases that re-

quire a real browser to visit user-provided and thus untrusted URLs. Then we describe

how our threat model compares to traditional servers-side request forgery attacks, which

share some similarities, and describe the exact scope of our study. In Section 6.3, we out-

line the methodology that we use to discover as many server-side requests as possible on

a large scale. For this, we present three approaches that can entice servers that we crawl to

visit our servers in response. After that, in Section 6.2, we describe our approach to detect

bots using real browsers in the incoming traffic, thus filtering out both traffic by human

users and by simpler request tools. We use this methodology of enticing requests and

identifying server-side browsers to conduct a large-scale study of vulnerable automated

browsers in the wild and comprehensively report on our findings in Section 6.4. Finally, in

Section 6.5, we discuss related works from the general area of browser fingerprinting and

bot detection, as well as works on the specific topic of vulnerabilities caused by server-side

requests.

6.1 Server-Side Browsers
Nowadays, many applications that were originally intended as ordinary desktop software,

such as messengers or word processors, are moving to the Web. As a result, new technolo-
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gies are implemented to support this transition. One of these are server-side requests (SSRs),

i.e., when the web server also acts as a client to fetch additional information from other

locations on the Web. Such SSR implementations can often be triggered by unprivileged

users of a website, e.g., social networks showing a preview for all user-submitted links.

Traditional SSR implementations resemble tools like wget or curl and only fetch the main

HTML document in a single request without executing active content. However, the rise

of JavaScript-heavy frameworks and single page applications (SPAs) made this approach

largely incompatible with modern web development, as the relevant content is often dy-

namically inserted afterward. Consequently, this led to an increased usage of what we call

server-side browsers (SSBs), i.e., real browser like Headless Chrome running on the server-side.

By using such an SSB instead of a simple SSR, the back end can not only send HTTP re-

quests and receive the responses but render entire web pages built with modern JavaScript

frameworks. However, running a real browser that anyone can summon to an arbitrary URL

naturally poses a much higher risk than downloading a page without executing its code,

as we investigate in this chapter.

6.1.1 Terminology and Use Cases

In this section, we first introduce our terminology and then describe multiple use cases for

server-side browsers that can not be solved with simpler alternatives, showing their usage

is often intended and unavoidable. After that, we discuss the potential security pitfalls

posed by this technology.

Terminology Basically, SSRs are conducted each time one server requests data from an-

other, e.g., from a service offering an HTTP API. These SSR implementations are char-

acterized by the fact that they only handle the connection on the HTTP level, but treat

the returned content as a string or simple data format like JSON. In particular, they do

not parse and render HTML, do not load embedded resources, and do not execute active

content like JavaScript code. Popular SSR implementations include command-line tools

like curl and wget, as well as the http package for Node.js, and the file_get_contents function

for PHP. SSBs, on the other hand, are the equivalent of running a normal desktop browser

on the server-side. The obvious difference here is that there is no human interacting with

a visible graphical user interface involved. Instead, these SSBs are fully automated tools

running in the background. Under the hood, they support exactly the same features as

their desktop equivalent, in particular, they parse and execute all active JavaScript content

unless this is explicitly disabled. Popular SSB implementations rely on tools like Headless
Chrome and Puppeteer, which were already introduced in Section 2.3 when discussed the

various browser instrumentation approaches. Please note that our terminology implies

that each SSB also conducts one or more SSRs while loading a webpage, but not each SSR

necessarily comes from an SSB.
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Use cases There are various use cases that require running a fully-featured browser on

the server-side and can not be solved by resorting to simpler, SSR-like solutions. For exam-

ple, major search engines such as Google and Bing rely on SSBs for their web crawlers [92,

159]. In principle, statically crawling a web page without rendering it would be more con-

venient as it uses a lot less resources. Yet, as many of today’s web applications are built

dynamically with JavaScript, web crawlers need to be capable of executing this scripting

language to properly index the page’s content. Therefore, using an SSB with a native ren-

dering engine increases the accuracy of the indexed content, as SPAs might only show a

blank page if JavaScript is disabled. Another use case are web security services like Symantec
Sitereview [245] and VirusTotal [260] offering ratings and categorizations for URLs, allowing

users to check whether a website is potentially malicious. As previous work finds, a signif-

icant percentage of search results and ads employ cloaking techniques [265, 264, 145] which

involve blacklisting of IPs and user agents affiliated with search engines or detecting the

absence of JavaScript execution. This way, they try to hide from these services by serving

harmless content to web crawlers while serving malicious sites to potential victims [117].

These techniques make it especially important for providers of web security scanners to

use real, automated browsers to mimic a human user in order to scan websites from a

human’s and not from a bot’s perspective.

6.1.2 Threat Model and Scope

As long as the URL in an SSR/SSB implementation is hard-coded to visit only one trust-

worthy server, running them is generally unproblematic. Problems arise if this URL de-

pends on user input, e.g., in all the previously outlined use cases. An apparent threat in this

scenario are server-side request forgery (SSRF) attacks. In the most common SSRF scenario,

an attacker tries to bypass firewall rules to gain access to privileged parts of the network.

In the simplest case, submitting an internal IP address such as http://10.0.0.1 to a

vulnerable SSR service would result in that server forwarding the internal content to the

external attacker. Other, similar attacks against SSRs are abusing them as an attack proxy,

e.g., in a denial of service (DoS) attack, or abusing them to confuse client-side filters in-

tegrated into browsers in a so-called origin laundering attack. The high prevalence of SSRs

as a convenience feature, as well as its increasing severity due to complex architectures

and higher adoption rates of cloud and web services has earned SSRF a place in this year’s

OWASP Top 10 [193]. These scenarios and their potential consequences were studied in

detail in a paper on SSRF attacks published in 2016 by Pellegrino et al. [198].

On the other hand, one so far over-looked scenario is directly attacking the implemen-

tation of the requesting mechanism, i.e., the headless browser itself. As these SSBs are

based on a real browser and visit arbitrary, attacker-supplied URLs, they too are vulnera-

ble to JavaScript exploits like every other desktop browser. Successful exploitation means

the attacker could gain control of the server the SSB is running on. In this scenario, there

is no request forged and no deputy confused, instead the attacker uses the request service
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as intended and prompts it to visits an external website under the attacker’s control. From

there, they can launch their JavaScript payload and probe the visiting user agent for ex-

ploitable vulnerabilities. If successful, they might be able to completely compromise the

server and begin lateral movement through the network from there.

