

Thema 2: Parameterregeln

M. Sc. Elisabeth Bondzio

Nachschüssige Annuität und Rentenbarwertfaktor

Frage:

Wie lautet der KW eines Investitionsprojekts, das ab diesem Jahr bis zum Jahr T am Ende jedes Jahres einen konstanten Cashflow z erzielt?

Antwort: Wert einer nachschüssigen Annuität

$$\kappa = \frac{Z}{(1+i)^1} + \frac{Z}{(1+i)^2} + \dots + \frac{Z}{(1+i)^T}$$

$$\Rightarrow (1+i) \cdot \kappa = z + \frac{z}{(1+i)} + ... + \frac{z}{(1+i)^{T-1}} = \kappa + z - \frac{z}{(1+i)^{T}}$$

$$\Rightarrow \kappa = z \cdot RBF(i;T)$$

Dabei: Rentenbarwertfaktor

$$RBF(i;T) = \frac{1}{i} \cdot \left(1 - \frac{1}{(1+i)^{T}}\right)$$

Der Rentenbarwertfaktor ist nichts anderes als der KW des Cashflows

t	1	2	 Т
Z	1	1	 1

(Begründung?)

Anwendung von Parameterregeln

Konkretisierung der Kapitalwertformel mit dem Rentenbarwertfaktor:

$$\kappa = -A_0 + [x \cdot (p - k_v) - K_f] \cdot RBF(i; T)$$
 (Hintergrund?)

Man erkennt in der Formel für κ:

κ hängt von einer Reihe von Variablen ab, die man als "Parameter" bezeichnet. Bei diesen Parametern kann es sich um <u>Projekteigenschaften</u> handeln (z.B. x) oder um <u>projektexogene</u> Größen (z.B. i)

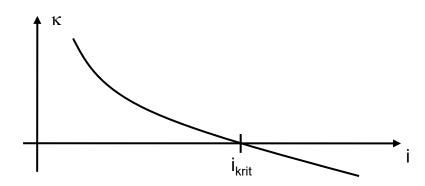
⇒ <u>Definition von Parameterregeln:</u>

Es geht darum, "kritische Werte" ($\kappa=0$) für einen Parameter bei gegebenen Ausprägungen aller übrigen Parameter für alle alternativ realisierbaren Investitionsprojekte zu ermitteln.

Mittels der kritischen Werte werden die Alternativen sodann in eine Rangfolge gebracht.

Beispiele für kritische Werte

- 1) Ermittlung von i so, dass $\kappa = 0$
 - ⇒ interner Zinsfuß i_{krit}


Beantwortung der Frage:

Bis zu welchem Marktzins i_{krit} lohnt sich die Durchführung des Projekts?

Denn:

$$\overline{\kappa(i)} = -A_0 + [x \cdot (p - k_v) - K_f] \cdot \sum_{t=1}^{T} \frac{1}{(1+i)^t}$$

ist für positive Einzahlungsüberschüsse streng monoton fallend in i

Beispiele für kritische Werte

2) Ermittlung von x so, dass $\kappa = 0$ gilt:

$$X_{krit} = \frac{A_0 / RBF + K_f}{p - k_v}$$

 \Rightarrow Break-even-Menge

Beantwortung der Frage:

Ab welcher Absatzmenge x_{krit} lohnt sich die Durchführung des Projekts?

3) Ermittlung von p so, dass $\kappa = 0$ gilt:

$$p_{krit} = k_v + \frac{A_0 / RBF + K_f}{x}$$

⇒ Break-even-Preis

Ab welchem Stückpreis p_{krit} lohnt sich die Durchführung des Projekts?

- 4) Ermittlung von T so, dass $\kappa = 0$ gilt:
 - ⇒ Amortisationsdauer

Ab welcher Laufzeit T_{krit} lohnt sich die Durchführung des Projekts?

Die Fragen zeigen, dass auf Basis der "kritischen" Parameter nur die Entscheidung "Projektdurchführung (ja/nein)" beantwortet werden kann. Ein Projektvergleich ist auf diese Weise nicht ohne weiteres möglich.

Interner Zinsfuß

<u>Verdeutlichung der grundsätzlichen Problematik von Parameterregeln</u> anhand des internen Zinsfußes:

Allgemeiner Ansatz:

$$-A_0 + \sum_{t=0}^{T} \frac{Z_t}{(1+i)^t} \stackrel{!}{=} 0$$

Probleme bei der Ermittlung von i_{krit}:

- 1) Gleichung T-ten Grades zu lösen⇒ i.d.R. nur näherungsweise möglich
- 2) a) Gleichung besitzt u.U. keine (reelle) Lösung
 - b) Gleichung besitzt u.U. mehrere (reelle) Lösungen
- \Rightarrow Probleme aus 2) existieren allerdings nicht, wenn eine <u>Normalinvestition</u> vorliegt. Dann gibt es genau ein i_{krit} > -1.

Interner Zinsfuß

Definition Normalinvestition:

Zahlungsreihe z_0 , z_1 , ..., z_T , die über <u>genau einen</u> Vorzeichenwechsel (vom Negativen ins Positive) verfügt (wichtiger Spezialfall?).

In diesem Fall resultiert Interpretation des internen Zinsfußes i_{krit}:

Weil die Kapitalwertkurve fallend verläuft, ist $\kappa \ge 0$ für i $\le i_{krit}$ und $\kappa < 0$ für i $> i_{krit}$.

Gemäß der oben formulierten Fragen stellt i_{krit} den maximal denkbaren Kapitalmarktzins dar, bei dem das Projekt noch durchzuführen wäre.

Zahlenbeispiel

3 Projekte 1, 2 und 3 mit folgenden Zahlungsströmen und risikolosen Zinssatz i = 8 %

	t = 0	t = 1	κ	Rang
$Z_t^{(1)}$	-100	120	11,11	3
$\mathbf{Z}_{\mathrm{t}}^{(2)}$	-80	100	12,59	2
$Z_{t}^{(3)}$	-90	112	13,7	1

Zahlenbeispiel

Berechnung der internen Zinsfüße

Projekt	i _{krit}	Rang
1	$i_{krit}^{(1)} = \frac{120 - 100}{100} = 20 \%$	3
2	$i_{krit}^{(2)} = \frac{100 - 80}{80} = 25 \%$	1
3	$i_{krit}^{(3)} = \frac{112 - 90}{90} = 24, \overline{4} \%$	2

Projekt 1 sollte also genau dann durchgeführt werden, falls für den Kapitalmarktzins gilt: i ≤ 20 %.

⇒ Einzelentscheidung über die Kenntnis des kritischen Zinssatzes (und des Marktzinssatzes) möglich.

Fazit

Vergleich der kritischen Parameterwerte kann zu einer Rangfolge führen, die der Rangfolge bei Anwendung der Kapitalwertregel widerspricht.

⇒ Rangfolgebildung auf Basis kritischer Parameterwerte nicht sinnvoll!

Somit:

Interne Zinsfüße sind nur geeignet für die Beurteilung, ob ein Projekt grundsätzlich durchgeführt werden sollte.

Vorgehen:

Vergleich von i_{krit} mit Kalkulationszinsfuß i:

i_{krit} > i: Projekt durchführen

i_{krit} < i: Projekt nicht durchführen

