

Name:	Datum:
-------	--------

Was passiert mit der Stärke, wenn Obst reif wird?

Gut zu wissen!

Stärke ist ein Riesenmolekül. Wie bei einer Perlenkette sind viele kleine Zuckerbausteine, genauer gesagt Glucose (Traubenzucker), fest aneinandergebunden. Pflanzen können genauso wie unser Körper Stärke abbauen.

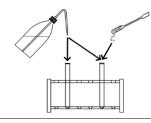
Geräte und Materialien

6 Reagenzgläser, Reagenzglasständer, Wasserbad 85 °C, Abfallgefäß, Permanentstift, Uhrglas, Spatel, Messer, Uhr

Stärkelösung, Wasser, Iodlösung, Fehling-Lösung A, Fehling-Lösung B, Glucose, braune Banane, gelbe Banane

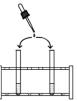
Sicherheits- und Entsorgungshinweise

Handschuhe tragen! Lösungen mit Fehling



werden in einem Abfallgefäß gesammelt!

Zunächst lernst du Nachweisreaktionen für Stärke und Zucker kennen:

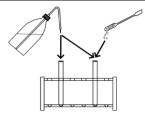


A. Nachweis von Stärke

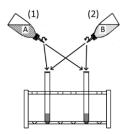
Gib in zwei Reagenzgläser (RG) je etwa 2 fingerbreit Wasser.

In das zweite gibst du zusätzlich eine Spatelspitze Kartoffelstärke.

Gib je 2 Tropfen lodlösung in die beiden Reagenzgläser.

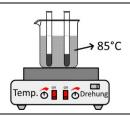

Beobachte, was passiert:

Erkenntnis: Stärke ergibt mit lodlösung



B. Nachweis von Traubenzucker

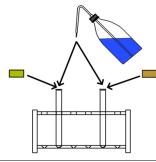
Gib in zwei Reagenzgläser (RG) je etwa 2 fingerbreit Wasser.


Im zweiten RG löst du zusätzlich einige Krümel Glucose.

Gib in beide Gläser nun erst einen Spritzer von Fehling A (1), schüttle,

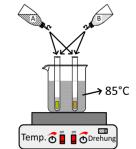
und dann so von Fehling B (2), bis die Lösungen kräftig blau sind. Schüttle wieder.

Stelle beide Reagenzgläser in das **85 °C heiße** Wasserbad.

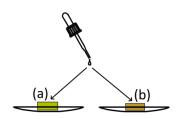

Beobachte, was passiert:

	Ų.	٠.	,
-1		7	1
-)	VY	7.	٠
	₩	į	

Erkenntnis: Glucose ergibt mit Fehling-Reagenz ___



Durchführung Hauptversuch: Was passiert, wenn Bananen reif werden


Gib in ein Reagenzglas ein kleines Stück unreife und in ein zweites ein kleines Stück braune Banane.

Füge jeweils etwa **2 fingerbreit Wasser** zu und **schüttle** kräftig.

Gib dann jeweils einen Spritzer Fehling A und B dazu, schüttle und stelle die Reagenzgläser kurz in das 85 °C heiße Wasserbad.

Vergleiche dann und entscheide: Welche Probe enthält mehr Glucose?

Lege jeweils ein kleines Stück **grün-gelbe** (a) und **braune** (b) Banane auf ein Uhrglas.

Tropfe etwas Iodlösung darauf. **Vergleiche** und entscheide: Welche Probe enthält mehr Stärke?

Q Beobachtung	Aussehen mit dlösung	lo-	Stärke? [ja/nein]	Aussehen nach Erhitzen mit Fehling	Glucose? [ja/nein]
gelbe Banane					
braune Banane					

	٠	1		,
-1		K)
-)	١	ĭ	1	΄.
	Ę		3	

Erkenntnis: Was passiert, wenn eine Banane reif wird?

Informationen für Lehrkräfte

Sicherheitshinweise

Fehling-Lösung A H318-400-410

Fehling-Lösung B **H290-314**

Hinweise zu den Materialien

Stärkelösung: 0,5 g in 100 mL Wasser aufgekocht

lodlösung: 0,05 M, dazu 2,1 g Kaliumiodid in wenig Wasser lösen, 1,6 g lod zugeben,

unter Rühren auflösen, mit Wasser auf 250 mL auffüllen, lichtgeschützt

aufbewahren

Fehling-Lösung A: 7 g Kupfersulfat-Pentahydrat in 100 mL Wasser lösen

Fehling-Lösung B: 35 g Kaliumnatriumtartrat-Tetrahydrat und 10 g Natriumhydroxid in 100 mL

Wasser lösen