A major threat to all browsers is the large number of publicly disclosed vulnerabilities.

Google Chrome, for example, enjoys a rapid update cycle to keep up with security and new

features of the constantly evolving web ecosystem. A major update of the stable channel

is pushed to the public every six weeks [84] while minor releases come every two to three

weeks according to Chrome’s update strategy [87]. Google even announced plans to further

increase the frequency of their updates and plan to release a major update every four weeks

by the end of 2021 [40]. They aim to further reduce the patch gap, i.e., the time between a

security bug fix being merged into their open-source repository and the release of a new,

stable version that includes this bug fix for all users [91].

Yet one main difference between headless browsers and their desktop equivalent is the

way updates are handled: While desktop browsers usually update automatically nowadays,

headless browsers require manual intervention to keep up with security patches. Not up-

dating these SSBs automatically has good reason, since the automation API or other im-

portant features might have changed and thus could silently break tools that rely on them.

For example, Google writes in the official Puppeteer repository: “We see Puppeteer as an

indivisible entity with Chromium. Each version of Puppeteer bundles a specific version of

Chromium – the only version it is guaranteed to work with. [...] This is not an artificial

constraint.” [85]. This means there is a significant risk of outdated versions of SSBs still

running in the wild if they are not constantly monitored and maintained. In this chap-

ter, we thus focus on automated but outdated browsers that we can lure to visit a site under

our control to (theoretically) deliver a publicly available JavaScript exploit from there. To

summarize, we consider the following to be in and out of scope for this work respectively:

In scope All automated, server-side browsers that run a real rendering engine and ex-

ecute JavaScript, regardless of which automation framework or headless browser imple-

mentation they use.

Out of scope All SSR implementations that do not use a real browser (e.g., curl) or use one,

but have disabled JavaScript execution. Also, all SSRF attacks like accessing the internal

network, bypassing URL filters, or origin laundering.

6.2 Identifying Vulnerable SSBs
In this section, we assume we already have some way to entice automated browsers to visit

a server under our control, i.e., a monitoring server that collects data for all incoming

requests. For the collected data to be usable, we first need to make sure that the requests

are actually coming from automated systems and not human users. Moreover, we need a
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way to accurately determine which of these incoming requests are coming from vulnerable
browsers. The most conclusive way to test if the connecting browsers are vulnerable would

be to use real JavaScript exploits and test which of them successfully compromises the

visitors. Clearly, this would be neither legal nor ethical and is not an option. Instead, we

resort to safe fingerprinting techniques that can determine the most likely user agent of

our visitors and then map this information to a list of known vulnerabilities.

6.2.1 JavaScript Metadata

First of all, our server records some basic information like the IP address, User-Agent

header, and timestamp for each incoming request. To distinguish simple SSRs from real

browsers, we reply with an HTML page that contains one small inline script to all incom-

ing requests. If this script executes, it sends a notification to our monitoring server. This

way, we can not only discern visitors that execute JavaScript from those who do not but

also collect additional metadata and send it to our back end. We specifically designed this

website to also work with very old browsers, by not using any HTML5 features and writing

our inline script according to the ECMAScript 5 standard, which was released in 2009 [65].

This website also does not include any external resources to load with a single request and

the inline script executes in about 5 ms, to make sure that the notification is sent to our

server before the page is closed again.

6.2.2 Bots vs. Human Visitors

While discerning SSR tools with and without JavaScript is straight-forward with our mon-

itoring website, discerning bots from humans, on the other hand, is a much more difficult

task and often solved by either behavioral observation [120] or with CAPTCHAs [11]. Ob-

serving visitors over a series of requests allows finding indicators for bot-like behavior. We,

however, do not run a real website with content that we want to protect from scraping, and

instead need to discern humans from bots within a single request to our monitoring back

end, making behavioral analysis not an option. Using a CAPTCHA is similarly not appli-

cable, because every human visitor to our website that is asked to solve one, but instead

closes the tab, would be misclassified as a bot. Previous work has shown that no program-

matic bot indicator holds on its own and that even commercial fingerprinting companies

lack robustness against concealed crawlers [258]. However, we have the unique advantage

of knowing when to expect incoming bot traffic, because we first supply unique URLs to

other websites in our attempts to trigger visits to our monitoring server, as we will de-

scribe in the next section. For this reason, our bot detection is based on the time period

that passed between our initial request and the received SSR. We choose a very narrow time

frame of 3 minutes starting from our initial trigger, because chances are extremely high

that requests in that period come from a completely automated system. Even the most

zealous administrator is unlikely to respond that fast to a new URL submitted to their
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website. Moreover, we extend this timing-based approach with additional bot indicators

as described in the following.

6.2.3 Additional Bot Indicators
To better incorporate slower bots, we add several additional bot indicators and increase

our timing threshold accordingly. For this, we use the following insight: even though

bots might try to conceal themselves as human visitors, hardly any human visitor will

try to mimic an automated browser. Therefore, while the absence of bot properties is

rather meaningless, their presence presents—to some extent—a useful indicator. For this,

we use the following four bot indicators: known crawler user agents, inconsistent user

agents, inconsistent screen dimensions and missing plugin information. As this part was

contributed by Robin Kirchner, we omit further details about the indicators here and refer

the reader to our publication [176]. For each of these four indicators that is present during

the visit, we double the initial threshold of 3 minutes during which we consider requests

to be originating from bots. Therefore, if three of the four additional indicators would be

present, the request would be labeled as bot traffic if it arrives within the first 24 minutes

after our visit to their page. To summarize, we consider every visitor to be a human, until

we find some hard indicators that they have to be a bot, e.g., because they are too fast and

provide inconstant information about themselves. While this approach still overlooks

slower bots, as well as particularly stealthy bots, we get a very reliable data set with little to

no false positives, as it is very unlikely that human visitors have these indicators present

and even if they do, it is even more unlikely that they are also fast enough for us to flag

them as bots.

6.2.4 Feature Fingerprinting
Now that we know which visitors are bots running a server-side browser, we need to

determine their browser version in order to identify those that are based on outdated

browsers. However, as already described, the user agent string is trivial to spoof and some-

times even the user agent provided in the HTTP header and the user agent according

to navigator.platform do not match—a clear indication of intentional manipulations.

Therefore, the inline script on our monitoring website conducts a JavaScript feature fin-
gerprinting that tests which features are supported by the visiting browser, to estimate

the most likely actual user agent in a more reliable fashion. For this fingerprinting, we

first probe for a few specific features to distinguish between the different browser prod-
ucts. For example, the presence of InstallTrigger is a unique indicator for the Firefox

browser [234]. Now, to also distinguish between the different browser versions, we need a

more sophisticated approach that works as follows: First, we compile a list of all JavaScript

objects and properties of the global window object once, using the latest alpha release of

Google Chrome. It is important to note, that we compiled this list while visiting an HTTP
origin, as some newer features such as sensors are only available on a HTTPS origin. While
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our monitoring website is served on both protocols, for this fingerprinting we only rely

on features that are always available, regardless of the protocol. At the time of writing,

this list was compiled using Chrome 89 and contains 590 entries, such as AggregateError,

SVGAngle, Uint8Array, and WebGLQuery. We embed this whole list into our inline script

so that for each visitor with JavaScript enabled the presence of each of the 590 features is

tested. We then encode the presence or absence of each feature into a long binary string

and send this feature vector to our monitoring back end, along with the previously described

other metadata.

6.2.5 Resulting User Agent
In our back end, we now need to decode this collected feature vector and map it back

to the most likely browser versions. For this, we make use of the raw compatibility data

provided by Mozilla’s MDN [170], which is available on GitHub in their browser-compat-data
repository [169]. As an example, their data shows that the AggregateError object is available

in Chrome and Edge since v85, in Firefox since v79, in Safari since v14, and not supported

by Opera. With this information for each of the 590 different features, we can narrow

down the most likely browser version for each individual feature string. As the examples

in Table 6.1 show, even with only a handful of features the range of possible versions can be

quite small. For example, if a visitor supports WeakRef but not AggregateError then they

are using Chrome, as Firefox introduced both features in the same update and all other

browsers do not support WeakRef yet. Moreover, as WeakRef was introduced in Chrome

84 and AggregateError in Chrome 85, we now even know their exact major version for

certain. However, it should be noted that not all fingerprint vectors are as distinct as this

example and sometimes two successive releases might be indistinguishable.

Table 6.1: Five selected features and since which release the different browsers support them. The

combination of presence (✓) and absence (✗) of the different features concludes that ex-

ample 1 must be exactly Chrome 84 and example 2 must be Firefox 79 or newer.

Feature Supported since Example
Chrome Firefox Opera Safari 1 2

AggregateError 85 79 — 14 ✗ ✓

MutationObserver 26 14 15 7 ✓ ✓

RTCCertificate 49 42 36 12 ✓ ✓

TrustedScript 83 — 69 — ✓ ✗

WeakRef 84 79 — — ✓ ✓

This means we now have three potentially different user agents: from the HTTP head-

ers, from the JavaScript navigator object, and from our feature fingerprinting. If these

three agree with each other, then there is a high chance that the provided user agent in-

formation is indeed correct. When they do not match with each other, we could in doubt
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rely on the fingerprinting results as it is the most difficult to spoof. Yet, there is a chance

that some administrators intentionally disabled a few features as an additional security

measure. Therefore, we instead use the user agent with the highest browser version of the

three as a conservative estimate, which in doubt defaults to the most secure of the three.

6.3 Scanning Methodology

In this section, we describe the other end of our setup, i.e., how we can entice web applica-

tions to conduct server-side requests to our monitoring server. As SSRs are implemented

in the back end of a web application, their presence is not immediately obvious by access-

ing the front end, i.e., the loaded website with HTML, CSS, and JS content. Therefore, we

require an empirical method to interact with these websites and reveal any potential SSRs.

This means we need to modify our web security scanner to provide these websites with

unique URLs pointing to our monitoring server. If we afterward observe a request to the

URL we provided, there is a good chance that we successfully triggered an SSR. In general,

there are three ways to entice the targeted server to visit us: First, we can supply additional
headers that contain our URLs in each of our requests, e.g., in the Referer header. Second, we

can modify existing URL parameters in GET requests that contain encoded URLs pointing

to other domains and instead make them point at our domain. Third, we can submit our

URLs in the HTTP body of a POST requests, e.g., by filling out HTML forms on the pages

we visit. In the following, we will describe each approach in more detail.

6.3.1 HTTP Headers

HTTP headers offer a convenient option for transferring metadata to a web server. Usually,

they serve various purposes such as transmitting user agent strings, language preferences,

or cookies with session information. However, there are also some lesser-known headers

like True-Client-IP or Forwarded that usually contain hostnames or IPs and can cause cer-

tain systems like reverse proxies or load balancers to reveal themselves and send requests

to these remote hosts [203]. In a preliminary study, we investigated the impact of 25 differ-

ent headers taken from the Collaborator Everywhere project [204], which is a plugin for the

Burp Suite proxy [202] that injects specific headers of this type into every intercepted HTTP

request. During our crawls with these additional headers, we found that with 98%, almost

all SSRs triggered by headers were caused by supplying a URL in the Referer header. On

the other hand, some of these other 24 headers decreased the amount of successfully vis-

ited websites by up to 28%. Due to these results, we only use the Referer header and do

not send other headers to discover SSR implementations.
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6.3.2 URL Parameters

To discover parameters that could trigger an SSR, we scan the URL query string of all

HTTP requests to all the included resources that were requested while loading a page.

If the query string of one of these requests contains one or more (potentially encoded)

URLs, we mark its position as a potential SSR candidate. Moreover, we also search existing

query keys for interesting names like url, host, or domain and mark their value as an SSR

candidate, regardless of if their value contained a URL or not. We then replace each SSR

candidate separately with a unique subdomain pointing to our monitoring server and

request the resulting URL again. Fig. 6.1 contains our complete list of 22 SSR candidate

names and is based on previous research on the detection of SSRF vulnerabilities and

bug bounty reports [204, 30, 118, 59]. Fig. 6.2 shows one example of how a URL might get

modified in this process.

action, addr, address, domain, from, host, href, http_host, load, page, preview,

proxy, ref, referer, referrer, rref, site, src, target, url, uri, web↪→

Figure 6.1: The full list of 22 additional SSR URL parameter candidate names

It is important to note that only one parameter is modified at a time while the other

remains unchanged, to increase the likelihood of the back end successfully processing

our request. If our monitoring server then receives an incoming HTTP request on the re-

spective unique subdomain, we can trace it back to the initiating parameter. Compared to

the previously presented approach of inserting additional HTTP headers, this procedure

thus requires multiple requests to the same resource—one for each SSR candidate.

http://example.com/some/service?param=foo&id=42

&url=http%3A%2F%2Fsome-other-service.example.org&exec=yes↪→

http://example.com/some/service?param=foo&id=42

&url=http%3A%2F%2Funique-subdomain.our.monitoring&exec=yes↪→

Figure 6.2: One example of an URL before and after our replacement of SSR candidates

6.3.3 HTML Forms

HTML forms often accept URLs in one or more fields and thus present another oppor-

tunity to discover SSRs. However, unlike URL parameters that can be collected by simply

visiting websites, these POST requests usually have to be triggered by user interaction.

Moreover, many forms implement both client- and server-side validation mechanisms

designed to reject any input entered in the wrong format. Hence, to submit a form we

need to fill each field with the correct input of the expected data type while inserting as

many SSR–URLs as possible. For this, we extended our security scanner with a form-filling
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algorithm, which tries to satisfy the constraints of the form while at the same inserts as

many URLs pointing to our monitoring server as possible. As the implementation of the

form-filling was contributed by Robin Kirchner, we omit further details about the algo-

rithm here and instead refer the interested reader to our publication [176].

6.4 Large-Scale Study
Running a fully-featured browser on the server-side is a relatively recent phenomenon,

likely caused by the rise in complexity in modern websites. The popularity of the now-

defunct PhantomJS and its de-facto successor Puppeteer highlight the relevance of their use

cases. However, the extent of usage and the security implications of running such an SSB

as a service, i.e., where the attacker fully controls the URL destination, have not yet been

studied. To gain insight into this phenomenon, we conduct a large-scale study on SSBs in

the wild to gain insight into their prevalence and patch level. In the following, we describe

our data collection and analysis steps in detail and then report on our results.

6.4.1 Data Collection and Post-Processing

For this study, we visited the 100,000 most popular websites according to the Tranco

list [139] generated on March 2, 2021. On each website, we visit same-site links up to a depth

of 10 or until we visited 50 pages, whichever comes first. If there are more than 50 same-site

links on the landing page already, we randomly select 50 from among them. On each page,

our crawler waits up to 30 seconds for the load event to trigger, otherwise, we flag the site

as failed and move on. After the load event, we wait up to 3 more seconds for pending net-

work requests to resolve to better handle pages that dynamically load additional content.

We started 60 parallel crawlers using an instrumented Chromium 89.0.4389.72 on March

3 and finished the crawl about one week later on March 11. Of all the sites of the initial

100,000, we could only successfully visit about 79%. Of those that failed, about 8% were

due to network errors, in particular, the DNS lookup often failed to resolve. In another

4%, the server returned an HTTP error code on the initial front page already. Additionally,

5.5% of these sites redirected to another domain which we subsequently discarded, since

they are either duplicates like blogger.com and blogspot.com, or redirect to a location that

is not part of the top 100k and thus out of scope. The remaining 3.5% failed due to various

other issues, like failing to load before our 30 seconds timeout hit. In total, we success-

fully visited around 2.6M pages on about 79k sites. On these, we discovered 22.2M forms

and submitted about 2.5M of them, the rest were considered duplicates. Additionally, we

sent a total of 18M modified GET requests to about 5.6M different URLs in an attempt to

discover SSRs that are triggered by URL parameters.

Regarding the post-processing of the data, we first of all only recorded requests to sub-

domains with a unique ID generated for each possible SSR candidate on each website that

we visited. Thus, generic requests from scanners and crawlers are not part of this data.
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For a meaningful analysis, we also have to prevent that our data is dominated by a few big

companies, as they sometimes offer third-party scripts that trigger SSRs, e.g., DoubleClick

and WordPress. These would then cause an incoming request any time we visit a domain

that includes one of their affected scripts. Therefore, we use the target domain for attribu-

tion, e.g., if we submit a form included on a.com with an action URL to b.com that triggers

an SSR, we consider b.com as the target domain and thus responsible for the incoming

request, as it does matter less where we found this form and more where we submitted its

data to. The same applies to SSRs triggered by modified URL parameters of third-party

scripts.

Moreover, since these third parties are by nature present on a lot of websites, they would

in total also send the most requests by far. As these companies also usually have access to

vast IP ranges and heavily distribute their workload, we apply further deduplication based

on the autonomous system number (ASN) — and not based on the IP address. Therefore,

we define unique requests as those requests where the tuple <target domain, asn, user agent>
is unique. If there are multiple, non-unique requests we use the fastest and ignore the

rest. Additionally, we specifically exclude all requests from the Googlebot user agent, since

their analytics products are widely used and result in many SSB visits from Google servers

that would skew the analysis. Finally, we only consider incoming requests that we received

within one week of visiting the page. Otherwise, popular websites with a high rank, i.e.,

sites that we visited at the very beginning, would have had almost twice as much time to

send an SSR than websites which we visited towards the end of our one-week-long crawl.

Obviously, we continued the data collection for one week after we had visited the last page

with our crawler.

6.4.2 All Incoming Requests

In total, we recorded over 168,000 incoming requests, as Table 6.2 shows. Of these re-

quests, we only consider 11,367 requests as unique according to our definition described

in the previous subsection. The JavaScript usage is quite low when looking at all recorded

requests with 4.5%, however this is to be expected since by far not all automated requests

need the capabilities of a full browser. Yet these 7,500 requests with JavaScript enabled al-

ready cover around 17% of the unique requests, as the total number of requests is heavily

skewed towards a few third-party services that still often use simple SSR implementations

without a real browser. Overall, we triggered requests on 4,850 different domains of the

initial 100,000. Therefore, our experiments enticed about 6% of the successfully crawled

79,000 sites to visit us back at a URL we presented. And about 16% of these domains even

did so with a real browser that has JavaScript execution enabled.

Looking into the temporal dimension, we found that around 35% of all requests arrived

within 1 minute after we had visited their page, as Fig. 6.3 shows. Yet, these 35% of requests

in the first minute already cover about 50% of all domains due to repeated visits. Thus,

on about 50% of sites where we could trigger any SSR, we had at least one visit within the
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Table 6.2: SSRs recorded during our large-scale study.

# Total # with JavaScript

All requests 168055 7503 (4.5%)

Unique requests 11367 1973 (17.4%)

Unique domains 4850 760 (15.7%)

Unique IPs 8636 1571 (18.2%)

Unique AS 917 610 (66.5%)

first minute. On the other hand, the same is only true for 22% of the sites that visited us

with JavaScript enabled. There are multiple reasons for this, e.g., SSBs could operate a bit

slower than plain SSR implementations, and there are also likely humans still distorting

the data, who manually visit our website much later after discovering our URL in their

logs.
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Figure 6.3: Incoming requests accumulated over time. Note the non-linear time axis.

6.4.3 Prevalence of SSBs
So far, we analyzed all incoming requests that we recorded. This also contains simple SSRs

without a real browser, or from real browsers controlled by humans instead of automated

systems. For all following analyses, we will now focus exclusively on SSBs, i.e., real, auto-
mated browsers with JavaScript enabled. As described in Section 6.2, discerning SSR tools

without JS from real browsers with JS is straight-forward. On the other hand, discern-

ing bots from humans with only a single request and without interaction is much more

difficult. In order to do so nevertheless, we use the time difference between our visit to
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their website and their visit to our monitoring server and only consider cases where this

time difference was less than 3 minutes, as such a fast reaction is a strong indicator for

automated behavior. Moreover, as previously described, we also extend this time frame if

additional bot indicators are present.

Table 6.3: Prevalence of server-side browsers on the left and their causes on the right-hand side.

# Requests

All requests 3264

Unique requests 532

Unique IPs 440

Unique AS 206

# Domains

All domains 254 (100.0%)

Header 58 (22.8%)

Param 34 (13.4%)

Form 167 (65.7%)

As already shown in Figure 6.3, focusing on only those requests that have JavaScript

enabled and happened within in the first few minutes after our visit to their server reduces

the total number of requests significantly. As Table 6.3 shows, 532 unique requests on 254

different domains were caused by bots running an SSB. Of these, 433 unique requests on

192 domains were labeled as bots because they arrived within 3 minutes. The remaining

99 requests on an additional 62 domains were labeled as bots due to a combination of

a time threshold and our additional bot indicators. Moreover, Table 6.3 also shows the

type of triggers, i.e., whether the visit was caused by the referer header we sent, a modified

URL parameter, or a form submission. As the table shows, forms were most successful in

attracting SSBs, being responsible for about 65% of all cases.

Next, we analyze the characteristics of the affected websites themselves and found that

SSB implementations were significantly more common on the 10,000 most popular web-

sites with 51 SSBs compared to the average of 23 SSBs per 10,000 sites in the remaining

90,000 sites. We found 30 of them within the top 5,000 and 14 of them even within the

top 1,000 of the most popular websites according to the Tranco ranking. Moreover, we

also investigated what types of categories these 254 sites belong to, using the WebPulse Site
Review service [245] operated by the security company Symantec. As Table 6.4 shows, these

sites are mostly related to technology and business.

Table 6.4: Categories of the sites with an SSB.

Category # Sites Category # Sites

Analytics 7 News 14

Business 57 Other 39

Entertainment 3 Shopping 25

Education 21 Technology 69

Government 8 Uncategorized 11
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Besides the websites themselves, we also investigated the origin of these SSB connec-

tions. We found that despite our deduplication, for some websites we received multiple,

unique requests from real browsers even within the first few minutes. On 63 out of the

254 domains, we received requests from IP addresses belonging to two or more differ-

ent ASNs. 20 of these even connected from 4 or more different ASNs and in one extreme

case, one website even caused incoming connections from 22 different ASNs. On the other

hand, we also found some networks that are responsible for a greater number of incoming

connections for different domains. The three most popular ones were AS8075 with connec-

tions triggered on 35 different domains, AS15169 with 34 different domains, and AS14618
and AS16509 each with 18 domains. Closer investigation reveals that all these ASNs are

related to cloud hosting, the first is owned by Microsoft and used for Azure, the second by

Google for their cloud platform, while the other two are part of Amazon’s AWS. Therefore,

we can not assume a direct relation between these incoming requests, as many different

companies likely just rely on the same, third-party hosting provider.

6.4.4 Investigation of Browser Versions

The 532 unique requests by bots (with JavaScript enabled and arriving within our time

threshold) were conducted by 157 different HTTP user agents (UAs). The supposedly most

popular used browser versions were Chrome 84 in 122 requests, Chrome 85 in 48 requests,

and Chrome 88 in 34 requests. However, only 64 requests had an HTTP UA that additionally

clearly indicated that a bot is visiting us. For example, by either containing a reference to

their service like SpeedCurve [230] in 3 cases or containing a general reference to an automa-

tion framework like Headless Chrome in 36 cases, PhantomJS in 7 cases, and Lighthouse [89]

in 6 cases as the most popular tools in our data set.

As previously outlined, this UA information in the HTTP header is easily spoofed and

should not be trusted blindly. Thus, we next compare these supposed values to the UA

and platform information provided by JavaScript’s navigator object. Looking into our

collected data, we find that 13 unique requests definitely lied to us based on a mismatch

between the HTTP UA and the JavaScript UA. Moreover, we also find that another striking

124 cases where the two UAs actually do match with each other but do not match with the

platform information reported in the JavaScript environment. For example, these have a

UA starting with Mozilla/5.0 (Windows NT 10.0; Win64; x64), but navigator.platform reports

Linux x86_64 as their operating system. Table 6.5 list the most common examples of UA

and platform mismatches.

These findings not only confirm that these are indeed bots, but also that they take some

efforts to stay undetected by spoofing both UA string values. As expected, these bots with

UAs claiming to be running on a Windows PC, an iPhone, or iPad, are actually all running

on a Linux server, the preferred distribution for servers running automated tasks. With

137 requests with obviously spoofed information in total, about one quarter of the unique

bot requests lied about their user agents, confirming that this voluntarily provided infor-
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Table 6.5: Most frequently faked user agent strings (abbreviated) and the reported but mismatching

platform

# Req. HTTP Header Platform

17 CPU iPhone OS 13_7 [...] Version/13.1.2 Linux x86_64

9 Windows NT 6.1 [...] Chrome/83.0.4103.106 Linux x86_64

9 Windows NT 6.1 [...] Firefox/77.0 Linux x86_64

7 Windows NT 10.0 [...] Chrome/79.0.3945.79 Linux x86_64

4 iPad; CPU OS 11_4 [...] Version/11.0 Linux x86_64

mation should indeed not be relied upon. Moreover, these findings should only be seen

as a lower bound, as the value of navigator.platform could obviously be fake, as well.

To analyze their browsers in greater detail, we instead conduct a feature fingerprinting
of all visitors, as described in Section 6.2. This way, we can determine their UA in an

objective manner, without relying on potentially spoofed user agent strings. For 282 of

the 532 unique requests, the version determined by the fingerprinting indeed did match

the version of their HTTP and JavaScript UA value. In this case, we define match as within

one major release as the fingerprint might not always be distinguishable for browsers with

a fast release cycle. Of the remaining 250 requests where the user agents did not match

our feature fingerprint, 80% claimed to be older than our fingerprint determined them to

be with 201 requests, while 41 requests came from browsers claiming to be newer than our

fingerprinting determined them to be. The remaining 8 requests did not send a browser

version in their user agent information at all. Additionally, of those 124 requests that were

previously found to be lying about their OS, in only 12 cases did their provided UA browser

version match the results of our fingerprinting. This means, that in the remaining 112

cases, their browser version was apparently manipulated, too.

As described in Section 6.2, we then use the newest version derived from the three UAs

(HTTP, JavaScript, fingerprint) as a conservative estimate for the actually used browser

version. Table 6.6 shows the results, in which Chrome 84 is the most popular browser

version with 150 unique requests. Combined with the other outdated, but popular versions

Chrome 85 and Chrome 86, these three already make up for over 60% of all unique requests

that we received. Chrome 88, which was the latest stable version of Chrome at the time

of our crawl, only was responsible for 100 (19%) of SSB requests. In the next section, we

will discuss the consequences to the security of all these servers running outdated SSBs

in detail.

6.4.5 Vulnerable SSBs in the Wild
While there is a certain risk that even a fully up-to-date browser is exploited [206], in our

scenario, we instead focus on outdated browsers in the wild. In the following, we describe

our methodology to determine which browsers were vulnerable at the time of our crawl
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Table 6.6: Number of requests by the five most popular user agents in SSBs. When the indicated

versions differ, we use the newest of the three as the resulting user agent.

Browser Indicator Resulting UA
HTTP Header JavaScript Fingerprint

Chrome 88 34 29 112 100

Chrome 86 2 2 84 84

Chrome 85 48 48 48 95

Edge 85 12 12 0 12

Chrome 84 122 127 204 150

and how realistic it is to obtain a working exploit for them. Since 93% of the 532 requests

were using Google Chrome or a Chromium-based browser like Edge, we will only discuss

the security of different versions of this browser in detail.

Google released the latest stable Chrome version 89 for all platforms on March 2, i.e.,

one day before we started our crawl. This update contains 8 security fixes with a high

severity, however they only started to roll out the update “over the coming days/weeks” [37].

The previous version 88 had been available for several weeks already and also contains

many important security fixes, some of which earned a bug bounty of 10,000 dollars or

more [36]. However, at time of writing, the details of these recently patched vulnerabilities

in Chrome 88 and 89 had not yet been revealed in Google’s bug tracker [e.g., 43], therefore

we do not know if the bug can be abused without user interaction. Nevertheless, reverse

engineering patched software to create a working 1-day exploit is, in general, easier than

searching for 0-day vulnerabilities from scratch [189]. As major browsers are nowadays

open-source software, attackers do not even need to employ binary diffing techniques [e.g.,

79, 26, 163] but can directly look a human-readable diffs including detailed comments

about the changes. As previous research has shown, sometimes it might even be possible to

automatically discover the relevant security patches among the huge list of changes [276],

as well as automatically create exploits from the identified patches [29].

However, for vulnerabilities patched with the release of Chrome 87 and earlier, even

the full details of the bugs including proof of concept (PoC) exploits and a discussion

by Chrome engineers were already publicly available at the time of our crawl [e.g., 44].

Thus, while Chrome 87 and 88 could likely be exploited by a skilled attacker reverse-

engineering the patches, we nevertheless use a very conservative estimate here and only

consider browser versions to be vulnerable if publicly disclosed, detailed information

about their vulnerabilities exists. Therefore, we consider version 86 and all older versions

of Chrome to be vulnerable at the time of our crawl. This also applies to Microsoft Edge,

which is based on Chromium and shares their version naming scheme, and Puppeteer,

which uses Headless Chrome internally.
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Table 6.7: The five most popular SSBs with the number of requests and affected domains in our

study. For reference, we also include their release date and a high/critical CVE with a

PoC exploit for that specific version.

Browser Requests Domains Release CVE PoC

Chrome 88 100 83 01/21 — —

Chrome 86 84 44 10/20 2020-16015 [44]

Chrome 85 95 39 08/20 2020-6575 [41]

Edge 85 12 10 08/20 2020-6575 [41]

Chrome 84 150 68 07/20 2020-6559 [42]

With this information about the security of these different releases in mind, we now

come back to the 532 unique requests. Of these, 405 (76%) were conducted with a browser

version vulnerable to publicly available exploits, resulting in 168 out of the 254 domains

with SSBs to be vulnerable. This means, that two out of three SSB implementations that

visit and subsequently execute arbitrary, attacker-controlled JavaScript code, are running

a severely outdated and vulnerable browser with publicly disclosed PoC exploits. As shown

in Table 6.7, the most popular browser versions were already quite dated during our ex-

periments in March 2021 and many of them were released more than half a year ago. For

reference, the table also includes three CVEs for the most popular browsers versions we

encountered. All of these three CVEs work on all major platforms, including Linux, are

exploitable without user interaction, and have their details including a PoC exploit pub-

licly available. When looking at Figure 6.4, we see that even in the top 10,000 domains,

over half of the websites with an SSB are vulnerable. All in all, this demonstrates that

server-side browsers pose a considerable risk to any organization that makes use of them

and is a, so far, widely overlooked problem.

6.5 Related Work
In this section, we first discuss related works from the area of browser fingerprinting and

bot detection. Then, we introduce previous work on the topic of server-side requests and

discuss how it relates to our work.

6.5.1 Browser Fingerprinting and Bot Detection

Web fingerprinting as a means to recognize repeated visitors, i.e tracking users without

storing a client-side state such as cookies, has been studied for over two decades [e.g., 151,

64, 152, 2, 70]. However, in contrast to these previous works, detecting reoccurring visits by

the same browser is not in our scope and we also can not rely on longer-term behavioral

analysis [120, 46] of visitors in order to differentiate bots from humans. Furthermore, we
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Figure 6.4: Distribution of vulnerable SSB implementations over Tranco ranks. The most popular
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can not resort to crawler-specific bot indicators, such as crawler traps [28, 258], or access

log and traffic analysis [237, 273] on a series of requests, since the SSBs we target do not nec-

essarily behave like crawlers. Instead, we are interested in identifying automated visitors

with a real browser and their underlying browser version within a single request.

Thus, more closely related to our focus is research on detecting browser versions through

JavaScript runtime and performance information [167, 107]. Unfortunately, these tech-

niques suffer from long time requirements, making it impractical to analyze bots which,

unlike humans, do not tend to leave browser tabs open for a long time. Moreover, ap-

proaches like Red Pills to detect virtualization are susceptible to processing and network

bottlenecks which might introduce noise [107, 31]. Therefore, to infer the browser version,

we instead leverage a JavaScript engine fingerprinting approach similar to Mulazzani et

al. [173]. However, as previous work has shown, differentiating between bots and humans

based on such fingerprints is problematic [258]. Yet in contrast to previous works we have

additional knowledge about when to expect a visit and can identify bots based on this tim-

ing information.

6.5.2 Server-Side Requests

Generally speaking, server-side requests are one instance of a vulnerability class called

blind vulnerabilities. One classic example of this class are BlindSQL [192] injections, where

the attacker might not get a direct response of the query’s results in text form, but can still

infer their contents based on the application’s response time to different queries. Another

example of this are Blind XML External Entities (XXE) [229] attacks, in which links in XML

sheets are abused to leak data. To aid the discovery of blind vulnerabilities, PortSwigger

added the Collaborator Everywhere plugin [204] to their popular attack proxy Burp Suite [202].

Research specifically on the topic of server-side requests is rare. Stivala and Pellegrino
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[240] studied how link previews on social media platforms can be manipulated to create

benign-looking previews for malicious links. While the underlying link preview imple-

mentation makes use of server-side requests to fetch this information, the security of

these implementations was not studied as part of their paper. In 2017, Orange Tsai [191]

presented their findings on how differences in URL parsers cause filter bypasses leading

to SSRF vulnerabilities in seemingly secure implementations. In 2021, Jabiyev et al. [119]

performed a manual analysis of 61 HackerOne SSRF vulnerabilities and found that devel-

oper awareness for this vulnerability was still low. The authors propose a generic defense

mechanism that proxies all SSRs through a helper server with no access to the internal

network of that company, preventing the exfiltration of internal information. However,

as all requests are forwarded through the proxy and still rendered and executed on the

original, internal server, their defense would not protect against our attacker model.

Most closely related to our work is the 2016 publication titled “Uses and Abuses of

Server-Side Requests” by Pellegrino et al. [198]. For their research, they developed Günther,
a scanning tool that probes server-side backends for SSRF vulnerabilities. While they dis-

cuss the threat of the SSR implementation itself getting exploited, their attacker model in

this case only considers DoS attacks, such as keeping the SSR provider busy with decom-

pression tasks eventually leading to memory exhaustion. On the other hand, our work is,

to the best of our knowledge, the first to study the consequences of running full server-
side browsers with JavaScript execution in the wild. Unlike previous publications, we do

not investigate traditional SSRF vulnerabilities and do also not try to circumvent filters or

to confuse parsers. Instead, we use the SSR service as intended and instead directly attack

those requesting clients that run a fully-featured, but outdated browser engine. Moreover,

we are the first to systematically investigate this phenomenon on a large-scale and report

on server-side requests conducted by the 100,000 most popular websites as compared to

the previous studies on less than 100 websites.
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In this thesis, we looked at the unique challenges of detecting attacks and vulnerabilities

on the modern Web. Specifically, we focused on automated security scanners, which enable

analyses on a scale of millions of websites. We found that for multiple reasons, an instru-

mented browser is central to obtaining accurate results: First, websites increasingly rely on

dynamically creating content on the client-side, which requires a browser and JavaScript

engine to even correctly load these sites in the first place. Second, a heavy reliance on code

provided by other parties blurs the line between first- and third-party code, which com-

plicates reasoning about trust relationships and developer intent. Third, websites often

behave non-deterministically due to volatile content, which prevents analyses that need

to compare multiple executions of the same page in quick succession. Fourth, some of

the attacks and vulnerabilities rely on emerging features that are not yet supported by

emulated browsers or static analysis engines. Subsequently, we showed how to overcome

these challenges and presented three concrete use-cases for our modern scanner based on

an instrumented browser. Finally, we investigated the potential danger of using outdated

browsers as part of an automated system. In the following, we summarize our main con-

tributions but also discuss open questions and promising directions for future research

related to this thesis.

Advancing the state of scanning Security scanners are an important tool for software en-

gineers as well as researchers. In Chapter 2, we first created a traditional scanning pipeline

based on Google’s Tsunami, which can detect a fixed list of known vulnerabilities. Then,

we discussed how to extend this pipeline to detect unknown instances of known vulnera-
bility classes and the new crawling and analysis challenges this results in. Moreover, we in-

troduced four web development trends, which further complicate the scanning of modern

websites. Thereby, we concluded that emulating or re-implementing a browser is infea-

sible and that we instead need to integrate a real browser into the scanning pipeline. For

this, we presented several browser instrumentation approaches and discussed their trade-offs.

Using the example of SMURF, we then demonstrated how to solve one of the aforemen-

tioned challenges with our customized instrumentation code.

One of the open questions in working black-box security scanners is how to achieve a

good scan coverage of the target. As we can only analyze the functionality that we discover

during the crawling phase, a comprehensive crawl is paramount. In particular, very large

websites with millions of subpages and websites that hide most functionality behind au-

thentication or other hard-to-automate user interactions remain a challenge for current

security scanners. While such deep crawling is a well-known problem in the area of con-

tent indexing [e.g., 190, 101, 103], security scanners have unique requirements and need
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to discover functionality over content. So far, few publications specifically focus on the

needs of the security community in terms of deep crawling [71] and post-authentication

crawling [122], necessitating further research on this topic.

Compatibility of an XSS defense Third-party integrations are a central building block of

the Web. With ScriptProtect in Chapter 3, we presented a defensive mechanism that pre-

vents attacks caused by benign-but-buggy third parties, without breaking functionality for

most benign use-cases. For this, we used a transparent patching of dangerous JavaScript

functions as a way to roll out our mechanism to all clients, without requiring changes to

the browser. Then, we demonstrated how a modern web security scanner can be used in a

preventive manner, i.e., by determining the compatibility of a defense on websites that are

not yet vulnerable. As a result, we realized that sometimes a compromise between security

and compatibility is necessary, and made ScriptProtect slightly less strict while simultane-

ously vastly increasing its compatibility. This way, we could prevent 90% of the attacks with

a version of ScriptProtect that works out-of-the-box on about 30% of all websites.

While our mechanism to accurately track the initiators of dynamically included scripts

works well in many cases, especially for large companies this does not completely solve

the challenge caused by the blurring of involved parties. For example, an inclusion from

two completely different domains like google.com and youtube.com might still actually

represent a first-party inclusion, as both domains are owned and operated by the same

entity. While SMURF [238] presents the notion of an extended Same Party that can deal with

many of these issues, it nevertheless relies on various heuristics to group these domains.

On the other hand, the working draft for First-Party Sets [262] proposes a standardized way

for websites to mutually communicate which other domains should be considered to be

first-party to them. Should this become a standard and find widespread adoption, it could

supply a better ground truth for future research on the privacy and security of third-party

code.

Abuses of JavaScript capabilities One of the best properties of the Web is that it is an open
platform. Unlike other distribution mediums, the client-side part of a web application

can be inspected by anyone without extra tools or a lot of special knowledge. However, as

we showed in our work on anti-debugging techniques in Chapter 4, a significant number

of websites would rather like to prevent that. We presented 9 anti-debugging techniques

of varying severity, systematized them, and created an automated approach to detect all of

them in the wild. Moreover and despite the general problem of volatile content on websites,

we demonstrated how to use a web replay system to capture elusive techniques that make

use of side-channels. Thereby, we again showcased the usefulness of a security scanner

with an integrated browser that executes JavaScript, as a purely static detection of these

techniques would have been much more difficult.

During this work, we operated under the assumption that attackers do not try to inter-

fere with our attempts at detecting their anti-debugging techniques. So far, our detection
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approach thus relies on an implementation that could be detected by malicious scripts,

e.g., by self-inspecting scripts that first probe their environment. A sensible next step

would be to move our in-band JavaScript code to the out-of-band C++ realm, where it could

not be directly observed by an attacker. Projects like VisibleV8 [123] seem to offer a promis-

ing way for researchers to achieve this without a deep understanding of the browser’s code.

Moreover, while we were successful in detecting these techniques, comprehensively pre-
venting them is mostly an unsolved problem and likely requires modifying the browser

and its underlying JavaScript engine. Therefore, we think a special forensic browser with

countermeasures in place to enable safe and reliable debugging of client-side code in an

adversarial setting would be a good avenue for further research.

Malicious WebAssembly With the rise of cryptocurrencies, monetizing malicious activ-

ity got significantly easier. Consequently, a considerable number of websites started to

abuse their visitors by mining cryptocurrencies in their browser – without the need to

infect them with malware. Given that these web-based miners rely on the support of mul-

tiple emerging technologies such as WebAssembly, we argue that accurately detecting and

analyzing these attacks is only possible by using an instrumented browser that supports

all these client-side technologies. In a broader sense, the introduction of WebAssembly

also enabled new attacks and evasive techniques by going beyond the possibilities offered

by the JavaScript language. During our investigation of the WebAssembly ecosystem in

Chapter 5, we found the first indicators that it is already actively used to obfuscate code in

an attempt to bypass adblockers and malware detectors.

One of the reasons for this shift in malicious activity was that, at least initially, a lot

of tools and defensive mechanisms lacked support for this new language. For example,

Romano et al. [216] recently showed how static JavaScript malware detectors that predated

the introduction of WebAssembly had trouble detecting malicious code that made use of

this new technology. While our early investigation of the WebAssembly ecosystem in 2018

was still based on manual analysis of the modules and the websites on which they were

included, the security community slowly improved the tooling support over the years.

Particularly noteworthy is Wasabi [141], a generic framework to dynamically analyze We-

bAssembly modules that laid the groundwork for further research. Moreover, the first

fuzzers specifically modified to work well for WebAssembly [100, 142] were published at

the end of 2021. Overall, the whole field of research and tooling support still appears to

be in its infancy with regard to WebAssembly.

Security of automated browsers In this thesis, we established instrumented browsers as

the central part of a modern web security scanner. They are also increasingly integrated

into other automated systems due to the continually rising amount of client-side code

on websites. However, browsers are one of the most complex pieces of software of our

times, in which critical security bugs are found at a much higher rate than in other pub-

licly exposed software. Therefore, in our final study in Chapter 6, we investigated how
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instrumented browsers are already used in the wild as part of other automated systems,

where they present a unique attack surface by executing untrusted code on the server-

side. Consequently, we revealed that more than half of the instrumented browsers that we

discovered were running an outdated version and thus vulnerable to published proof-of-

concept exploits.

In light of our findings, the decision of not automatically updating these server-side

browsers by default should be reconsidered. On one hand, further work on mitigations,

hardening, and isolation techniques [210, 211, 181, 129] could help prevent damage in case

of an eventual browser compromise. Moreover, another approach would be to selectively

disable unneeded features in an attempt to reduce the exposed attack surface [209, 208]. On

the other hand, such mitigations only raise the bar for attackers without completely pre-

venting the attack. Therefore, investigating how to best apply automatic browser updates

to unattended systems without causing breakages would ultimately be the better solution.

To summarize, the contributions provided in this thesis advance the state of automated

web security scanning and consequently help to make the Web a safer place.
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